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Abstract

Background: The mitotic count in breast carcinoma is an important prognostic marker. Unfortunately substantial
inter- and intra-laboratory variation exists when pathologists manually count mitotic figures. Artificial intelligence
(AI) coupled with whole slide imaging offers a potential solution to this problem. The aim of this study was to
accordingly critique an AI tool developed to quantify mitotic figures in whole slide images of invasive breast ductal
carcinoma.

Methods: A representative H&E slide from 320 breast invasive ductal carcinoma cases was scanned at 40x
magnification. Ten expert pathologists from two academic medical centers labeled mitotic figures in whole slide
images to train and validate an AI algorithm to detect and count mitoses. Thereafter, 24 readers of varying
expertise were asked to count mitotic figures with and without AI support in 140 high-power fields derived from a
separate dataset. Their accuracy and efficiency of performing these tasks were calculated and statistical comparisons
performed.

Results: For each experience level the accuracy, precision and sensitivity of counting mitoses by users improved
with AI support. There were 21 readers (87.5%) that identified more mitoses using AI support and 13 reviewers
(54.2%) that decreased the quantity of falsely flagged mitoses with AI. More time was spent on this task for most
participants when not provided with AI support. AI assistance resulted in an overall time savings of 27.8%.

Conclusions: This study demonstrates that pathology end-users were more accurate and efficient at quantifying
mitotic figures in digital images of invasive breast carcinoma with the aid of AI. Higher inter-pathologist agreement
with AI assistance suggests that such algorithms can also help standardize practice. Not surprisingly, there is much
enthusiasm in pathology regarding the prospect of using AI in routine practice to perform mundane tasks such as
counting mitoses.

Keywords: Artificial intelligence, Breast, Carcinoma, Counting, Tumor grade, Digital pathology, Informatics, Mitosis,
Whole slide imaging

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: lpantanowitz@gmail.com
†Sang Yong Song and Soo Youn Cho share senior authorship on this paper.
1Department of Pathology, University of Pittsburgh Medical Center Cancer
Pavilion, Suite 201, 5150 Centre Ave, Pittsburgh, PA 15232, USA
2Department of Anatomical Pathology, University of the Witwatersrand and
National Health Laboratory Services, Johannesburg, South Africa
Full list of author information is available at the end of the article

Pantanowitz et al. Diagnostic Pathology           (2020) 15:80 
https://doi.org/10.1186/s13000-020-00995-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13000-020-00995-z&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lpantanowitz@gmail.com


Background
Handling breast cancer specimens is common in path-
ology practice. Rendering a pathology report after pro-
cessing these specimens not only requires an accurate
diagnosis, but in the case of invasive carcinoma also re-
quires pathologists to assign the correct histologic tumor
grade. A key component of the Nottingham (or modified
Scarff-Bloom-Richardson) grading system for invasive
breast carcinoma includes the mitotic count [1]. A mi-
totic count per 10 high-power fields (HPFs) of 0–7 is
scored 1, 8–15 is scored 2, and greater than or equal to
16 is given a score of 3. This proliferation activity in
breast carcinoma is an important prognostic marker [2].
Some studies have shown that the mitotic count is even
a better marker than Ki67 (proliferation index) at select-
ing patients for certain therapy such as tamoxifen [3].
Counting mitotic figures in hematoxylin and eosin

(H&E) stained histology sections is a task typically per-
formed by pathologists while they visually examine a
glass slide using a conventional light microscope. Unfor-
tunately, there is substantial inter- and intra-laboratory
variation with manual grading of breast cancer in rou-
tine pathology practice [4]. This is not surprising, as
manually counting mitotic figures by pathologists is sub-
jective and suffers from low reproducibility. Manually
counting mitoses can take a pathologist around 5–10
min to perform [5]. Sometimes it may be difficult to dis-
cern a mitotic figure from a cell undergoing degener-
ation, apoptosis or necrosis. There are also differences of
opinion on how best to count mitotic figures [6, 7]. The
reason for this controversy is that the mitotic activity
index depends on the number of mitoses counted in a
predefined area (usually in mm2) or within a certain
number of HPFs that may vary depending on a micro-
scope’s lenses and widefield microscopy view.
Artificial intelligence (AI) coupled with whole slide im-

