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Background: Lung adenocarcinoma (LUAD) is the most common histological type of lung
cancer. To date, the prognosis of patients with LUAD remains dismal. Methods: Three
datasets were downloaded from the GEO database. Differentially expressed genes (DEGs)
were obtained. FunRich was used to perform pathway enrichment analysis. Protein–protein
interaction (PPI) networks were established and hub genes were obtained by Cytoscape
software. GEPIA was utilized to conduct correlation and survival analysis. Upstream miR-
NAs of DEGs were predicted via miRNet database, and methylation status of promoters of
DEGs was determined through UALCAN database. Results: A total of 375 DEGs, including
105 and 270 up-regulated and down-regulated genes in LUAD, were commonly appeared in
three datasets. These DEGs were significantly enriched in mesenchymal-to-epithelial tran-
sition (MET) and epithelial-to-mesenchymal transition (EMT). About 8 up-regulated and 5
down-regulated DEGs were commonly appeared in EMT/MET-related gene set and the top
50 hub gene set. Among the 13 genes, increased expression of KRT8 and KRT19 indicated
unfavorable prognosis whereas high expression of DCN and CXCL12 suggested favorable
prognosis in LUAD. Correlation analysis showed that KRT8 (DCN) expression was linked to
KRT19 (CXCL12) expression. Further analysis displayed that KRT8 and KRT19 could jointly
forecast poor prognosis in LUAD. About 42 and 2 potential miRNAs were predicted to tar-
get KRT8 and KRT19, respectively. Moreover, methylation level analysis demonstrated that
KRT8 and KRT19 were significantly hypomethylated in LUAD compared with normal con-
trols. Conclusions: All these findings suggest that KRT8 and KRT19 are hypomethylated
and overexpressed in LUAD and associated with unfavorable prognosis.

Background
Lung cancer is the most prevalent cancer and the deadliest malignancy worldwide, which has led to a
number of important public health problems [1]. In the United States, lung cancer is the second most
common incidence cancer and the leading cause of cancer death, with the estimated new cases of lung
cancer being 22,300 and cancer deaths being 56,000 [2]. In China, an estimated 4,292,000 new cases and
2,814,000 cancer deaths occurred in 2015, with lung cancer being the most commonly diagnosed cancer
and the leading cause of cancer death [3]. Lung adenocarcinoma (LUAD), the most common histological
type of lung cancer, has been a serious human health problem. Despite substantial advancements in ther-
apeutic regimens including surgery, chemotherapy, radiotherapy and epidermal growth factor receptor
tyrosine kinase inhibitor therapy, the prognosis of LUAD is still dismal, with 5-year survival rate less than
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20% [2,4]. Moreover, the morbidity of LUAD has been increasing year by year. Therefore, it is urgent need to seek
more effective drug candidates and promising diagnostic and prognostic biomarkers for LUAD.

The Gene Expression Omnibus (GEO) database is an international public repository, which provides a flexible and
open design that can facilitate submission, storage and retrieval of heterogeneous data sets from high-throughput
gene expression and genomic hybridization experiments [5,6]. Numerous studies have suggested that many potential
tumor biomarkers can be identified by deep-mining the data in the GEO database [7,8].

To the best of our knowledge, the molecular pathological mechanisms of LUAD remain largely unknown. The
objective of this work is to find the key genes and their potential regulatory mechanisms in LUAD. In the present
study, three gene expression microarray datasets from the GEO database were first analyzed to obtain differentially
expressed genes (DEGs) using the online analytic tool, GEO2R. Next, we conducted pathway enrichment analysis for
the DEGs that were commonly appeared in all the three datasets, and have successfully identified two significant path-
ways: epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). Subsequently,
protein–protein interaction networks were established and hub genes were identified. Further survival analysis for
these potential genes revealed that two up-regulated and two down-regulated genes possessed significant prognostic
values in patients with LUAD. Next, we assessed the correlation and joint prognostic values of the key genes. Finally,
potential upstream miRNAs and methylation status of the key genes were also predicted and determined. Findings
from this study may provide critical clues for seeking and developing promising diagnostic, therapeutic and prognos-
tic biomarkers in LUAD.

