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Niemann–Pick type C (NPC) disease is a lysosomal storage
disorder arising from mutations in the cholesterol-trafficking
protein NPC1 (95%) or NPC2 (5%). These mutations result in
accumulation of low-density lipoprotein-derived cholesterol in
late endosomes/lysosomes, disruption of endocytic trafficking,
and stalled autophagic flux. Additionally, NPC disease results
in sphingolipid accumulation, yet it is unique among the sphin-
golipidoses because of the absence of mutations in the enzymes
responsible for sphingolipid degradation. In this work, we
examined the cause for sphingosine and sphingolipid accumula-
tion in multiple cellular models of NPC disease and observed
that the activity of sphingosine kinase 1 (SphK1), one of the two
isoenzymes that phosphorylate sphingoid bases, was markedly
reduced in both NPC1 mutant and NPC1 knockout cells. Con-
versely, SphK1 inhibition with the isotype-specific inhibitor
SK1-I in WT cells induced accumulation of cholesterol and
reduced cholesterol esterification. Of note, a novel SphK1 acti-
vator (SK1-A) that we have characterized decreased sphingoid
base and complex sphingolipid accumulation and ameliorated
autophagic defects in both NPC1 mutant and NPC1 knockout
cells. Remarkably, in these cells, SK1-A also reduced cholesterol
accumulation and increased cholesterol ester formation. Our
results indicate that a SphK1 activator rescues aberrant choles-
terol and sphingolipid storage and trafficking in NPC1 mutant
cells. These observations highlight a previously unknown link
between SphK1 activity, NPC1, and cholesterol trafficking and
metabolism.

NPCdisease is caused by geneticmutations in the cholesterol
transport proteins NPC1 and NPC2, with the vast majority of
cases attributed to NPC1mutations (95%) (1–4).Whereas NPC
pathology often first presents systemically with hepatospleno-

megaly, morbidity and mortality are almost entirely attributed
to the development of a complex progressive neurodegenera-
tion (5). It has been suggested that NPC proteins act sequen-
tially in late endosomes/lysosomes (LE/L), where the soluble
NPC2 protein binds unesterified cholesterol and transfers it to
the luminal sterol-binding site of membrane-associated NPC1,
which then facilitates its transport out of the LE/L compart-
ment (6, 7). Aberrant functions of NPC proteins lead to exces-
sive accumulation of unesterified cholesterol in the liver and
spleen and also accumulation of sphingolipids, particularly in
the brain (8). It was suggested that cholesterol accumulation
can cause a secondary reduction in the activity of acidic sphin-
gomyelinase that may explain accumulation of sphingomyelin
(9). However, it is still not clear why sphingosine, the final
breakdown product of all sphingolipids in the lysosome, also
accumulates LE/L in NPC disease (10–15). Intriguingly, sphin-
gosine is the first detectable lipid that accumulates upon phar-
macological inhibition of NPC1 (10) and is the only lipid that
can induce an NPC phenotype when added exogenously at the
levels observed in NPC cell models (11). Sphingolipid catabo-
lism depends on egress of sphingosine from lysosomes and
phosphorylation to sphingosine-1-phosphate (S1P), and then it
can be irreversibly degraded by S1P lyase (16) or dephosphory-
lated to sphingosine that is reutilized for synthesis of ceramide
and more complex sphingolipids in the ER (17). SphK1 is a cy-
tosolic enzyme, and multiple growth factors, including vascular
endothelial growth factor (VEGF), activate and translocate it to
the plasmamembrane, leading to increased S1P formation (18).
This S1P in turn is exported from cells by transporters and sig-
nals by binding to S1PR1-5 to regulate many physiologic
responses (19). It was previously suggested that loss of Purkinje
neurons in NPC is caused by defective SphK activity because of
reduced levels of VEGF and implicated SphK1 in the neuropa-
thogenesis of NPC (20). Inhibition or deletion of SphK1 has
also been shown to impair endocytic trafficking and accumula-
tion of sphingosine in the LE/L, similar to the cellular pheno-
type of NPC (21, 22).
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Here, we showed that accumulation of sphingosine in several
types of NPC1 mutant cells correlated with decreased SphK1
activity. TreatingNPC1mutant cells with a novel SphK1 activa-
tor that we identified reduced sphingosine accumulation, ame-
liorated autophagic defects, and restored the impaired choles-
terol trafficking. Conversely, inhibition of SphK1 in WT cells
with an isozyme-specific inhibitor increased accumulation of
cholesterol. Our results highlight a link between lysosomal cho-
lesterol accumulation and SphK1 activity and suggest that a
SphK1 activator could be an attractive therapeutic option in
NPC1 disease.

Results

NPC1MUTANT fibroblasts have defects in sphingoid base
phosphorylation

In agreement with previous studies demonstrating that in
addition to cholesterol, sphingosine also accumulates in NPC
disease (10, 11, 15), we found that sphingosine levels were ele-
vated in NPC1 mutant fibroblasts derived from well-character-
ized patients with a wide disease spectrum (NPC25 and
NPC26) compared with control fibroblasts from a healthy indi-
vidual (Fig. 1A). In addition, dihydrosphingosine, an intermedi-
ate in de novo sphingolipid biosynthesis, also accumulated in
these mutant fibroblasts. However, despite accumulation of
these sphingoid bases, S1P and dihydro-S1P levels were
reduced (Fig. 1A). As this could result from either decreased
sphingoid base phosphorylation by sphingosine kinases
(SphKs) or increased degradation by S1P lyase, we next deter-
mined their enzymatic activities. Sphingosine kinase activity
was assessed by short incubation of cells with C17-sphingosine,
and levels of C17-S1P were quantified by liquid chromatogra-
phy, electrospray ionization–tandem MS (LC-ESI-MS/MS).

