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Abstract

Face identity recognition is important for social interaction and is impaired in a range of clinical 

populations, including several neurodevelopmental disorders. The Benton Facial Recognition Test 

(BFRT; Benton & Van Allen, 1968), a widely used assessment of identity recognition, is the only 

standardized test of face identity perception rather than face memory that has been normed on 

children and adolescents. However, existing norms on the BFRT are suboptimal, with several ages 

not represented and no established time limit (which can lead to inflated scores by allowing 

individuals with prosopagnosia to use feature-matching). Here we address these issues with a large 

normative dataset of children and adolescents (ages 5–17, N=398) and adults (ages 18–55; N=120) 

who completed a time-limited version of the BFRT. Using Bayesian regression, we demonstrate 

that face identity perception increases asymptotically from childhood through adulthood and 

provide continuous norms based on age and sex that can be used to calculate standard scores. We 

show that our time limit of 16 seconds per item yields scores comparable to existing norms 

without time limits from non-prosopagnostic samples. We also find that females (N=156) score 

significantly higher than males (N=362), supporting the existence of a female superiority effect for 

face identification. Overall, these results provide more robust norms for the BFRT and promote 

future research on face identity perception in developmental populations.
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Background

The Benton Facial Recognition Test (BFRT; Benton & Van Allen, 1968) is a standardized, 

commercially available neuropsychological test of face identity perception. The BFRT was 

first developed by neuropsychologist Arthur Benton in order to assess the face recognition 

abilities of brain-damaged patients who suffered from profound, isolated impairment in 

individual face recognition (a condition known as prosopagnosia; Benton, 1980). The BFRT 

is one of the most commonly used neuropsychological tests in clinical settings (Rabin, Barr, 

& Burton, 2005) and has also been utilized extensively to study face recognition impairment 

in a variety of clinical populations, including those with developmental prosopagnosia 

(Barton, Cherkasova, Press, Intriligator, & O’Connor, 2003; Duchaine, 2000), schizophrenia 

(Sachse et al., 2014; Whittaker, Deakin, & Tomenson, 2001), and autism spectrum disorder 

(ASD; Annaz, Karmiloff-Smith, Johnson, & Thomas, 2009; Sachse et al., 2014; Webb et al., 

2012). The test requires individuals to match the identity of a photograph of a target face 

(presented at the top of the page) to test face(s) presented simultaneously below the target 

face. The BFRT consists of two phases. In the first phase, all photographs are of fully-lit, 

forward-oriented faces, and patients are asked to match one target face to one of six test 

faces. This phase is shorter (6 items) and easier, as the test and target photographs are 

identical. In the second phase (16 items), target faces differ from test faces in either the 

orientation or the lighting of the face, and patients are asked to match one target face to three 

of six test faces. Because it requires identity matching across changes in visual conditions, 

the BFRT measures an individual’s ability to form invariant representations of facial identity.

The BFRT has been widely used for decades, with considerable data on its clinical utility 

and sensitivity to developmental change. It has a number of desirable properties, including 

the lack of ceiling effects in typical populations (Benton & Van Allen, 1972) and floor 

effects in clinical populations in all but the youngest ages (e.g., Annaz et al., 2009; Barton et 

al., 2003), thus allowing accurate measurement of a very broad range of face perception 

skill. Because the BFRT presents the target face and test faces simultaneously, it provides an 

assessment of face identity perceptual skill; in fact, it is the only standardized test of face 

identity perception rather than face memory that has been normed in children, adolescents, 

and adults1. This is an important distinction, as evidence from both neuropsychiatric patients 

(Tippett, Miller, & Farah, 2000; Williams, Berberovic, & Mattingley, 2007) and typical 

adults (Bowles et al., 2009) indicates that face memory and face identity perception are 

dissociable. The ability to assess identity perception independent of face memory is 

therefore vital to understanding which processes are disrupted for a given patient or clinical 

disorder.

Despite these strengths, the current implementation of the BFRT allows individuals with a 

clinically significant face recognition impairment to score in the normal range by using 

1Standardized measures of face memory and perception that are normed only for children are available (Bennetts, Murray, Boyce, & 
Bate, 2017). For adults, the Cambridge Face Perception Test (CFPT; Duchaine, Germine, & Nakayama, 2007) is a less widely utilized 
test of face perception ability (Rossion & Michel, 2018). The CFPT requires participants to sort a series of morphed faces based on 
their similarity to a target face. Unlike the BFRT, the CFPT does not test unfamiliar face matching, which is closely linked with real-
life face recognition ability. The CFPT is likely to be more dependent on higher-level cognitive processes involved in making a series 
of similarity judgments (Rossion & Michel, 2018). Norms for the CFPT are only available for adults, though a separate childhood 
version has been normed for children 7–12 years of age (Dalrymple et al., 2014).
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atypical face processing strategies, such as feature-matching (Duchaine, 2000; Duchaine & 