Methods
Gene expression microarray
In the discovery step, we included datasets that compared the gene expression in LUAD tissues with normal lung tis-
sues. Only datasets containing more than 40 clinical samples (normal samples more than 20 and cancer samples more
than 20) were included. Subsequently, the titles and abstracts of these datasets were screened, and the full information
of the datasets of interest were further evaluated. Finally, only three datasets (GSE7670, GSE10072 and GSE32863)
met these criteria and were selected for further analysis. Three datasets, the dataset GSE7670 based on the platform of
GPL96 (Affymetrix Human Genome U133A Array) containing 27 LUAD samples and 27 normal samples, the dataset
GSE10072 based on the platform of GPL96 (Affymetrix Human Genome U133A Array) containing 58 LUAD sam-
ples and 49 normal samples, the dataset GSE32863 based on the platform of GPL6884 (Illumina HumanWG-6 v3.0
expression beadchip) containing 58 LUAD tissues and 58 matched adjacent normal lung tissues, were downloaded
from the National Center for Biotechnology Information (NCBI) GEO database (https://www.ncbi.nlm.nih.gov/geo).

Screening of DEGs
We performed the comparison on the two groups of samples (LUAD versus normal lung tissues) in each selected
GEO dataset to obtain the DEGs by using the online analytic tool GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r),
which was provided by the GEO database. Adjusted P-value (adj. P-value) < 0.05 and |log2FC| > 1 were set as
cut-off criteria. The adj. P-value from the Benjamini–Hochberg method corrected the false positive results. The Venn
diagram was drawn using online tool VENNY 2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Among
these DEGs from the three datasets, only DEGs commonly appeared in all three datasets (intersection set) were
considered as the significant DEGs and were selected for subsequent analysis.

Pathway enrichment analysis
FunRich, a stand-alone software tool used mainly for functional enrichment and interaction network analysis of
genes and proteins, was utilized to perform pathway enrichment analysis for these significant DEGs [9]. The top
ten enriched pathways were generated and displayed in the software. P-value < 0.05 was considered as statistically
significant.

Protein–protein interaction network establishment and analysis
Protein–protein interaction (PPI) networks of the DEGs were constructed using online database resource Search
Tool for the Retrieval of Interacting Genes (STRING) (http://string-db.org/) [10,11]. The DEGs were entered into
the database and high-resolution bitmaps were downloaded (each pair of interactors in the DEGs with combined
confidence score > = 0.4). To identify hub genes in the PPI networks, CytoHubba of Cytoscape software (version
3.6.1) was introduced to analyze the degree of connectivity as previously reported [12–14]. According to degree, the
top 50 hub genes were screened out, and the PPI networks of top 10 hub genes were displayed in Cytoscape software.
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GEPIA database analysis
Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/detail.php), a web-based tool
to deliver fast and customizable functionalities based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx) data, was used to determine gene expression levels in LUAD compared with normal controls [15].
P-value < 0.05 and |log2FC| > 1 were regarded as statistically significant. GEPIA database was utilized to conduct
Spearman correlation analysis for these identified key genes. P-value < 0.05 was considered as statistically significant.
Besides, GEPIA database was also employed to jointly predicting prognostic values of KRT8 and KRT19 or DCN and
CXCL12 in LUAD. Logrank P-value < 0.05 was considered as statistically significant.

Survival analysis
The prognostic roles of the mRNA expression of 13 potential genes in patients with LUAD were evaluated using
the Kaplan–Meier Plotter (http://www.kmplot.com), which is an online database including gene expression data and
clinical data, partially from the TCGA database [16]. LUAD (n=513) mRNA RNA-seq data from ‘Pan-cancer’ item
was selected. These genes were entered into the database, and the hazard ratio (HR) with 95% confidence interval
and logrank P-value were calculated and displayed. Logrank P-value < 0.05 was considered as significant.

miRNet database analysis
miRNet, an integrated tool suite designed for comprehensive analysis and functional interpretation of miRNAs, was
utilized to predict potential upstream miRNAs of KRT8 and KRT19. The miRNA–KTR8 or miRNA–KRT19 networks
were directly displayed on the webpage and downloaded as pictures.

UALCAN database analysis
The methylation levels of promoters of KRT8 and KRT19 were determined using UALCAN database, which is a
user-friendly, interactive web resource for analyzing cancer transcriptome data [17]. P-value < 0.05 was considered
as statistically significant.