Formation of C17-S1P was greatly reduced in the mutant fibro-
blasts compared with WT cells (Fig. 1B). Furthermore, an in
vitro isoform-specific assay demonstrated that SphK1 enzy-
matic activity was significantly reduced in the mutant fibro-
blasts (Fig. 1C). In contrast, S1P lyase activity was not signifi-
cantly different in the NPC1 mutant cells compared with WT
(Fig. 1D). Taken together, these results suggest that impaired
SphK1 activity leads to increased levels of sphingoid bases.

Identification of a novel SphK1 isoform-specific activator

A previous study suggested that pathogenesis in NPC neu-
rons resulted from defective SphK1 activity due to impaired
VEGF levels and that correction of this activity by VEGF can
reduce NPC pathological changes (20), suggesting that enhanc-
ing SphK1 activity could be a potential therapeutic intervention
for this disorder. Therefore, it was important to identify a small
molecule capable of increasing SphK1 activity. To this end,
we used a high-throughput fluorescence assay to screen a
chemical library with NBD-sphingosine as substrate that was
used previously to identify a new inhibitor of SphK1 (23). In
this screen, we discovered several compounds that increased
SphK1 activity (data not shown; see Fig. 2A). However, only one
compound, 2-hydroxy-3-{[4-(2-methoxyethoxy)benzoyl]oxy}-
N-[2-(4-methoxyphenoxy)ethyl]propan-1-aminium, hereafter
referred to as SK1-A (Fig. 2B), consistently stimulated SphK1
activity. In contrast, compound 3 in further assays with recombi-
nant SphK1 did not increase its enzymatic activity. A more in-
depth kinetic analysis of the effects of SK1-A resulted in an esti-
mated half-maximal activation constant (AC50) of 4.5 mM for
SphK1 (Fig. 2C), with a complete absence of any effects on SphK2
activity (Fig. 2D). Furthermore, with sphingosine as substrate,
maximum activation of SphK1 was observed at a concentra-
tion as low as 0.5 mM (Fig. 2E). Moreover, SK1-A enhanced

Figure 1. Sphingosine kinase activity is attenuated in NPC1 mutant fibroblasts. A, sphingolipids were extracted from normal human fibroblasts (WT2)
and NPC1 mutant fibroblasts (NPC25, NPC26), and levels of sphingosine, dihydrosphingosine, S1P, and dihydro-S1P measured by LC-ESI-MS/MS. B, in vivo
SphK activity in WT and NPC1 mutant fibroblasts was determined by LC-ESI-MS/MS quantification of conversion of d17:1 sphingosine (1 mM) to C17-S1P after
30 min. Levels were normalized to total lipid phosphates. C, isotype-specific enzymatic activity of SphK1 was determined in fibroblast lysates. D, S1P lyase en-
zymatic activity was determined in fibroblast lysates by fluorometric assays and normalized to total protein. Data are representative of at least three inde-
pendent experiments and presented as mean 6 S.D. (error bars) of three biological replicates. *, p , 0.05 compared with WT2 by one-way ANOVA (A, B,
and D) with Dunnett’s post hoc test or by two-tailed Student’s t test (C).
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endogenous SphK activity in WT but not in SphK1 knockout
mouse embryonic fibroblasts (Fig. S1). Thus, we next deter-
mined whether SK1-A could stimulate SphK1 activity in
NPC1 mutant cells.

SK1-A increases sphingosine phosphorylation and reduces
autophagic defects in NPC1 mutant fibroblasts

Next, cells were incubated with SK1-A, and cellular SphK ac-
tivity was determined. As expected, C17-sphingosine accumu-
lated in vehicle-treated NPC mutant fibroblasts, whereas C17-
S1P formation was reduced compared with WT fibroblasts
(Fig. 3A). Treatment of NPC mutant fibroblasts with SK1-A
corrected this phosphorylation defect, reduced the high level of
C17-sphingosine, and increased C17-S1P to a similar level
observed in WT fibroblasts (Fig. 3A). Nevertheless, SK1-A
treatment did not affect SphK1 protein expression in NPC1
mutant fibroblasts (data not shown).
Autophagy, an essential process that ensures that misfolded

or dysfunctional proteins are degraded by lysosomes, is known
to be impaired in NPC and contributes to disease progression
(24, 25). Because it was suggested that sphingosine accumula-
tion due to impaired SphK activity causes defective endocytic
and autophagic fluxes in NPC mutant cells (20), and we and
others have shown that SphK1 is rapidly recruited to vesicles
during endocytosis and autophagy to regulate these processes
(21, 22, 26), it was of interest to determine the effects of SK1-A
on autophagy. Consistent with previous results (24), in NPC1
mutant fibroblasts we found increased processing of the cyto-
solic solubleMAP1LC3/LC3 (microtubule-associated protein 1
light chain 3) form (LC3-I) to its lipidated membrane-bound
form (LC3-II), a marker of increased formation of autophago-
somes or amphisomes. This increased LC3-II level was reduced
by treatment with SK1-A (Fig. 3, B and C). Likewise, accumula-
tion of p62, an adapter protein that recruits polyubiquitinated
and aggregated proteins to autophagosomes by its interaction

with LC3-II (27), was significantly higher in NPC1 mutant
fibroblasts compared with WT cells (Fig. 3, B and C), as was
reported previously (24, 28). The elevated levels of p62 in NPC1
mutant fibroblasts were also decreased by SK1-A (Fig. 3, B and
C). Consistent with the accumulation of late endosomes in
NPC1mutant cells due impaired recruitment of components of
the SNARE machinery to late endosomes (24, 29), Rab7 and
other late endosome markers, such as cation-independent
mannose 6-phosphate receptor (M6PR), were all increased
compared with WT, and treatment with SK1-A reduced their
levels (Fig. 3, B and C). Thus, increased phosphorylation of
sphingosine and reduced accumulation of sphingosine corre-
lates with improved autophagic and endocytic defects in NPC1
mutant cells.