aging offers a potential solution to the aforementioned
problem. If developed and deployed successfully, an AI-
based tool could potentially automate the task of count-
ing mitotic figures in breast carcinoma with better ac-
curacy and efficiency. To date, investigators have
validated that making a histopathologic diagnosis in
breast specimens can be reliably performed on a whole
slide image (WSI) [8]. Moreover, using WSIs to manu-
ally count mitoses in breast cancer is reported to be reli-
able and reproducible [9, 10]. Hanna et al. showed that
counting mitotic figures in WSIs outperformed counts
using glass slides, albeit this took readers longer using
WSI [11]. Several studies have been published showing
that digital image analysis can successfully automate the
quantification of mitoses [12–18].
Clearly, there is great potential for leveraging digital

pathology and AI [19]. AI can benefit pathologists prac-
ticing in high, middle and low income countries,

especially with the rise in cancer and shortage of ana-
tomical pathologists [20]. However, AI applications in
healthcare have not been vigorously validated for repro-
ducibility, generalizability and in the clinical setting [21].
Moreover, hardly any pathology laboratories are cur-
rently using AI tools on a routine basis. To the best of
our knowledge, there have been no studies addressing
whether an AI-based algorithm actually improves path-
ologist accuracy and efficiency when scoring mitotic
figures. The aim of this study was to accordingly critique
an AI tool developed to detect and quantify mitotic
figures in breast carcinoma.

Methods
Figure 1 depicts a flow chart of the methodology and
datasets employed in developing and validating the AI-
based tool utilized in this study to quantify mitotic fig-
ures in digital images of invasive breast carcinoma.

Datasets
A total of 320 invasive breast ductal carcinoma cases
with an equal distribution of grades were selected. Half
of these cases were from the archives of the University
of Pittsburgh Medical Center (UPMC) in the USA and
the rest obtained from Samsung Medical Center (SMC)
in Seoul, South Korea. Nearly all of the cases were from
females (1 case was from a male with breast cancer).
The average patient age was 54.7 years. All cases in-
cluded were mastectomies with the following range of
tumor stages: stage IA (23.6%), IB (7.1%), IIA (31.4%),
IIB (23.6%), IIC (0.7%), IIIA (6.4%), IV (0.7%), and data
unavailable in 9 cases (6.4%). Table 1 provides a sum-
mary of the cancer grade, hormone receptor and HER2
status for enrolled cases (with available data). The aver-
age Ki-67 index was 38.3% (Mdn = 34.5%, range 3.0–
99.0%). This result was only available in 80 cases, and
this subset of cases had higher mitosis scores (n = 23
score 2, n = 48 score 3) and Nottingham grades (n = 34
grade 2, n = 41 grade 3). The average proliferation index
was accordingly skewed in this subset and higher than
would be expected for a typical mixed breast cancer
population [22].
A representative H&E glass slide from each case was

scanned. At UPMC slides were scanned at 40x magnifi-
cation (0.25 μm/pixel resolution) using an Aperio AT2
scanner (Leica Biosystems Inc., Buffalo Grove, IL, USA).
At SMC slides were digitized at 40x magnification
(0.2 μm/pixel resolution) using a 3D Histech P250 in-
strument (3DHISTECH, Budapest, Hungary). All ac-
quired whole slide image (WSI) files were de-identified.
The AI training dataset was comprised of 60 WSIs from
UPMC and 60 WSIs from SMC, which provided 16,800
grids (1 grid = ¼ high-power field [HPF]). One HPF is
equivalent to 0.19 mm2. The AI validation dataset,
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comprised of another 30 WSIs from UPMC and 30
WSIs from SMC, was used to generate 120 HPFs for an-
notation. A separate dataset (70 WSIs from UPMC and
70 WSIs from SMC) was subsequently used for a reader
study where each WSI file was randomly broken up into
140 representative digital patches (HPFs). Users inter-
acted with individual patches on a computer monitor.
The dataset used for analytical validation of the algo-
rithm was different from the dataset selected for the
clinical validation study.

Training (deep learning algorithm)
A deep learning algorithm (Lunit Inc., Seoul, South
Korea) was employed for the automated detection of mi-
toses in digital images [23]. The AI algorithm was
trained on an independent dataset, that consisted of 16,
800 digital image patches from 120 WSIs (half from
UPMC and half from SMC). Three expert pathologists
annotated mitoses to construct the ground truth for
training. The mitotic figures, which were the consensus
of at least two of these pathologists, were used to train
the AI algorithm. The algorithm was based on Faster
RCNN [24] by ResNet-101 [25] backbone network that
has pre-trained weights. The down sampling ratio was 8
and feature maps from the first stage were cropped and
resized at 14 × 14 an then max pooled to 7 × 7 for the
second stage classifier. Anchor size was 128 × 128 with a
single fixed ratio. The number of proposals at the first
stage was 2000 to enable a very dense sampling of pro-
posal boxes. Then, box IOU based NMS was performed
for post-processing. Various input data augmentation
methods such as contrast, brightness, jittering, flip and