Nakayama, 2004). Such strategies are often time-intensive (e.g., Delvenne, Seron, Coyette, 

& Rossion, 2004), and the absence of a time limit on the BFRT allows patients unrestricted 

access to them. The use of face-matching tasks with time limits has been shown to improve 

sensitivity to recognition impairment (Nunn, Postma, & Pearson, 2001). Thus, the 

introduction of a time limit for the BFRT is an important first step to enhancing the 

sensitivity of the test. The utility of the BFRT is also limited by suboptimal norms, 

particularly for children and adolescents. Existing norms for the BFRT have not been 

updated since the initial publication of the instrument manual 35 years ago (Benton, Sivan, 

Hamsher, Varney, & Spreen, 1983). Norms for adults ages 16–74 are based on a sample of 

only 286 participants, with no information provided on the distribution of ages within the 

sample. While expected scores are available for children ages 6–14, the number of 

participants in each age bin is small (ranging from 19–59), and norms for ages 12 and 15 are 

absent (Benton, Sivan, Hamsher, & Varney, 1994). Finally, expected variability (SD) of 

BFRT scores is not available in the child data, preventing the calculation of standard scores. 

Since the BFRT is the only test of identity perception normed for children and adolescents, 

these flaws prevent accurate measurement with standardized scores of individual variability 

in face perception ability, especially in developmental samples. This is a serious challenge to 

the clinical assessment of face perception ability and to scientific progress in this field. The 

present study sought to address these limitations by providing updated norms for a time-

limited version of the BFRT.

There are generally two distinct approaches to norming: traditional age binning and 

regression-based norming (Oosterhuis, van der Ark, & Sijtsma, 2016). The traditional 

approach, used for the existing BFRT norms, groups participants into discrete bins based on 

age and relevant demographic variables and provides expected scores separately for each 

bin. Although the traditional approach is the most frequently utilized (Oosterhuis et al., 

2016), it has two main disadvantages. First, boundaries between age bins are defined 

arbitrarily. These arbitrary decisions can greatly influence the interpretation of an 

individual’s test performance, giving rise to abrupt shifts in standard score between bins 

despite little change in actual test performance (Zachary & Gorsuch, 1985). This is 

particularly problematic during periods of rapid development, when the expected score may 

increase substantially between adjacent age bins. Second, traditional norming approaches 

require large sample sizes to achieve precise estimates of expected score, since estimates are 

calculated based only on the subgroup of participants in a given age bin. In contrast, 

regression-based norming relies on regression models to provide continuous age-based 

estimates of expected score based on the entire sample. Regression-based norming thereby 

avoids arbitrary decisions of traditional norming while simultaneously achieving more 

precise score estimates for a given sample size (Oosterhuis et al., 2016). In light of these 

advantages, the present study selected a regression-based norming approach to provide 

updated norms on the BFRT.

Existing applications of regression-based norming procedures to behavioral tasks have 

focused on conventional ordinary least squares (OLS) regression models. These models are 

fast and simple to compute, familiar to a wide audience, and easy to interpret. However, 

OLS regression techniques require that the data adhere to a set of traditional model 
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assumptions. This restricts the applicability of OLS regression-based norms and limits the 

type of information that this type of norming can capture. For example, OLS regression-

based norms cannot accommodate data in which the expected variance in the dependent 

variable changes meaningfully over the values of a predictor (e.g., age), as this violates the 

assumption of homoscedasticity. Bayesian approaches, on the other hand, are flexible, 

allowing for nonlinear relationships between predictors and dependent variables, and they 

provide estimates of predictive uncertainty that may vary over values of predictors. 

Furthermore, they supply rich information on the distribution of possible predicted values, 

allowing for deeper understanding of the precision and stability of the regression model.

In addition to a need for developmental norms for the BFRT, several recent studies have 

provided evidence of sex differences in face recognition, with females showing better 

performance than males on face detection (McBain, Norton, & Chen, 2009), face perception 

(Bowles et al., 2009; Megreya, Bindemann, & Havard, 2011; Sommer, Hildebrandt, Kunina-

Habenicht, Schacht, & Wilhelm, 2013), and face memory tasks (Bowles et al., 2009; Heisz, 

Pottruff, & Shore, 2013; McBain et al., 2009; Sommer et al., 2013). These findings indicate 

that typical performance on face recognition tasks may differ between males and females, 

underscoring the need for separate male and female norms for standardized face recognition 

tests.

In summary, the current study aimed to establish a standard time limit for the BFRT, 

examine sex differences in BFRT performance, and provide new Bayesian regression-based 

norms for the BFRT in a sample of typically-developing children, adolescents, and adults.