Unexpected effects of SphK1 activation on cellular cholesterol
trafficking

The accumulation of unesterified cholesterol inside the LE/L
compartment is the hallmark cellular defect in NPC disease
(1, 2, 5–7). Because autophagic defects can increase accumula-
tion of cholesterol (24, 30) and up-regulation of autophagy is
beneficial in several neurodegenerative diseases (31), we sought
to examine the effect of SK1-A on cholesterol accumulation in
NPC1 mutant fibroblasts. Remarkably, treatment with 2 mM
SK1-A significantly decreased the levels of unesterified (free)
cholesterol in NPC25 mutant fibroblasts (Fig. 4A). The reduc-
tion in unesterified cholesterol could result from increased traf-
ficking from the LE/L compartment or a result of reduction in
uptake. Thus, cholesterol ester formation was examined, as this
requires delivery of cholesterol to acyl-CoA:cholesterol acyl-
transferase at the ER (32–34). SK1-A treatment dramatically
increased cholesterol ester formation in NPC1 mutant fibro-
blasts (Fig. 4B), suggesting that activation of SphK1 by SK1-A
increased delivery of cholesterol to the ER. To confirm these
results, cells were stained with filipin, a fluorescent polyene

Figure 2. Identification of a SphK1 activator. A, SK1-A was identified as an activator of SphK1 using a high-throughput fluorescent screening assay with
recombinant SphK1 and NBD-sphingosine as a substrate as described previously (62). Data are time-resolved fluorescence emission of NBD-sphingosine (35
mM) in the absence or presence of the indicated compounds. AFU, arbitrary fluorescence units. B, structure of SK1-A. C and D, SK1-A concentration-dependent
effect on recombinant SphK1 (C) and SphK2 (D) activity. C, SK1-A stimulated SphK1 with an estimated AC50 of 4.5mM. SK1-A did not stimulate SphK2 activity. E,
effect of SK1-A at the indicated concentrations on in vitro SphK1 activity with sphingosine (0.5 mM) as substrate. Data are representative of at least three inde-
pendent experiments and presented as mean 6 S.D. (error bars) of three biological replicates. *, p , 0.05 compared with vehicle, determined by one-way
ANOVAwith Dunnett’s post hoc test.
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antibiotic that specifically binds unesterified cholesterol (35),
to visualize cholesterol levels inside the cells. Vehicle-treated
NPC25 andNPC26 fibroblasts showed higher cholesterol levels
compared withWT2 cells, yet after SK1-A treatment, this accu-
mulation was greatly reduced (Fig. 4, C and D). These results
suggest that activation of SphK1 can reduce the pathogenic
accumulation of cholesterol in these cells.

Inhibition of SphK1 increases cholesterol levels in NPC1 WT
cells

We have previously shown that inhibition of SphK1 with the
isoform-specific SphK1 inhibitor SK1-I induces a stall in the
late endosomal compartment, producing dilated Rab7a-posi-
tive vesicles containing sphingosine (22). As restoring SphK1
activity reduced cholesterol in NPC1mutant fibroblasts (Fig. 4),
we sought to determine whether inhibition of SphK1 activity
would have an inverse effect on cellular cholesterol in cells
expressingWTNPC1 protein. Treatment of multiple cell types,
including WT2 human fibroblasts, WT mouse embryonic
fibroblasts (MEFs), and WT (JP17) CHO cells with SK1-I for

2 h significantly increased levels of free cholesterol with a
decrease in cholesterol esters (Fig. 5, A and B). Similarly,
increased filipin staining was observed after treatment of these
cells with SK1-I (Fig. 5,C andD), supporting the notion that in-
hibition of SphK1 and sphingosine elevation reduced traffick-
ing of cholesterol from lysosomes to the ER.

Activation of SphK1 by SK1-A reduces accumulation of sphingoid
bases and complex sphingolipids in NPC1 null cells

NPC is a complex disease in which many mutations have
been identified, and affected individuals display a broad range
of disease severity and age of onset of symptoms, ranging from
infant to adult (5). Therefore, we sought to examine the effects
of SK1-A in the most severe type of NPC disease where NPC1
is completely absent.
SphK1 activity in isogenic CHO cells with homozygous dele-

tion of the NPC1 gene (NPC1KO) was greatly reduced (Fig. 6A),
similar to the defect observed in NPC1MUTANT fibroblasts (Fig.
1C). Likewise, no major effects on S1P lyase activity were
detected in NPC1KO cells (Fig. 6A). Similar to NPC1MUTANT

Figure 3. SK1-A increases sphingosine kinase activity and suppresses autophagic defects in NPC1 mutant fibroblasts. A, normal human fibroblasts
(WT2) and NPC1mutant fibroblasts (NPC25) were treated without or with SK1-A for 2 h and then incubated for 30 min with C17-sphingosine. Cellular levels of
C17-sphingosine and C17-S1P were measured by LC-ESI-MS/MS. Data are representative of at least three independent experiments, normalized to total lipid
phosphate, and presented as mean 6 S.D. of three biological replicates (n = 3). #, p , 0.05 compared with WT2 vehicle; *, p , 0.05 compared with vehicle-
treated NPC25 cells. Data were analyzed by two-way ANOVAwith Tukey’s post hoc test. B, normal human fibroblasts (WTA, WT2) and NPC1mutant fibroblasts
(NPC25, NPC26) were cultured for 2 h in the absence of serum and then treated without or with SK1-A (2 mM) for 3 h. Cell lysate proteins were immunoblotted
with anti-M6PR, anti-Rab7, anti-p62, or anti-LC3 antibodies. Blots were stripped and reprobedwith anti-GAPDH as a loading control. Images are representative
of three independent experiments. C, relative density of the indicated immunopositive bands normalized to GAPDH. Data are mean6 S.D. (error bars) of three
biological replicates. #, p, 0.05 compared with WT2 vehicle; *, p, 0.05 compared with vehicle-treated NPC1 mutant fibroblasts. p values were determined
by two-way ANOVAwith Fisher’s LSD.