Fig. 1 Flow chart of the methodology and datasets employed in developing and validating an AI-based tool to quantify mitoses in
breast carcinoma

Table 1 Profile of invasive ductal carcinoma cases enrolled in
the study

Reported breast carcinoma parameters %

Mitosis Score 1 21.4%

2 31.4%

3 47.1%

Nottingham Grade 1 7.9%

2 46.4%

3 45.7%

ER Not available 5.0%

Negative 25.7%

Positive 69.3%

PR Not available 5.0%

Negative 32.1%

Positive 62.9%

HER2/neu (IHC status) Not available 5.0%

Negative 59.3%

Equivocal 9.3%

Weakly positive 1.4%

Positive 25.0%

HER2/neu (FISH status) Not available 89.3%

Negative 10.0%

Positive 0.7%

ER estrogen receptor, FISH fluorescence in situ hybridization, HER2 human
epidermal growth factor receptor 2, IHC immunohistochemistry, PR
progesterone receptor
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rotation were performed to build a robust AI algorithm.
To select the final model for our reader study, the deep
learning algorithm was validated on a separate dataset.
Employing the validation dataset we achieved 0.803
mean AP (mAP) which demonstrates good performance.
The mAP represents the area under the precision recall
curve. A precision recall curve was used to calculate the
mAP instead of AUC, because of the large class imbal-
ance (i.e., many non-mitotic cells).

Ground truth
Seven expert pathologists (4 from UPMC and 3 from
SMC) annotated (labeled) mitotic figures in 140 digital
image patches using a web-based annotation tool. The
tool displayed image patches of breast carcinoma at high
magnification, in which clicking on cells automatically
generated a square box that annotated the specified cell
(i.e. with the mitotic figure present). It required around
10 s to annotate mitotic figures per patch. Pathologist
consensus was used to establish ground truth, where
agreement of at least 4/7 pathologists was required for
each image. Whilst there is no published data available
to support the exact number of pathologists required to
be in agreement to reach consensus, a consensus of 4
out of 7 was chosen for this study in order to utilize the
highest number of cases (n = 93, 66.4%) while maintain-
ing consensus among the majority of ground truth
makers (57.1%). Table S1 shows the number of cases for
each consensus level. Further, for 100% agreement the
mitotic figures would likely be very obvious and thus too
easy to detect, which would not be suitable to measure
performance. Since prior studies have proven that WSI
can be used for mitotic cell detection and offers similar
reproducibility to the microsocpe [10, 26], we opted to
use WSI and not glass slides for establishing the ground

truth in this study. Pathologists who annotated slides for
ground truth generation did not participate in the subse-
quent reader study.

Observer performance test (OPT)
For the OPT (reader study), the accuracy and effi-
ciency of mitotic cell detection was compared based
on mitotic figure scores provided by humans and the
AI algorithm. There were 12 readers at each institu-
tion (total of 24 reviewers) that varied in expertise/
years of experience (n = 6 2nd-4th year pathology
residents/registrars, n = 3 fellows/post-residency
trainees, and n = 3 board-certified pathologists).
Table S2 summarizes the experience level of all par-
ticipants involved in the study. Digital slides were
presented to test takers in the form of 140 HPFs.
Each HPF was equivalent to four digital image
patches. There were two reader groups. In group 1
(no AI), readers were first shown HPFs and asked to
manually select mitotic figures without AI support.
In group 2 (with AI), readers were first shown HPFs
where mitotic figures were pre-marked by the AI
tool (Figure 2) and asked to accept/reject the algo-
rithm’s selection. Each group repeated this task, but
now with/without AI employing a cross-over design
to minimize sequential confounding bias. A washout
period of 4 weeks was used to control for recall bias
between re-reviews of each image. A web-based tool
recorded user clicks on images and their time (in
seconds) to perform this task. The OPT was repli-
cated at UPMC and SMC institutions. All readers
were trained prior to the start of the study, anon-
ymized, and provided informed consent to partici-
pate. The readers were not formally asked to provide
feedback about their user experience.