Method

Participants

518 typically-developing individuals completed the BFRT as part of a core phenotyping 

battery used across a variety of studies on autism conducted at the Yale Child Study Center 

and the Center for Autism Research (CAR) at the Children’s Hospital of Philadelphia. 

Participants were enrolled as control subjects for studies on face recognition, social 

cognition, and/or brain function in ASD. Participants were excluded if they had an 

uncorrected auditory or visual impairment, a history of traumatic brain injury, a known 

syndromic genetic disorder, a neurologic disorder, or history of a DSM-IV Axis I disorder or 

significant symptoms of an Axis I disorder based on the Child Symptom Inventory (Gadow 

& Sprafkin, 2002) and/or expert clinical judgment. All participants underwent a standard 

intelligence test selected from the following based on age and language level, as well as on 

the specific study protocol: Wechsler Intelligence Scales for Children – Fourth Edition 

(Wechsler et al., 2003), Differential Ability Scales – II (Elliott, 2007), Wechsler Abbreviated 

Scales of Intelligence (Wechsler, 1999), or Wechsler Preschool and Primary Scales of 

Intelligence – Third Edition (Wechsler, 2002). As past research has demonstrated strong 

concurrent validity (Pearson correlations > .80) between overall scores on these instruments 

in typical development (Dumont, Willis, & Elliott, 2009; D Wechsler, 1991), scores were 

combined into a single IQ variable for the present study. The final sample consisted of 398 

children and adolescents (ages 5–17) and 120 adults (ages 18–55; see Table 1 for sample 

characteristics). Because the parent studies for which this normative sample was collected 
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were focused on comparisons to autism, where there are many more males than females, the 

normative sample is also skewed in favor of more males.

Due to differences in record-keeping across sites, race and ethnicity information was not 

available for participants from Yale, but was available for all participants from CAR. The 

sample from CAR was predominantly white (75%; N = 171), but also included black (16%; 

N = 35) and Asian (1%; N = 3) participants, as well as participants who were biracial/other 

unspecified race (7%; N = 16). With regard to ethnicity, the sample from CAR was 

predominantly non-Hispanic (89%; N = 200), with a minority of Hispanic participants (4%; 

N = 10) and participants who did not report ethnicity (7%; N = 15). Because race and 

ethnicity information were not available for all participants, these variables were not 

included in the norming analyses. Nevertheless, additional analyses were carried out to 

investigate possible effects of these variables on BFRT scores (see “Differences in BFRT by 

demographic group”).

It should be noted that, though our sample has above-average intelligence (mean IQ = 

113.36), IQ did not significantly predict BFRT raw score after controlling for age (b = 

−0.01, 95% highest density interval [−0.05, 0.03]). Moreover, previous research indicates 

that IQ is not correlated with face identity discrimination in typically-developing controls 

(Pallett, Cohen, & Dobkins, 2014). In addition, it is important to emphasize that the density 

of our sample sharply decreased in the older age range (starting at 33 years of age; Figure 1). 

Because Bayesian regression models are able to handle sparse data and provide continuous 

estimations of predictive uncertainty, we retained these participants in the model. However, 

the accuracy and utility of our norming model for individuals 33 years of age and older is 

limited, and additional efforts to create robust and reliable continuous norms for this age 

range are still needed.

BFRT administration

For each trial, the experimenter instructed the participant by pointing to the reference face 

and saying, “Do you see this person here?” then pointing to the test faces and saying, “Find 

that person down here” (or “Find three pictures of that person down here” for applicable 

trials). The examiner prompted for answers after 12 seconds by saying, “Do you have an 

answer?” and at 16 seconds began to turn the page and request final answers. The participant 

was only given credit for responses given within the 16-second time limit. The time limit 

was established during extensive piloting with cases and controls before the study began, 

and is not prescribed by the BFRT manual. The authors’ previous experience with the BFRT 

indicated that typically-developing children and adults very rarely took more than 10 

seconds per item, and that individuals with acquired prosopagnosia tended to engage in 

extensive feature-matching and only scored above chance when allowed unlimited time 

(often several minutes per item). Based on this experience, 16 seconds was chosen as a 

generous but reasonable time limit in order to make the test more sensitive and specific. This 

time limit is consistent with results from other research groups, who found that adults 

exhibit a mean response time of 10.17 seconds on BFRT items (with 16.9 seconds 

corresponding to the 95th percentile of response times; Rossion & Michel, 2018) and that 
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individuals with prosopagnosia frequently take more than one minute to respond to BFRT 

items (Busigny & Rossion, 2010; Delvenne et al., 2004; Duchaine, 2000).

In the current sample, 5 participants completed a short form of the BFRT (Levin, Hamsher, 

& Benton, 1975), and their scores were converted into long form scores using a published 

conversion rule (Benton et al., 1994).