SphK1 in NPC1 disease

9124 J. Biol. Chem. (2020) 295(27) 9121–9133



fibroblasts, CHO NPC1KO cells accumulated sphingoid bases
sphingosine and dihydrosphingosine (Fig. 6B). As expected,
rescuing the expression of NPC1 in knockin cells that stably
express FLAG-tagged human NPC1 in an endogenous NPC1
knockout background (FLAG-NPC1KI) reversed accumulation
of the sphingoid bases (Fig. 6B). Moreover, the reduced conver-
sion of C17-sphingosine to C17-S1P (Fig. 6C) in NPC1KO cells
compared with WT CHO cells also supports the notion that
this is the result of reduced SphK1 activity. Furthermore, treat-
ment of NPC1KO cells with the SphK1 activator SK1-A, which
increased conversion of C17-sphingosine to C17-S1P (Fig. 6C),
also reduced levels of sphingosine and dihydrosphingosine to
almost the same levels observed in WT CHO cells (Fig. 6D).

Similarly, SK1-A significantly reduced accumulation of com-
plex sphingolipids, including ceramides, monohexosylcera-
mides, and sphingomyelins in NPC1KO cells (Fig. 7, A–C).
Interestingly, an examination of the individual species of these
complex sphingolipids, defined by the number of carbons pres-
ent in their acyl chains, indicates that with the exception of
C16:0 ceramide, all other acyl chain species of the complex
sphingolipids were reduced by SK1-A treatment (Fig. 7,A–C).

SK1-A corrects autophagic and cholesterol-trafficking defects
in NPC1 null cells

Similar to NPC1 mutant fibroblasts (Fig. 3), NPC1KO cells
also have autophagic and endocytic defects, as shown by their

Figure 4. Activation of SphK1 with SK1-A decreases cholesterol accumulation in NPC1 mutant fibroblasts. A–D, normal human fibroblasts and NPC1
mutant fibroblasts were treated with vehicle or with SK1-A (2mM) for 2 h. Levels of unesterified cholesterol (A) and esterified cholesterol (B) were quantified by
Amplex Red assay and are representative of three independent experiments. Data are mean6 S.D. (error bars) of biological triplicates. #, p, 0.05 compared
with WT2 vehicle; *, p, 0.05 compared with vehicle-treated NPC25 cells determined by two-way ANOVA with Tukey’s post hoc test. C and D, cellular choles-
terol was visualized by filipin staining (C). Representative images are shown. Scale bars, 50 mM. D, intensity of filipin staining was determined using ImageJ.
Dots, fluorescent intensities of single cells. Means 6 S.D. are indicated. #, p , 0.05 compared with WT2 vehicle; *, p , 0.05 compared with vehicle-treated
NPC1mutant fibroblasts, determined by two-way ANOVA followed by Tukey’s post hoc analysis.

Figure 5. Inhibition of SphK1 increases unesterified cholesterol accumulation.Normal human fibroblasts (WT2), MEFs, or CHO cells were treated with 7.5
mM SK1-I for 2 h. Cellular unesterified cholesterol (A) and esterified cholesterol levels (B) were quantified by Amplex Red assay and are representative of three
independent experiments. Data are mean6 S.D. (error bars) of biological triplicates. C and D, cellular cholesterol was visualized by filipin staining. C, represen-
tative images are shown. Scale bar, 50mM.D, intensity of filipin stainingwas determined using ImageJ. Dots, fluorescent intensities of single cells. Means6 S.D.
are indicated. *, p, 0.05 comparedwith vehicle-treated cells as determined by two-tailed Student’s t test.
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increased levels of LC3-I and LC3-II as well as Rab7 and M6PR
compared withWT cells (Fig. 8, A and B). Activation of SphK1
in these cells with SK1-A ameliorates these defects (Fig. 8, A
and B), as assessed by a reduction in LC3-II, Rab7, and M6PR
levels. Previous work suggested that autophagic flux is impaired
in NPC mutant cells because of a loss in vesicular fusion
between autophagosomes and late endosomes, inhibiting
amphisome formation and cargo degradation (36, 37). Auto-
phagic flux can be directly monitored using expression of a tan-
dem monomeric RFP-GFP–tagged LC3 reporter, which emits
both green and red fluorescence when localized to autophago-
somes yet only emits red fluorescence when localized to autoly-
sosomes because of fluorescence quenching of the GFP protein
in the acidic environment of lysosomes (38). Consistent with
previous reports (36, 37, 39), the majority of accumulated
vesicles in NPC1KO CHO cells expressing RFP-GFP–tagged
LC3 show increased yellow (red1 green) fluorescence, indicat-
ing a block in autophagosome and lysosome fusion compared
withWT cells (Fig. 8,C andD). Treatment with SK1-A resulted
in the correction of impaired autophagosome maturation in
NPC1KO cells (Fig. 8, C and D), suggesting that SK1-A can
restore autophagic flux. Importantly, treatment of NPC1KO

CHO cells with SK1-A decreased cellular unesterified (free)
cholesterol levels (Fig. 9A) and increased cholesterol esters (Fig.
9B). In contrast, treatment with 100 nM S1P, a ligand for the
S1PRs, had no effect on cholesterol accumulation in NPC1KO

CHO cells (Fig. S2). Furthermore, visualization of unesterified
cholesterol by filipin staining confirmed that SK1-A treatment

of NPC1KO CHO cells decreased free cholesterol (Fig. 9, C and
D). Taken together, these data indicate that activation of SphK1
with SK1-A restores cholesterol-trafficking defects in diverse
NPC1 aberrant cells.