Fig. 2 Web-based tool showing a HPF of breast carcinoma. a Screenshot of the web-based tool used for the observer performance test without
AI. The small green dots indicate mitotic figures marked by the reader. b Screenshot of the web-based tool used for the observer performance
test with AI. The green boxes indicate mitotic figures detected by AI
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Statistical Analysis
Accuracy of mitotic cell detection was calculated by
comparing cells identified by reviewers to cells identified
by the ground truth (i.e. consensus of at least 4 of the 7
ground truth makers). Accuracy was compared for re-
views with and without AI support for each reviewer.
The hypothesis being tested was that reviewer accuracy
improves with AI support. To test this hypothesis a
Pearson chi-square analysis was performed. For the OPT
part of this study, true positive (TP), false positive (FP)
and false negative (FN) were calculated with and without
AI support. Precision for pathologists was calculated as
TP / (TP + FP). Sensitivity was calculated as TP / (TP +
FN). As true negatives (TN) represented not only cells,
but also all of the white space where no cells were
present in an image, TN greatly outnumber the combin-
ation of TP + FP + FN and therefore f-scores were calcu-
lated (f-score = 2 * ((sensitivity * precision) / (sensitivity
+ precision)). F-scores closer to 1 indicate perfect detec-
tion and precision. Since TN were not calculated, speci-
ficity was not possible to calculate.
Efficiency was calculated as seconds spent reviewing

each case. The normality of the distribution of the time
variable was examined using the Shapiro–Wilk normal-
ity test. As the data were not normally distributed, non-
parametric statistical tests were used. Wilcoxon signed-
rank test was used to compare time spent on the task of
counting mitoses with and without AI support. We as-
sumed that image reviews lasting longer than 10 min
were outliers (e.g. indicative of an interruption) and thus

excluded. Out of the 6720 values in the dataset, 73
(1.1%) were accordingly excluded from analysis. Statis-
tical comparisons were performed for time spent per
case with and without AI support for each individual, for
each user’s experience level, and overall.
Statistical significance was assumed at p < .05. Analysis

was performed using IBM SPSS Statistics 22 and Micro-
soft Excel 365.

Results
Accuracy and precision findings
A precision recall (PR) curve shows the algorithm’s per-
formance (Figure 3). This PR curve shows the relation-
ship between positive predictive value and sensitivity for
every possible cut-off. Akin to the area under a ROC
curve (i.e. AUC), the area under the PR curve is large in-
dicating the high recall and precision value of the algo-
rithm at specific cut-offs. Figure 4 shows the accuracy
and precision of mitotic cell detection with and without
the use of AI support. For each experience level the ac-
curacy and precision were higher with AI support.
Table 2 with Chi-square results confirmed that accurate
mitotic cell detection was significantly higher with the use
of AI support for each experience level. Table S3 shows
the individual reviewer accuracy results. Of note, all but
one reviewer had higher accuracy with the support of AI.
Of the 23 reviewers with improved accuracy, 20 (87%) had
a statistically significant increase. Table 3 demonstrates
TP, FP and FN values for readers (Table S4 shows individ-
ual reviewer results). There were 21 out of the 24 readers

Fig. 3 Algorithm performance for mitotic figure detection in the analytical validation dataset
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(87.5%) that identified more mitoses using AI support. Fur-
ther, 13 reviewers (54.2%) decreased the quantity of falsely
flagged mitoses (FP) using AI support, and 21 (87.5%) de-
creased the quantity of mitoses that were missed (FN) using
AI support. There were six reviewers that falsely detected
100 or more additional mitoses (FP) when screening cases
without AI support. Table 3 shows that the number of FPs
detected with the use of AI support (2899) is lower than
without the use of AI support (3587).
Sensitivity for mitotic cell detection increased with the

use of AI support for each experience level (Table S5).
Sensitivity for mitotic cell detection per individual re-
viewer was higher for all but 3 reviewers. Precision for mi-
totic cell detection also increased with the use of AI
support for each experience level (Table S6). Sixteen of
the 24 reviewers (66.7%) had increased precision with AI
support. The f-score (Table S7) for mitotic cell detection
without the use of AI support was 0.61, and with the use
of AI support was 0.71. The higher f-score with the use of
AI suggests that AI support improves overall precision
and TP detection of mitotic cells. Cases with AI support
also had higher f-scores for each experience level, with 23
of the 24 reviewers (95.8%) demonstrating a higher f-score
with AI support. The datasets utilized included only the
overall grade (i.e. sum of percent tubules, nuclear pleo-
morphism and mitoses/10 HPF) for all breast cancers and
no details of the exact mitotic figures (i.e. score 1, 2 or 3)
for each case. Therefore, we were unable to investigate

whether any change in the number of mitoses scored in
this study may have altered the grade.