Bayesian regression-based norming

As expected, BFRT scores improved with age (Bayesian estimated ρ = .58, probability of a 

positive correlation > 0.999), but the relationship between age and BFRT score was 

nonlinear (Figure 2), making linear regression models inappropriate for norming. Previous 

literature utilizing regression-based norming has accounted for nonlinear relationships by 

including both age and age2 as predictors in the regression models (Argento et al., 2016; 

Smerbeck et al., 2012; Van Breukelen & Vlaeyen, 2005; Van der Elst, Hurks, Wassenberg, 

Meijs, & Jolles, 2011; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006). However, 

quadratic models are likely to be less appropriate than other nonlinear models when 

modeling the development of abilities with strong maturational components. Such abilities 

often exhibit threshold effects (Roberts, 1986), in which initial rapid development gradually 

plateaus over time. These thresholded patterns of development are more accurately modeled 

by inverse functions (i.e., by including age−1 as a predictor) rather than quadratic functions. 

Thus, multiple nonlinear Bayesian regressions (inverse, quadratic) were run between age and 

observed BFRT score and compared with a linear Bayesian model in order to determine the 

model of best fit. Age was centered prior to calculation of the quadratic age term to avoid 

multicollinearity. For all analyses, we assessed goodness of fit using the Widely Applicable 

Information Criterion (WAIC; Watanabe, 2010).

In contrast to OLS regression, which involves minimizing the residual sum of squares of the 

regression model and provides single point estimates of predicted values, Bayesian 

regression uses Bayes’ rule to produce a distribution of values for model parameters (i.e., 

posterior distributions) based on the data and the prior distributions of model parameters. 

Thus, Bayesian models provide probabilistic distributions for unobserved values of the 

dependent variable, given observed values of predictors (see Kruschke, 2014 for an 

introduction to Bayesian regression). In this way, Bayesian regression models yields 

continuous estimates of predictive uncertainty over values of predictors.

For the present study, Bayesian models were estimated using the Stan software (version 

2.18.2; Stan Development Team, 2019) accessed via the brms package (version 2.8.0; 

Bürkner, 2017) in R (version 3.4.4). Each parameter was fit with four sampling chains, each 

consisting of 2000 draws from the posterior distribution; the first 1000 draws are used to 

tune the model parameters and subsequently discarded, while the second 1000 draws are 

retained in the posterior prediction distribution. Therefore, the prediction distribution 

contained 4000 draws of predicted values for every model parameter. As we did not have 

strong a priori hypotheses regarding the distribution of model parameters, prior distributions 

for regression coefficients were specified to be weakly informative normal distributions 

(N(0, 3) for age and sex; N(0, 150) for age−1; following Baldwin & Larson, 2017). Prior 

distributions for regression intercepts were defined as half student-t distributions with three 
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degrees of freedom and scaled to the standard deviation of the response variable (a common 

recommendation for non-binary parameters; Gelman, Jakulin, Pittau, & Su, 2008). With 

regard to modeling expected score variability, Bayesian regression conveniently allows 

modelling residual variance σ as a function of other predictors within a single regression 

model. Since we did not have a strong a priori hypothesis regarding the shape of the 

relationship between age and residual variance, we estimated the form of the relationship 

using splines (Wood, 2004).

Calculating standard scores

Following Marquand and colleagues (2016), we sought to extend a normative probability 

mapping approach to our behavioral data. Normative probability mapping uses Bayesian 

modeling to estimate the normative distribution of a response variable of interest across 

levels of relevant predictors. It then uses this normative model to predict the value of the 

response variable for a new individual based on the normative distribution. The discrepancy 

between the individual’s actual score and the expected score based on the normative 

distribution is normalized by the uncertainty of the prediction and the average degree of 

variation in scores in the normative population to produce a standardized z-score. That is, for 

each individual i, the z-score zi is given by:

zi = yi − yi
σi2 + σn2

, (1)

where yi is the individual’s actual score, yi is the individual’s predicted score, σi
2 is the 

variance of the prediction distribution (i.e., the predictive uncertainty), and σn
2 is the 

variance of the residuals in the normative sample. To yield interpretable, traditional standard 

scores with a mean of 100 and standard deviation of 15 (Groth-Marnat, 2009; Popham, 

2000), these z-scores can then be rescaled via the following equation:

SSi = zi * 15
σz

+ 100, (2)

where SSi is the individual’s standard score, zi is the individual’s z-score and σz is the 

standard deviation of z scores in the norming sample.