Discussion

Although the causative relationship between NPCmutations
and cholesterol accumulation has been extensively studied, sur-
prisingly little is known about the mechanism behind sphingo-
sine and complex sphingolipid accumulation. Here, we report
that the enzymatic activity of SphK1, one of the kinases that
phosphorylate sphingosine to S1P, is reduced in diverse NPC1
mutant fibroblasts and in NPC1-deleted cells. As S1P cleavage
by S1P lyase is the only exit point for complex sphingolipid deg-
radation, we suggest that this decreased phosphorylation of
sphingoid bases accounts for accumulation of sphingolipids in
NPC. Consistent with our findings, a previous study showed
that SphK activity is reduced in NPC mouse Purkinje neurons
because of decreased levels of VEGF (20). Moreover, treatment
with VEGF, which activates SphK1 by binding to VEGFR2,
decreased sphingosine accumulation as well as improved neu-
ronal survival and rota-rod scores in NPC1 knockout mice (20).
Taken together, these results suggest that reversing defective
SphK1 activity in NPC might be beneficial. In this study, we
identified SK1-A as a potent and specific small-molecule acti-
vator of SphK1. SK1-A enhanced SphK activity and decreased
accumulation of sphingoid bases inNPC1mutant human fibro-
blasts and in NPC1 knockout cells.

Figure 6. SK1-A decreases sphingoid base accumulation in NPC1KO cells. A, SphK1 and S1P lyase enzymatic activity in WT and NPC1KO CHO cells was
measured and normalized to total protein. B, lipids were extracted fromWT, NPC1KO, and NPC1KI CHO cells, and sphingosine and dihydrosphingosine were meas-
ured by LC-ESI-MS/MS. C and D, NPC1KO CHO cells were treated without or with SK1-A (10mM) for 24 h. *, p, 0.05 compared with WT; #, p, 0.05 compared with
NPC1KO. C, in vivo SphK activity was determined by LC-ESI-MS/MS quantification of conversion of C17-sphingosine (1 mM) to C17-S1P after 30 min and normalized
to total lipid phosphates. *, p, 0.05 comparedwithWT.D, sphingosine and dihydrosphingosine weremeasured by LC-ESI-MS/MS. All data aremeans6 S.D. (error
bars) and representative of three independent experiments, each with three biological replicates. *, p , 0.05 compared with WT; #, p , 0.05 compared with
NPC1KO. p values were determined by two-tailed Student’s t test (A) or one-way ANOVA followed by Tukey’s post hoc analysis (B–D).
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Previous studies have shown that autophagic flux is impaired
in NPC1 disease (40–42) because of defective amphisome for-
mation caused by failure of the SNAREmachinery (24). Further-
more, inhibition of autophagy caused accumulation of choles-
terol (24, 30), suggesting that defective autophagic flux could be
a causative factor in NPC1 disease. Methyl-b-cyclodextrin,
which reduces lysosomal cholesterol accumulation in NPC
disease restores impaired autophagy flux in NPC1-deficient
cells through activation of AMP-activated protein kinase
(43). We showed that activation of SphK1 with SK1-A sup-
pressed defective autophagic flux and endocytic defects in NPC1
mutant and knockout cells. These results support recent findings
that SphK1 regulates autophagic flux (44, 45) and cooperates
with autophagy tomaintain endocyticmembrane trafficking (21).
Increasing autophagy has been suggested as a potential strat-

egy for several neurodegenerative disorders (31). Unfortunately,
although efforts to enhance autophagy using mTOR-dependent

(rapamycin) and mTOR-independent (lithium) induction cor-
rected the autophagic defects in NPC1 mutant cells and
increased cell viability, they did not correct the hallmark choles-
terol-trafficking defects (24). Remarkably, however, we found
that treatment with SK1-A not only reduced autophagic defects
but also reversed cholesterol accumulation in NPC1 mutant
and deleted cells.
It has been elegantly established that low-density lipopro-

tein–derived free cholesterol is transferred by the soluble
NPC2 protein in the lysosome to the membrane-bound NPC1
for subsequent egress from this compartment (7, 46, 47). Per-
haps the most surprising discovery of our work is that SphK1
activation alone is sufficient to reduce lysosomal accumulation
of free cholesterol and restore production of cholesterol esters
even in NPC1 null cells. Thus, cholesterol egress can be
restored in an NPC1-independent manner. There are several
potential mechanisms that might explain NPC1-independent

Figure 7. Accumulation of complex sphingolipids in NPC1KO cells is reduced by SK1-A treatment.NPC1KO CHO cells were treated without or with SK1-A
(10 mM) for 24 h. Lipids were extracted from the indicated CHO cells, and ceramide (A), monohexosylceramide (B), and sphingomyelin species (C) were meas-
ured by LC-ESI-MS/MS. Different chain-length species are shown; numbers indicate N-acyl chain length followed by the number of double bonds in the fatty
acid. Data aremeans6 S.D. (error bars) of biological replicates and representative of three independent experiments. *, p, 0.05 compared withWT; #, p, 0.5
compared with NPC1KO as determined by one-way ANOVA (totals) or two-way ANOVA (species) followed by Tukey’s post hoc analysis.