Statistical analysis
The results were presented as mean +− SD. Unpaired Student’s t-test was employed to analyze the differences between
two groups. Statistical analysis was performed using GraphPad Prism (version 7) and statistical significance was stated
as two tailed P-value < 0.05.

Results
Screening of significant DEGs in LUAD
Through a series of selection, three datasets (GSE7670, GSE10072 and GSE32863) were included for subsequent
analyses. The detailed information of selected datasets was provided in Figure 1A. To identify the DEGs, we employed
the online analytic tool GEO2R with the following parameters: adj. P-value < 0.05 and |log2FC| > 1. GEO2R analysis
for GSE7670 found out 2048 DEGs, in which 913 genes were up-regulated and 1135 genes were down-regulated
(Figure 1B); GEO2R analysis for GSE10072 found out 855 DEGs, in which 296 genes were up-regulated and 559 genes
were down-regulated (Figure 1C); GEO2R analysis for GSE32863 found out 1428 DEGs, in which 550 genes were
up-regulated and 878 genes were down-regulated (Figure 1D). The analytic results were showed in Supplementary
Table S1. Next, these DEGs from three datasets were intersected to further screen DEGs, broadly dividing into two
sets: up-regulated DEGs (Figure 2A) and down-regulated DEGs (Figure 2C). Eventually, a total of 105 up-regulated
DEGs (Supplementary Table S2) and 270 down-regulated DEGs (Supplementary Table S3) were commonly appeared
in all the three datasets. These DEGs were considered as significant DEGs, which were selected for following analyses.

Pathway enrichment analysis for significant DEGs
In an attempt to study the potential functional roles and reveal the significantly altered signaling pathways in LUAD,
we performed pathway enrichment analysis for the up-regulated significant DEGs and the down-regulated sig-
nificant DEGs using FunRich software. The results showed that the upregulated significant DEGs were appeared
in numerous biological pathways. The top 10 enriched pathways of the upregulated significant DEGs were pre-
sented in Figure 2B. The most enriched pathway was mesenchymal-to-epithelial transition (MET). Similarly, the
down-regulated significant DEGs were also enriched in a variety of biological pathways (Figure 2D), among which
epithelial-to-mesenchymal transition (EMT) was the most enriched pathway.
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Figure 1. Volcano plots of differentially expressed genes (DEGs) from there datasets (GSE7670, GSE10072 and GSE32863)

(A) The detailed information of three selected datasets for differential expression analysis. (B) DEGs identified in GSE7670 dataset.

(C) DEGs identified in GSE10072. (D) DEGs identified in GSE32863. Note: These volcano plots showed all of the DEGs. The black

dots represent genes that are not differentially expressed between lung adenocarcinoma tissues and normal lung tissues, and the

green dots and red dots represent the down-regulated and up-regulated genes in cancer samples, respectively. Adj. P-value <

0.05 and |log2FC| > 1 were set as the cut-off criteria.

Construction and analysis of PPI network
To investigate the association between the significant DEGs in LUAD, the online STRING database was first intro-
duced to establish the PPI networks. Data from STRING database demonstrated that lots of these significant DEGs
could interact with each other. The PPI network of the up-regulated significant DEGs was showed in Figure 3A, and
the PPI network of the downregulated significant DEGs was presented in Figure 3C. In a PPI network, a gene with
the more edges usually plays the more important role [18]. Therefore, we screened out hub genes according to the
node degree calculated by CytoHubba of Cytoscape software. The top 50 hub genes and top 10 hub genes are shown
in Table 1 and Figure 3B,D. Among these genes, GAPDH and IL6 revealed the highest node degrees, which were 26
and 49, respectively.

Identification of key genes-related to EMT/MET in LUAD
Previous analysis revealed that the up-regulated significant DEGs and the down-regulated significant DEGs were
only markedly enriched in MET and EMT, respectively (Supplementary Table S4). Besides, the top 50 hub genes were
also identified. In this part, we found out those genes that were commonly appeared in EMT/MET pathway gene set
and the top 50 genes set (Figure 4A,D). Among the up-regulated significant DEGs and the down-regulated significant
DEGs, 8 genes (CEACAM5, NQO1, LCN2, CDH1, KRT8, EPCAM, ELF3 and KRT19) and 5 genes (DCN, SERPING1,
GNG11, CXCL12 and CAV1) were preliminarily identified as the key genes in LUAD, respectively. TCGA is an online
platform for integrated analysis of molecular cancer data sets, which can provide an immeasurable source of knowl-
edge in cancer research [19]. Therefore, TCGA expression and survival data of LUAD was utilized to validate the eight
up-regulated key genes and five down-regulated key genes. We found that expression levels of eight up-regulated key
genes were significantly increased (Supplementary Figure S1) and expression levels of five down-regulated key genes
were markedly decreased (Supplementary Figure S2) in LUAD samples when compared with normal lung samples.
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Table 1 The top 50 hub genes identified in the PPI networks