Investigating model precision, reliability, and stability

The precision of parameter coefficient estimates was assessed by examining the 95% highest 

density interval (HDIs) for each parameter; HDIs are the upper and lower limits containing 

95% of the posterior prediction distribution for the parameter, thus describing the precision 

of parameter estimates. To investigate model reliability and stability, 10-fold cross-validation 

was conducted 10 times with random ordering of participants. This involved dividing 

participants into 10 equally-sized groups, or folds, and for each unique fold (1) estimating 

the Bayesian regression model using the 9 other folds (the training set), (2) calculating the 

predicted values from this training model on the data from the unique fold (the test set), (3) 

comparing the predicted values to the actual observed values in the test set. This was 

repeated 10 times with ordering of participants was randomized each time. Thus, for each of 
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the 10 iterations of 10-fold cross validation, each individual in the norming sample was 

included in the test set one time, yielding one predicted value and one actual observed value 

for each individual in each iteration. Model performance was evaluated by computing the 

average Pearson correlation and root mean square error (RMSE) between the predicted 

values and actual values in a given iteration. This provided an index of the predictive 

accuracy of the model on unseen data and whether model performance was stable across 

different subsets of the norming sample.

Results

Raw BFRT scores and comparison to existing norms

Raw BFRT scores were approximately normally distributed (Shapiro-Wilk W = .98; Figure 

3), with a mean score of 41.20 for males and 43.03 for females. The addition of the 16-

second time limit did not appear to significantly alter BFRT performance in typically-

developing individuals, as the mean score (45.42) and standard deviation of scores (3.64) for 

adults in the present sample were remarkably similar to previously established norms for 

adults in the same age range (16 and above; mean = 45.4, SD = 3.96; Benton et al., 1994). 

Mean scores in the sample of children and adolescents were similarly comparable to original 

norms, where available (Figure 4).

Differences in raw BFRT score by demographic group

Bayesian estimation (BEST) methods for two groups were used to test whether BFRT score 

differed based on demographic features. BEST, implemented with the BayesianFirstAid 
package in R (Bååth, 2014), uses a Bayesian Markov chain Monte Carlo process to generate 

posterior estimates for group means and standard deviations. It provides a 95% HDI for the 

difference in means between two groups, reflecting the upper and lower limits containing 

95% of the posterior prediction of mean difference between groups, as well as the 

probability that group 1 has a higher mean than group 2 (pb); it is thus a Bayesian analogue 

to the t-test. BEST revealed that females in our sample scored significantly higher than 

males, as the 95% HDI did not include 0 (females: mean = 43.03, SD = 5.28; males: mean = 

41.20, SD = 5.15; Cohen’s d = 0.35; 95% HDI [0.88, 2.90], pb > 0.999). This is consistent 

with evidence of female superiority across a variety of face processing tasks (Bowles et al., 

2009; Heisz et al., 2013; McBain et al., 2009; Rossion & Michel, 2018; Sommer et al., 

2013). Thus, sex was coded as a dummy variable (with males as the reference group) and 

included as a predictor in the regression models for BFRT score.

Given that all faces included in the BFRT are white, it was also important to test the 

potential effects of race and ethnicity on BFRT score. Within the sample of participants with 

available race and ethnicity data, a preliminary Bayesian regression model for BFRT score 

with race as a dummy-coded variable (0 = white, 1 = black, 2 = other) was carried out to 

investigate whether BFRT scores differed between racial groups. The 95% HDI for the race 

regression coefficient was inspected to determine whether race was significantly related to 

BFRT scores. In this model, race did not significantly predict BFRT score, as the 95% HDI 

for the race parameter included 0 (95% HDI [−0.75, 1.41]). Because the “other” group was 

relatively small (N = 19) and heterogeneous, BEST was used to explore possible differences 
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in BFRT score between the white and black participants specifically. Consistent with the 

regression analysis, no significant differences were identified (white: mean = 39.87, SD = 

5.21; black: mean = 41.11, SD = 4.64; 95% HDI [−3.10, 0.50], pb = .08). In addition, BEST 

was used to test the possible influence of ethnicity on BFRT score; this again found no 

differences between Hispanic and non-Hispanic participants (Hispanic: mean = 41.10, SD = 

3.87; non-Hispanic: mean = 40.11, SD = 5.21; 95% HDI [−2.10, 4.00], pb = .76). Thus, 

based on available results from a subset of our full sample, race and ethnicity did not appear 

to significantly influence BFRT scores, and were not considered further.

Bayesian norm model and standard scores

An inverse model was the best fit for the data based on the WAIC goodness-of-fit metric 

(inverse WAIC = 2900.87; linear WAIC = 2979.91; quadratic WAIC = 2925.84). Both age−1 

and sex were significant predictors of BFRT score, in that their 95% HDIs did not include 0. 

See Table 2 for results of the inverse regression model.

The inverse regression model was used to generate individual z-scores for all participants in 

the norming sample using the formula provided in Equation 1. The average variance of the 

model residuals (σn
2) was found to be 15.63, corresponding to a standard deviation of 3.95. 