Efficiency findings
A Wilcoxon signed-rank test indicated that more time
was spent on detecting mitotic cells without the use of AI
support (median = 36.00 s) than with AI support (me-
dian = 26.00 s), Z = − 14.759, p < .001, r = .25. Overall, this
represents a time savings of 27.8%. Irrespective of whether
readers started counting mitoses with or without AI sup-
port, nearly all of them read faster with AI assistance, but
this was not statistically different. Figure 5 shows the me-
dian time spent detecting mitoses with and without AI
support by reader experience level. Despite experience
level, most participants spent less time detecting mitotic
cells with the use of AI support. Fellows had the largest
decline, with a median of 44 s spent without the aid of AI
compared to 16 s with AI support. The only experience
level that had a longer median time spent with AI support
was postgraduate year (PGY)-4 users. Table 4 summarizes
the median time spent and statistical results per user’s ex-
perience level with and without AI support (Table S8
shows individual reviewer results).

Conclusions
There are formidable challenges with successfully trans-
lating AI in healthcare [10, 19, 26]. Some of these

Fig. 4 Accuracy and precision with and without AI support per user experience level

Table 2 Accuracy by experience level

User Experience Level No AI Support With AI Support Improved Accuracy with AI support? X2 (degrees of freedom) p-value

PGY-2 (n = 4) 36.8% 51.6% Yes 89.30 (1) <.001

PGY-3 (n = 4) 47.5% 58.4% Yes 53.12 (1) <.001

PGY-4 (n = 4) 38.6% 52.9% Yes 87.13 (1) <.001

Fellow (n = 6) 50.1% 57.1% Yes 29.82 (1) <.001

Faculty (n = 6) 43.1% 55.2% Yes 89.84 (1) <.001

Overall 43.9% 55.2% Yes 320.61 (1) <.001

PGY postgraduate year
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challenges include technical difficulties, complex imple-
mentations, data ownership issues, lack of reimburse-
ment, delayed regulatory approval, ethical concerns, and
overcoming human trepidation regarding AI (e.g. mis-
trust related to the ‘black box’ phenomenon of AI). Bair-
nov et al. showed that an AI-based decision support tool
in Radiology had significant differences with accuracy
and inter-operator variability depending on how AI was
deployed (i.e. sequential or independent workflow) [21].
To the best of our knowledge, no studies have been pub-
lished examining the interaction of pathology end users
with AI to determine the pros and cons of using AI to
assist with counting mitoses. Such studies would provide
much needed translational evidence that could help de-
velop recommendations and guidelines for the safe and
effective use of AI in routine diagnostic Anatomical
Pathology workflow.
This cross validation study demonstrates that path-

ology end-users were more accurate and efficient at
quantifying mitotic figures in digital images of invasive
breast carcinoma with the aid of an AI tool that detects
mitoses. These data show that the accuracy, sensitivity,
precision, and f-scores all increased for each participant
experience level with the use of AI support. Readers in
both groups had higher inter-pathologist agreement with
AI assistance, suggesting that AI can help standardize
practice and perhaps result in more reproducible

diagnoses. Very few participants unexpectedly had a
lower accuracy performance with AI support. The re-
sults of this study showed that only 54.2% of reviewers
decreased the quantity of falsely flagged mitoses using
AI support. The reason why false positives were not re-
duced across all readers with AI support could be that
they missed annotated mitotic figures because they were
not clearly visible in the user interface or that some
readers may not have believed the AI results. A detailed
analysis of the sessions from these individuals showed
that for some cases they spent an unusually long time
counting mitoses (e.g. 451 s in one case with AI support,
but only 15 s on the same case without AI support). This
likely points to distraction more than AI causing an actual
delay and it is uncertain if these outliers skewed the data.
With regard to improved efficiency, the use of AI resulted
in a 27.8% decrease in time for mitotic cell detection. In
other words, for every 1 h spent searching for cells with
mitotic figures without AI support, roughly 16.7min could
be saved using AI support. Nearly every subgroup of par-
ticipants had faster reading speeds with the use of AI
(PGY-4 was the exception). Overall, 66.7% of pathologists
read faster with AI (statistically significantly faster for
33.3%). For pathology trainees, use of AI support resulted
in faster reads for 83.3% of residents/registrars (statistically
significantly faster for 25.0%) and 83.3% of fellows (all
83.3% statistically significantly faster).
Methods to automatically detect mitoses in breast can-