Up-regulated genes Down-regulated genes
Gene symbol Degree Gene symbol Degree

GAPDH 26 IL6 49

TOP2A 26 VWF 30

FEN1 22 EDN1 30

BIRC5 22 FOS 22

AURKA 22 EGR1 21

TYMS 21 CXCL12 19

KIAA0101 20 ATF3 15

CCNB2 20 CAV1 15

TRIP13 19 CDH5 14

MELK 19 DCN 14

ASPM 19 GNG11 14

MCM4 19 DUSP1 14

CENPF 19 GATA2 14

NEK2 19 ANGPT1 14

UBE2C 19 ENG 13

ECT2 18 PTGER4 13

NUSAP1 18 TIMP3 13

CDH1 18 CD36 13

PRC1 18 CAT 12

CDC20 18 LDLR 12

TPX2 18 CTGF 12

PAICS 16 A2M 12

COL1A1 13 ADRB2 12

MMP9 13 TEK 12

COL3A1 12 KLF2 11

COL1A2 12 TGFBR2 11

SPP1 11 HBEGF 10

TIMP1 11 TYROBP 10

COL5A2 9 HSD17B6 10

COMP 8 ZFP36 10

COL11A1 8 CXCL2 10

KRT8 7 PLA2G1B 10

THBS2 7 LPL 10

NME1 7 ARRB1 10

COL10A1 7 KLF4 9

CEACAM5 6 CFD 9

EPCAM 6 DES 9

PLOD2 6 SERPING1 9

SLC2A1 5 PROS1 9

KRT19 5 FOSB 9

PDIA4 4 ALOX5 9

IGFBP3 4 EDNRB 9

LCN2 4 KLF6 8

SHMT2 4 PPP1R15A 8

ELF3 3 FGR 8

SULF1 3 ID1 8

NQO1 3 MYH11 8

F2RL1 3 SFTPD 8

MUC4 3 RAMP3 8

TFAP2A 2 CALCRL 8
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Figure 2. Pathway enrichment analysis for these DEGs commonly appeared in all three datasets

(A) The intersection of up-regulated DEGs in all the three datasets. (B) Pathway enrichment analysis for these up-regulated DEGs

that are commonly appeared in the three datasets using FunRich software. (C) The intersection of down-regulated DEGs in the

three datasets. (D) Pathway enrichment analysis for these down-regulated DEGs that are commonly appeared in the three datasets

using FunRich software.

These findings were completely identical with our previous analytic results. Subsequently, the prognostic values of
eight up-regulated genes and five down-regulated genes were predicted and assessed using online Kaplan–Meier Plot-
ter against the LUAD database. The results demonstrated that, among the eight up-regulated key genes, only KRT8
(Figure 4B) and KRT19 (Figure 4C) possessed significant unfavorable prognostic roles in patients with LUAD. Be-
sides, we observed that, among the five down-regulated key genes, only LUAD patients with high expression of DCN
(Figure 4E) and CXCL12 (Figure 4F) had favorable prognosis. Therefore, the four genes (KRT8, KRT19, DCN and
CXCL12) were selected for further analysis. The correlation of KRT8 and KRT19 or DCN and CXCL12 expression
were also assessed using GEPIA database. As shown in Figure 5A, KRT expression was positively associated with
KRT19 expression in LUAD. Similarly, a positive correlation of DCN expression with CXCL12 expression was also
observed (Figure 5B). As the strong linkage of KRT8–KRT19 or DCN– CXCL12 pair, the joint prediction capability of
the two pairs for prognosis of LUAD were also evaluated. The result demonstrated that only overexpression of KRT8
and KRT19 could jointly indicated poor prognosis in LUAD (Figure 5C,D). Taken together, KRT8 and KRT19 were
identified as two key genes-related to EMT/MET in LUAD.