Using these values yielded z-scores with a mean of 0 and standard deviation of 0.70. 

Updating the formula for conversion from z-scores to standard scores provided in Equation 2 

yields the following formula:

SSi = 21.41 * zi + 100 (3)

Computing standard scores in this fashion yielded a mean score of 99.95 and standard 

deviation of 15.00, consonant with the expected mean of 100 and standard deviation of 15. 

(See supplementary materials for an easy-to-use calculator that computes BFRT standard 

scores, given an individual’s age, sex, and raw score.)

Sex differences

To determine the overall effect size of the sex difference in BFRT score between males and 

females after controlling for the effects of age, standard scores were computed for female 

participants in the norming sample according to male norms. This yielded a mean standard 

score of 104.84 for females in the present sample (compared to 99.94 for males), reflecting a 

significant sex difference of a third of a standard deviation (95% HDI [2.00, 7.60], pb > .999; 

Cohen’s d = 0.33).

In addition to analyzing the main effect of sex on face identity recognition ability, we also 

aimed to explore the developmental trajectory of sex differences in face identity recognition. 

While there is abundant literature supporting the existence of female superiority in identity 

recognition ability (e.g., McBain et al., 2009; Megreya et al., 2011), the timeline of 

emergence for this effect remains unclear. Some studies have found that sex differences in 

face memory are present in childhood (Rehnman & Herlitz, 2007), but the trajectory of sex 

differences in identity matching is less studied. In the present study, no significant 

interaction was found between age−1 and sex when the interaction term was included in the 

overall Bayesian regression model (b = 0.85, 95% HDI [−22.72, 24.65]), indicating that sex 
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differences are consistent across development. However, because our study was not 

sufficiently powered to fully investigate the developmental trajectory of sex differences, 

these results should be considered exploratory.

Cross-validation results

The mean Pearson correlation between predicted and actual observed BFRT scores within 

the 10-fold cross-validation was 0.65 (range: 0.65 – 0.66), indicating that predicted scores 

were consistently strongly correlated with actual scores. These correlations were nearly 

identical to the correlation between predicted and actual observed BFRT scores from the full 

model (r = 0.66). Similarly, the mean RMSE between predicted and actual BFRT scores 

within the 10-fold cross-validation was 3.97 (range: 3.97 – 3.98), comparable to the RMSE 

of 3.95 in the full model. These results demonstrate that model performance did not change 

substantially when it was estimated from smaller random subsets of the overall dataset, 

supporting the robustness of results and stability of the model.

Discussion

The present study provides new norms for a time limit-based administration of each item of 

the BFRT, one of the most widely used standardized tests of face identity recognition. A 

Bayesian regression-based approach was used to calculate standard scores with a large 

normative sample of children, adolescents, and adults. These continuous norms can be used 

to calculate age-based standard scores for individuals 5 to 55 years of age (5 to 49 for 

females). Analyses revealed several notable features of these norms, which merit further 

emphasis.

First, adult scores on the time-limited administration did not differ from the original adult 

norms, which could be expected from empirical data showing that adults usually respond 

well within the 16 second limit (Rossion & Michel, 2018). The time limit-based version of 

the BFRT should enhance the sensitivity of the test in special populations with real-life face 

recognition impairments such as prosopagnosia, some of whom have been observed in prior 

research to use time intensive feature-matching strategies. These strategies often (Busigny & 

Rossion, 2010; Delvenne et al., 2004; Duchaine, 2000), but not always (e.g., Duchaine & 

Nakayama, 2004), take more than 16 seconds. Nevertheless, the addition of a time limit to 

the BFRT is an important step toward improving measurement sensitivity for individuals 

who struggle to accurately and efficiently recognize facial identity day to day.

Second, there was a clear nonlinear relationship between age and face identity perception 

ability, with ability increasing most rapidly in early childhood. Furthermore, regression 

analyses showed that face identity perception ability increases monotonically with age, but 

the rate of change of ability gradually decreases with age, asymptotically approaching zero 

by middle adulthood. These findings parallel evidence that face memory improves 

throughout adulthood, peaking in the early 30s (Germine, Duchaine, & Nakayama, 2011; 

Susilo, Germine, & Duchaine, 2013). These growth patterns support the need for new age-

dependent BFRT norms, the importance of including a broad age range in norm 

development, and the sensitivity of the BFRT to developmental change in identity 

perception.
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Third, females scored slightly but significantly higher on the BFRT than males (Cohen’s d = 

0.33). This finding is consistent with previous reports of female superiority in face identity 

detection, discrimination, and memory (McBain et al., 2009; Sommer et al., 2013) and with 

a recent large study on a computerized version of the BFRT in adults (Rossion & Michel, 

2018). Collectively, these findings provide support for superior face identity recognition in 

females, and underscore the importance of having separate norms for males and females.