SphK1 in NPC1 disease

J. Biol. Chem. (2020) 295(27) 9121–9133 9127



transport of cholesterol. We recently showed that expansion of
membrane contact sites by overexpression of ORP1L-D-ORD
mutant, which is known to act as a constitutively active tether
between late endosomes and the ER without transporting
cholesterol (48, 49), rescued the lysosomal cholesterol accumu-
lation in NPC1-deficient cells (50). It is possible that when
membrane contact sites are expanded, another cholesterol
transporter, such as STARD3 (51), ORP1L (48, 49, 52–55), or
Gramd1b (50), could compensate for loss of NPC1. It is also
possible that cholesterol could diffuse along a concentration
gradient across the expanded membrane contact sites without
the need for a cholesterol transporter (56). It is tempting to
speculate that conversion of sphingosine to S1P could regulate
formation of membrane contact sites between late endosomes/
lysosomes and the ER; however, other possibilities cannot be
excluded. For example, it has been suggested that the ABC
transporter A1 (ABCA1) has lysosomal cholesterol transport
activity that requires functional NPC2 but not NPC1 (57). Fur-
thermore, intracellular cholesterol trafficking can be enhanced

by direct interaction of NPC2 with the phospholipid lysobi-
sphosphatidic acid in the absence of NPC1 (58). It is still not
knownwhether activation of SphK1 can increase ABCA1 trans-
porter activity or levels of lysobisphosphatidic acid. Moreover,
it was recently shown that reduction of the elevated sphingo-
myelin in NPC1 null cells decreased the cholesterol accumula-
tion (59). Therefore, the dramatic decrease in sphingomyelin
because of activation of SphK1 by SK1-A could be responsible
for restoration of cholesterol trafficking via Rab9-dependent
vesicular trafficking of cholesterol in NPC1-deficient cells (59).
In addition, we cannot exclude the possibility that SK1-A also
has effects on cholesterol metabolism and/or trafficking inde-
pendent of its effects on SphK1.
Together these results demonstrate that impaired SphK1 ac-

tivity in NPC cells contributes to accumulation of sphingosine
and storage of complex sphingolipids and highlight a novel link
between SphK1 activity, NPC1, and cholesterol trafficking and
metabolism. Furthermore, the SphK1 activator SK1-A that we
have characterized might lead to development of a new

Figure 8. SK1-A ameliorates autophagic defects in NPC1KO cells. A and B, WT and NPC1KO CHO cells were treated without or with 10 mM SK1-A for 2 h. A,
cell lysate proteins were immunoblotted with anti-M6PR, anti-Rab7, or anti-LC3 antibodies. Blots were stripped and reprobed with anti-actin to show equal
transfer and loading. Results are representative of three independent experiments, each with three biological replicates. B, relative density of the indicated
immunopositive bands normalized to actin. Data aremeans6 S.D. of the blot presented in A. #, p, 0.05 comparedwithWT; *, p, 0.5 comparedwith NPC1KO,
as determined by two-way ANOVA followed by Fisher’s LSD analysis. C and D, confocal images of WT and NPC1KO CHO cells expressing RFP-GFP-LC3 treated
with vehicle or 10 mM SK1-A for 2 h, as indicated. Scale bars, 5 mM. Inset box, 32.4 magnification. D, GFP/RFP fluorescence ratio determined individually by
ImageJ. Means6 S.D. (error bars) are indicated. Data and images are representative of three independent experiments. #, p, 0.05 compared with WT; *, p,
0.05 compared with vehicle-treated NPC1mutant fibroblasts as determined by one-way ANOVA followed by Tukey’s post hoc analysis.

Figure 9. SK1-A treatment decreases cholesterol accumulation and enhances cholesterol esterification in NPC1KO cells. WT and NPC1KO CHO cells
were treated with SK1-A (10mM) for 2 h. Levels of unesterified cholesterol (A) and esterified cholesterol (B) were quantified by Amplex Red assay and are repre-
sentative of three independent experiments. Data are mean 6 S.D. (error bars) of biological triplicates. C and D, cellular cholesterol was visualized by filipin
staining. C, representative images are shown. Scale bars, 20 mM. D, intensity of filipin staining was determined using ImageJ. Dots, fluorescent intensities of sin-
gle cells. Means6 S.D. are indicated. #, p, 0.05 compared withWT; *, p, 0.5 compared with NPC1KO, as determined by two-way ANOVA followed by Tukey’s
post hoc analysis. AFU, arbitrary fluorescence units.
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therapeutic strategy to reduce storage of lipids important in the
pathogenesis of NPC disease.

Experimental procedures

Cell culture

NPC1MUTANT dermal fibroblasts (NPC25 and NPC26) and
corresponding WT cells (WTA and WT2) were originally
derived from NPC1 patients evaluated as part of an NICHD,
National Institutes of Health, Institutional Review Board–
approved protocol and obtained with consent. The following
mutations were present: NPC25 (fs-exon 20, c.2979dupA, and
p.N701K); NP-26 (c.3742_3745delCTCA fs-exon24 and p.
R1059Q). WT (JP-17 parental), NPC1KO, and NPC1KO CHO
cells stably expressing a FLAG-tagged NPC1 protein (referred
to as NPC1KI) described previously (60) were a generous gift
from Dr. Judith White (University of Virginia). Mouse embry-
onic fibroblasts (MEFs) were purchased from ATCC. Human
fibroblasts were cultured in MEM (Thermo Fisher Scientific,
Waltham, MA, USA), CHO cells were cultured in MEM-a
(Thermo Fisher Scientific), andMEFs were cultured in Dulbec-
co’s modified Eagle’s medium (Thermo Fisher Scientific), each
supplemented with 10% fetal bovine serum (Atlanta Biologi-
cals, Flowery Branch, GA, USA) containing 100 units/ml peni-
cillin and 100 mg/ml streptomycin (Thermo Fisher Scientific) as
described (34).