cer images were introduced in the literature several de-
cades ago [27]. Despite limited access to large digital
datasets and prior to the availability of today’s computer
processing power, many early image analysis projects
demonstrated the feasibility of using computers to assist
in counting mitoses [28, 29]. Although some of these
first generation algorithms provided promising results,
they were not yet suitable for clinical practice. Since
then, with the advent of newer technologies including
WSI, deep learning methods, graphics processing units
and cloud computing we have witnessed a new gener-
ation of AI-based algorithms that are able to automate
mitosis detection with impressive performance [16, 30–
36]. Several international challenges using public data-
sets catalyzed the development of these sophisticated AI
tools [37, 38], including algorithms to predict breast
tumor proliferation [39]. The Lunit algorithm utilized in
this study to automate mitosis counting in breast carcin-
oma WSIs integrates three modules: (i) image processing
to handle digital slides (e.g. tissue region and patch ex-
traction, region of interest detection, stain
normalization), (ii) deep learning mitosis detection net-
work (based on Residual Network or ResNet architec-
ture), and (iii) a proliferation score prediction module
[23]. For the Tumor Proliferation Assessment Challenge
in 2016 (TUPAC16; http://tupac.tue-image.nl/), Lunit

Table 3 True positive (TP), false positive (FP), and false negative
(FN) values for mitotic cell detection

User Experience Level No AI support With AI support

TP FP FN TP FP FN

PGY-2 (n = 4) 749 509 779 1003 414 525

PGY-3 (n = 4) 1135 861 393 1208 539 320

PGY-4 (n = 4) 793 525 735 1149 642 379

Fellow (n = 6) 1524 751 768 1659 611 633

Faculty (n = 6) 1395 941 897 1647 693 645

Overall 5596 3587 3572 6666 2899 2502

PGY postgraduate year

Fig. 5 Median number of seconds spent with and without AI
support per user experience level
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won all tasks including the prediction of mitosis grading.
For this specific task their method achieved a Cohen’s
kappa score of κ = 0.567, 95% CI [0.464, 0.671] between
the predicted scores and the ground truth [17].
In general, mitotic figures are detectable in H&E

stained tissue sections due to their hyperchromatic ap-
pearance and characteristic shapes. However, it is plaus-
ible that mitoses may be missed by humans and/or even
AI algorithms due to tissue or imaging artifacts. To ad-
dress this, using a biomarker such as Phosphorylated
Histone H3 (PHH3) may have helped objectively con-
firm mitotic figures [40, 41]. Even though overall accur-
acy for readers in the OPT study was determined to be
55.2%, with AI support this was still more sensitive than
counting mitotic figures manually. Further, contrary to
classifying mitoses into scores 1, 2, and 3 for actual diag-
nostic purposes, this study was aimed at finding individ-
ual mitotic cells in a simulated format, which is expected
to have relatively lower performance that could have
caused missed or incorrect mitotic figure detection. Da-
vidson et al. have shown that while pathologists’ repro-
ducibility is similar for Nottingham grade using glass
slides or WSI, there is still slightly lower intraobserver
agreement because grading breast cancer using digital
WSI is more challenging [42]. Another limitation of our
study was not standardizing the monitors used for anno-
tation and the reader study. However, Norgan et al.
showed that manual mitotic figure enumeration by pa-
thologists was not affected by medical-grade versus com-
mercial off-the-shelf displays [43]. In this study we did
not equate a glass slide HPF with a digital HPF. Indeed,
currently the HPF is typically used in manual micros-
copy with glass slides when quantifying mitoses (e.g.
breast mitoses are evaluated using 10 HPFs at 400x mag-
nification) [44]. However, this HPF at 400x on a glass
slide is unlikely to be equivalent to a digital HPF at “40x
view” view in a WSI [45].
As verified by this study, expected benefits of adopting

AI in pathology practice include automation, elimination
of tedious tasks, improved accuracy, and efficiency. Not
surprisingly, there is much enthusiasm in pathology re-
garding the prospect of using AI in routine practice.

Interestingly, some of the trainees involved in this study
expressed their gratitude for being invited to participate
because of the opportunity to experience working with
AI first hand. Of course, there is much to still be learned
before successfully embedding AI into routine work-
flows. If AI is indeed more accurate than humans at
counting mitoses we will need to determine how this
impacts patient outcomes and whether man-made scor-
ing systems may need to be revised.
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