Limitations & Future Directions

The present study is among the first to apply Bayesian approaches to regression-based 

norming, and (to the authors’ knowledge) the first to utilize a normative probability mapping 

approach with behavioral data. This approach allowed for continuous estimation of the 

precision of predictions over values of predictors and yielded flexible, robust norms. In 

addition, though weakly informative priors were utilized in the present study, Bayesian 

modeling is also advantageous for its ability to incorporate a priori predictions about the 

distributions of model parameters. Researchers seeking to implement regression-based 

norming approaches should consider utilizing Bayesian modeling especially when working 

with developmental samples where there is increased possibility for heteroscedasticity and 

nonlinear skill growth with age.

Despite growing evidence of better face recognition ability in females relative to males, the 

reason for this effect remains unknown. One possible explanation is that greater early 

preference for faces in female infants provides more experience with faces, leading to the 

development of better face processing over time (Connellan, Baron-Cohen, Wheelwright, 

Batki, & Ahluwalia, 2000). Other potential contributing factors include both biological (e.g., 

differing effects of sex hormones on brain development; Knickmeyer & Baron-Cohen, 2006) 

and cultural (e.g., gender socialization; McClure, 2000) influences. While the present study 

did not find that age moderated sex differences in face recognition ability, it was not 

adequately powered to determine when in development these sex differences emerge. Recent 

research has highlighted puberty as a period when the face processing system recalibrates 

away from being attuned to discriminating the faces of adult caregivers toward being attuned 

to discriminating the faces of peers (Picci & Scherf, 2016; Scherf & Scott, 2012), and sex 

differences in this crucial period could potentially contribute to the female superiority effect. 

Further research is needed to elucidate the causes and time course of sex differences in face 

identity recognition.

As with any empirical study, our findings should be interpreted and applied in light of the 

limitations of our sample. In particular, the present study was limited in its ability to assess 

the effects of race on BFRT performance, as race information was only available for a subset 

of participants and participants were predominantly white. However, tests of the relationship 

between race and BFRT scores in the subset of participants for whom race information was 

available revealed no significant influence of race on face recognition ability. Thus, while 

these norms are most appropriate and well-validated for white individuals, we believe that 

they are still preliminarily applicable to individuals of other races. Additional investigation 

of the effect of race on BFRT performance including a more racially and ethnically diverse 

sample is needed to help address these limitations.
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The addition of a standard time limit and robust norms for the BFRT across a wide age span 

opens the door for more accurate assessment of face identity perception in children and 

adolescents with briefer total time for test administration. Much of the extant literature on 

the developmental trajectory of face identity recognition has utilized tasks dependent on face 

memory (Carey, Diamond, & Woods, 1980; Dalrymple, Visconti di Oleggio Castello, Elison, 

& Gobbini, 2017; Germine et al., 2011; Susilo et al., 2013). Recent research has investigated 

the quantitative development of face recognition using tasks that exhibit ceiling effects in 

adults (e.g., Johnston et al., 2011) or that recruit additional higher-order cognitive processes, 

such as those that require participants to perform similarity judgments on morphed faces 

(e.g., Weigelt et al., 2014). Only a few studies to date have examined the development of 

face identity recognition across the lifespan using simple face-matching tasks like the BTFR, 

which draw on perceptual processing and not memory processing; this might be due to the 

lack of well-normed assessment tools for face perception skill. By accounting for typical 

developmental variation in identity perception ability, these new norms for the BFRT allow 

researchers to investigate the factors linked specifically with the development of face 

identity recognition ability and to examine relationships between face identity perceptual 

processes and memory processes.

Notably, our results regarding the asymptotic developmental trajectory of face recognition 

abilities are in close alignment with existing literature on the developmental timecourse of 

face memory (Germine et al., 2011), face identity discrimination (Weigelt et al., 2014), and 

simple face matching (Megreya & Bindemann, 2015), at least through middle adulthood. 

Across these studies, the face recognition abilities of early school-aged children improved 

rapidly and continued to improve throughout young adulthood, but growth slowed with age. 

This suggests that the BFRT appears to show the same developmental trajectory as other 

tasks. However, our sample did not exhibit a systematic decline in identity recognition 

ability after age 33, which has been previously found for both face memory and face 

matching (Germine et al., 2011; Megreya & Bindemann, 2015). This may be due to 

differences in experimental tasks, but could also be associated with the decreased sample 

density for older adults in the present study. As such, the norms offered for other adults (i.e., 

individuals over the age of 33) in the present study should be considered preliminary. Future 

research elucidating the expected trajectory of performance on the BFRT in later adulthood 

could help to both improve the normative data for the BFRT and inform understanding of the 

development of face recognition ability across the lifespan.