Sphingolipid analyses

Cells were washed three times with ice-cold PBS, lipids were
extracted, and sphingolipids were quantified by LC-ESI-MS/
MS (5500 QTrap; AB Sciex, Framingham, MA, USA) (61) and
normalized to total protein.

Determination of SphK activity in cells

Cells were seeded on 6-well plates 24 h prior to a 30-min
pulse with 1 mM C17-sphingosine (Avanti Polar Lipids). Cells
were then washed three times with ice-cold PBS and then har-
vested directly by adding 1 ml of ice-cold methanol to each
well. Sphingolipids were extracted, and C17-sphingosine and
C17-S1P were quantified by LC-ESI-MS/MS and normalized to
total lipid phosphates. SphK activity in mouse embryonic fibro-
blasts was determined with NBD-sphingosine as described pre-
viously (22).

Sphingosine kinase 1 assay

Recombinant SphK1 (15 nM) (62) was added to reactionmix-
tures containing 0.5 mM D-erythro-sphingosine (Avanti Polar
Lipids), 30 mM Tris-HCl (pH 7.4), 0.05% Triton X-100, 150 mM

NaCl, 10% glycerol, 1 mM Na3VO4, 10 mM NaF, and 10 mM

b-glycerophosphate. Reactions were stopped by adding metha-
nol, lipids were extracted, and S1P was quantified by LC-ESI-
MS/MS.

Identification of the SphK1 activator SK1-A

Potential specific SphK1 inhibitors and activators were eval-
uated by high-throughput library screening fluorescence assays
with recombinant SphK1 and SphK2 as described previously

(23, 62). Briefly, compounds were dissolved in DMSO and ini-
tially screened by measuring effects on rates of production of
NBD-S1P from NBD-sphingosine (Avanti) at a concentration
of 650 mM. Candidates showing inhibition or stimulation of
SphK1 activity in this assay were further characterized with
NBD-sphingosine at lower concentrations to obtain IC50 val-
ues. SphK1 isoform specificity was determined using previously
reported isoform-specific reaction conditions (63): SphK1 reac-
tion buffer contained 30 mM Tris-HCl (pH 7.4), 0.5% Triton X-
100 (MilliporeSigma), 150 mM NaCl, and 10% glycerol; SphK2
buffer contained 30 mM Tris-HCl (pH 7.4), 200 mM KCl, and
10% glycerol. Assays were carried out in 384-well plates
(Greiner Bio-One, Frickenhausen, Germany) in the presence of
recombinant SphKs (15 nM). Reactions were initiated by add-
ing an ATP–Mg mixture (1mM ATP, 2mM MgCl2, 40mM

Tris-HCl, pH 7.4) and followed in a TECAN Infinite M1000
fluorescence plate reader (Männedorf, Switzerland) at 37 °C.
Excitation and emission wavelengths were 550 and 584 nm,
respectively. All data were analyzed using Prism (GraphPad,
La Jolla, CA, USA).

Synthesis of 2-hydroxy-3-{[4-(2-methoxyethoxy)benzoyl]oxy}-
N-[2-(4-methoxyphenoxy)ethyl]propan-1-aminium chloride
(SK1-A)

All reagents were purchased from Acros Organics (Geel,
Belgium) or Sigma-Aldrich. 1H NMR and 13C NMR spectra
were recorded at 25 °C with DMSO-d6 as solvents on a JNM-
ECZ4OOR FT-NMR spectrometer 9.39 T (JEOL Resonance
Inc., Tokyo, Japan; 399.78 MHz for 1H and 100.53 MHz for
13C). High-resolution mass spectra were determined with a
high-performance liquid chromatograph Dionex UltiMate®
3000 (Thermo Scientific, West Palm Beach, FL, USA) coupled
with a LTQ Orbitrap XLTM Hybrid Ion Trap-Orbitrap Fourier
Transform Mass Spectrometer (Thermo Scientific) with injec-
tion into HESI II in the positive ionmode.
Oxirane intermediate, (oxiran-2-yl)methyl 4-(2-methoxye-

thoxy)benzoate, 1a (4 mmol) (23, 64) in isopropyl alcohol was
added to 2-(4-methoxyphenoxy)ethylamine, intermediate 1b
(4 mmol) (65)) in 15 ml of isopropyl alcohol (Fig. S3). The
mixture was refluxed at 80 °C and then stirred for 72 h at
room temperature and finally cooled at 218 °C for 48 h. The
precipitate was collected and dissolved in a saturated ethereal
solution of HCl. The hydrochloride salt was recrystallized
from isopropyl alcohol (yield: 55%; MP: 121-122 °C; IR (ATR,
cm21): 3369w, 2948w, 2932w, 2890w, 2810w, 2404w, 1713s,
1606m, 1509s, 1467m, 1255m, 1226s, 1108m, 820m, 769m,
731m; 1H NMR (DMSO-d6) d [ppm]: 9.39 (bs, 1H, �NH 1

2 );
9.12 (bs, 1H, �NH 1

2 ); 7.95 (d, 3J = 8.9, 2H, HArCOO); 7.04
(d, 3J = 8.9, 2H, HArOEtO); 6.92 (d, 3J = 9.1, 2H, HArOEtN); 6.87
(d, 3J = 9.1, 2H, HArOMe); 5.97 (bs, 1H, OH); 4.28-4.24 (m, 5H,
COOCH2CH 1 NCH2CH2O); 4.18-4.17 (m, 2H, CH2OAr);
3.70 (s, 3H, ArOCH3); 3.68-3.67 (m, 2H, CH2CH2OAr); 3.39-
3.36 (m, 2H, NCH2CH2O); 3.31 (s, 3H, OCH3); 3.28-3.27 (m,
1H, CH2N); 3.11-3.08 (m, 1H, CH2N); 13 °C-NMR (DMSO-d6)
d [ppm]: 165.14, 162.47, 153.82, 151.70, 131.46, 121.69, 115.74,
114.60, 114.37, 70.14, 67.27, 65.86, 64.45, 63.84, 58.16, 55.34,
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49.74, 46.16; HR-MS: C22H30NO7 [M 1 H]1 calculated
420.2016m/z, found 420.2014m/z.