These new norms also pave the way for research on atypical development of face identity 

perception. Impairment in face identity recognition has been identified in a variety of 

neurodevelopmental disorders, including autism spectrum disorder (ASD) (Weigelt, 

Koldewyn, & Kanwisher, 2012; Wolf et al., 2008) and developmental prosopagnosia 

(Duchaine & Nakayama, 2004). Face recognition deficits are important constructs to study 

in these populations, as they are associated with greater social impairment and social 

inhibition (Parish-Morris et al., 2013; Yardley, McDermott, Pisarski, Duchaine, & 

Nakayama, 2008), and early impairments in face perception may contribute to the 

development of social interaction difficulties (Dawson, Webb, & McPartland, 2005; Schultz, 

2005). Recently, researchers have argued that the face identity recognition deficits observed 

in ASD result from disruptions in face memory rather than identity perception (Weigelt et 
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al., 2012), suggesting that these systems may be selectively affected by neurodevelopmental 

disorder. However, the absence of adequate developmental norms for simultaneous-

presentation face recognition tests has limited the research on identity perception in 

neurodevelopmental disorders to date. The addition of new norms for the BFRT will allow 

researchers to control for typical developmental variation in identity perception in order to 

assess the degree of disorder-specific impairment. Future research should utilize these norms 

to examine whether face identity perception is impaired in ASD and other 

neurodevelopmental disorders.

It should be noted that we are not arguing that other measures of face recognition are less 

important than the BFRT or that the BFRT is without its limitations. There are certainly 

other approaches to studying face recognition that have distinct advantages over the BFRT. 

For example, the BFRT was not designed to assess the use of holistic face processing 

strategies; other tasks, such as the complete composite paradigm (Gauthier, Klaiman, & 

Schultz, 2009), are better suited for this purpose. Furthermore, while the BFRT avoids 

ceiling and floor effects in the vast majority of the population, expected scores in very young 

children (i.e., children less than 7 years of age) are within two standard deviations of chance. 

When clinical impairment is defined as scoring ≥ 2 standard deviations below the expected 

mean (as is often the case), this limits the utility of the BFRT from being able to 

discriminate between clinical impairment and typical performance in this age range. Thus, 

though we attempted to combat some common criticisms of the BFRT in this paper (by 

instituting a time limit and providing new regression-based norms), it is by no means a 

perfect measure. Our argument is merely that the BFRT is a simple, widely accessible, 

standardized test of face recognition ability that has been used extensively with 

neuropsychological patients and does not rely on face memory. It is thus well-suited to 

measure face perception ability in clinical and developmental samples.

Conclusions

The BFRT is a challenging, standardized instrument that is useful for assessing face identity 

perception rather than face memory. To date, the utility of the BFRT has been limited by the 

absence of high-quality norms for children and adolescents and by the lack of standardized 

protection against the use of time-intensive atypical face processing strategies. The present 

study supports the future use of the BFRT in both clinical and research settings by 

introducing a standard time limit and new regression-based norms from a large 

developmental sample. Results demonstrated that females significantly outperformed males 

on the BFRT, providing evidence of sex differences in face identity perception. These new 

norms can help elucidate the development and neural correlates of face identity perception in 

both sexes in order to better understand the face representation system and shed light on how 

this system functions differently among individuals with identity recognition impairment.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histogram displaying the age distribution of the full study sample.
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Figure 2. 
Developmental pattern of BFRT raw scores and inverse Bayesian regression model for 

expected BRFT score based on age in males and females. Lines represent predicted BFRT 

score, while bands represent 68% (darker) and 95% (lighter) highest density intervals 

(HDIs) of the prediction distribution.
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Figure 3. 
Distribution of BFRT scores in the norming sample. (A) Histogram of raw scores. (B) 

Histogram of standard scores.
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Figure 4. 
Comparison of BFRT scores in the new norming sample to original BFRT norms. Error bars 

represent bootstrapped 95% HDIs for the mean in the new norming sample (measures of 

score variability were not provided for original norms). Original norms did not include 

scores for ages 12 or 15.
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Table 1

Characteristics of the study sample, both within and across sexes.

N Chronological age (yrs) IQ

Yale CAR Total Mean SD Range Mean SD Range

Female 104 52 156 15.94 7.92 5–49 113.24 13.00 79–147

Male 189 173 362 14.30 6.42 6–55 113.41 15.57 72–155

Total 293 225 518 14.79 6.94 5–55 113.36 14.83 72–155
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Table 2

Results of inverse regression model for expected BFRT score.

Predictor b Lower 95% HDI limit Upper 95% HDI limit

Intercept 50.41 49.35 51.49

Age−1 −113.59 −126.43 −101.14

Sex 1.28 0.55 2.02

Note. HDI = highest density interval.
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