Measurements of cholesterol and cholesterol esters

Cholesterol and cholesterol esters were quantified using the
Amplex Red cholesterol assay kit as described previously (34).
Briefly, cells in 6-well plates were treated as indicated in the fig-
ure legends, washed three times with ice-cold PBS, and lysed.
To determine cholesterol esters, lysates were incubated with-
out or with 0.2 units/ml cholesterol esterase. Lysates were sub-
sequently incubated with 2 units/ml each of horseradish perox-
idase and cholesterol oxidase and 300 mM Amplex Red reagent
for 30 min at 37 °C in a 100 mM potassium phosphate buffer
(pH 7.4) containing 50 mM NaCl, 5 mM cholic acid, and 0.1%
Triton X-100. Fluorescence was measured with a TECAN Infi-
nite M1000 fluorescent plate reader (TECAN, Männedorf,
Switzerland). Levels of unesterified cholesterol and cholesterol
esters were calculated from standard curves and normalized to
total proteinmeasured with the Bio-Rad protein assay kit.

Filipin staining

Cells were seeded on 22-mm coverslips in 6-well plates. After
24 h, cells were incubated with test compounds for 2 h. Cells
were thenwashed and fixed in 4% paraformaldehyde for 15min
and washed. After incubating with 1.5 mg/ml glycine to quench
the paraformaldehyde, cells were washed in PBS and stained
with Filipin III (0.1 mg/ml; MiliporeSigma) for 2 h. Coverslips
were then washed and mounted onto glass slides using Prolong
Gold anti-fade reagent (Thermo Fisher Scientific) and imaged
on an Axioimager A1 fluorescent microscope using Zen soft-
ware (Zeiss, Jena, Germany). Images were quantified using
ImageJ (National Institutes of Health) as described previously
(34).

Immunoblotting

Cells were washed three times with ice-cold PBS and then
scraped into lysis buffer containing 20 mM HEPES, pH 7.4
(Thermo Fisher Scientific), 250 mM NaCl, 1 mM DTT, 1 mM

EDTA, 20% glycerol, 1% Triton X-100 (Thermo Fisher Scien-
tific), and Halt protease and phosphatase inhibitor mixture
(Thermo Fisher Scientific). After sonication, proteins were
quantified, and equal amounts were separated by SDS-PAGE.
Proteins were transferred onto polyvinylidene difluoride mem-
branes (Bio-Rad), blocked with 2.5% blotting grade milk
(Bio-Rad). The following primary antibodies were used for
immunoblotting: Rab7 (#9367, 1:1000), GAPDH (#2118, 1:5000),
actin (#3700, 1:5000), LC3 (#12741, 1:1000), or p62 (#5114,
1:1000) (Cell Signaling Technology, Danvers, MA, USA) or
M6PR (#124767, 1:1000) (Abcam, Cambridge, MA, USA).
Immunopositive bands were visualized by chemiluminescence
with horseradish peroxidase–conjugated secondary antibod-
ies (anti-rabbit #111035045 or anti-mouse #115035166, Jack-
son ImmunoResearch Laboratories, West Grove, PA, USA)
and Super-Signal West Pico Plus (Thermo Fisher Scientific)
substrate. Images were quantified using ImageJ as described
previously (34).

S1P lyase activity assays

S1P lyase activity was measured as described (66). Briefly,
cells (350,000–400,000) were seeded in 10-cm2 plates. The next
day, cells were washed three times with cold PBS, scraped in
100 ml of 0.5 M potassium phosphate buffer (pH 7.4), and then
lysed by brief sonication. An aliquot (75 ml) was added to 96-
well plates with 15 ml of reaction mixture containing 0.5 M po-
tassium phosphate buffer (pH 7.4), 25 mM Na3VO4, 0.25 mM

pyridoxal 59-phosphate, and 125 mM S1P lyase fluorogenic sub-
strate (Cayman Chemical, Ann Arbor, MI, USA). Plates were
incubated at 37 °C for 6 h in the dark, and reactions were
stopped by adding 50 ml of methanol and incubating for 2 h.
Fluorescence was measured with a TECAN Infinite M1000 flu-
orescent plate reader at excitation and emission wavelengths of
360 and 465 nm, respectively.

RFP-GFP-LC3 autophagic flux measurements

CHO cells were seeded on 96-well glass bottom plates (Cell-
vis, Mountain View, CA, USA) and infected with 80 viral par-
ticles (RFP-GFP-LC3; Life Technologies, Inc.) per cell for 48 h
to express LC3 fused to a tandem green fluorescence– and red
fluorescence–tagged protein. Autolysosomes are then dis-
played as red-only structures, as their acidic compartment
causes the loss of the green fluorescent signal. After treatment
without or with SK1-A, GFP-, and RFP-positive cells were
visualized at 3100 in a Zeiss Cell Observer Spinning Disc
(Zeiss, Germany) confocal microscope equipped with a growth
chamber maintained at 37 °C and 5% CO2. RFP and GFP fluo-
rescence was collected with identical settings across wells, and
GFP/RFP ratios were quantified using ImageJ (45).

Statistics

Data were analyzed by Student’s t test when comparing two
groups or by ANOVA with Fisher’s LSD, Dunnett’s, or Tukey’s
post hoc analysis as appropriate using Prism. Results are
expressed as means6 S.D. p ≤ 0.05 was considered statistically
significant. Experiments were repeated three times with similar
results.

Data availability

All data are contained within the article.
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