Exploration of two potential mechanisms of KRT8 and KRT19 in LUAD
Next, we intended to explore the potential mechanisms of KRT8 and KRT19 in LUAD. As is known to all, gene expres-
sion is negatively regulated by microRNA (miRNA)12,13. Therefore, the potential upstream miRNAs of KRT8 and
KRT19 were predicted using an integrated online tool, miRNet. Finally, a total of 42 and 2 potential miRNAs of KRT8
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Figure 3. Identification of hub genes in the protein-protein interaction (PPI) networks of upregulated and downregulated

significant DEGs

(A) Establishment of PPI network of the up-regulated DEGs using STRING database. (B) The top 10 hub genes in the PPI network

of the up-regulated DEGs according to node degree. (C) Establishment of PPI network of the down-regulated DEGs using STRING

database. (D) The top 10 hub genes in the PPI network of the down-regulated DEGs according to node degree.

and KRT19 were identified, respectively. For better visualization, miRNAs-KRT8 and miRNAs-KRT19 networks were
constructed as presented in Figure 6A,B, respectively. Methylation status of gene promoter partially accounts for gene
dysregulation. Thus, we investigated the methylation levels of promoters of KRT8 and KRT19 in LUAD using UAL-
CAN database. As shown in Figure 6C,D, both KRT8 and KRT19 were significantly hypomethylated in LUAD tissues
when compared with normal lung tissues. All these findings suggest that aberrant regulation of KRT8 and KRT8
may result from dysregulation of upstream miRNAs and methylation status of gene promoter. Of course, more lab
experiments need to be conducted to validate these results.

Discussion
Lung cancer is the most prevalent cancer and the leading cause of cancer-related death worldwide [1]. LUAD, the
most common histological type of lung cancer, which morbidity has been increasing year by year [20]. In this present
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Figure 4. Screening of key genes in LUAD

(A) Up-regulated genes (CEACAM5, NQO1, LCN2, CDH1, KRT8, EPCAM, ELF3 and KRT19) that are commonly appeared in

EMT/MET pathway and the top 50 hub genes. (B) The prognostic value of KRT8 in patients with LUAD. (C) The prognostic value of

KRT19 in patients with LUAD. (D) Down-regulated genes (DCN, SERPING1, GNG11, CXCL12 and CAV1) that are commonly ap-

peared in EMT/MET pathway and the top 50 hub genes. (E) The prognostic value of DCN in patients with LUAD. (F) The prognostic

value of CXCL12 in patients with LUAD.
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Figure 5. The correlation and joint prognostic values of KRT8–KRT19 and DCN–CXCL12 pairs in LUAD

(A) The association between KRT8 expression and KRT19 expression in LUAD. (B) The association between DCN expression

and CXCL12 expression in LUAD. (C) The joint prognostic value of KRT8–KRT19 pair in LUAD. (D) The joint prognostic value of

DCN–CXCL12 pair in LUAD. P-value < 0.05 or logrank P-value < 0.05 was considered as statistically significant.

study, we have comprehensively analyzed three gene expression microarray datasets of LUAD from the GEO database
based on a series of bioinformatic analyses and partial experimental validation.

A total of 375 significant DEGs were identified, among which 105 genes were up-regulated and 270 genes were
down-regulated. Pathway enrichment analysis demonstrated that 105 up-regulated genes and 270 down-regulated
genes were significantly enriched in MET and EMT, respectively. MET and EMT are two reversible biological pro-
cesses that involve the transition between mesenchymal-like state and epithelial-like state [21]. Extensive studies have
reported that EMT is associated with multiple cancer characteristics, including metastasis [22,23] and chemoresis-
tance [24]. Previous studies have also well documented that MET allows cancerous cells to regain epithelial properties
and integrate into distant organs, thereby participating in the establishment and stabilization of distant metastases
[25].

PPI networks among the up-regulated and down-regulated significant DEGs were subsequently constructed to
explore associations between DEGs. With the help of Cytoscape software, we successfully identified the top 50 hub
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Figure 6. The potential mechanisms of KRT8 and KRT19 in LUAD

(A) The potential miRNAs-KRT8 network constructed using miRNet database. (B) The potential miRNAs-KRT19 network con-

structed using miRNet database. (C) The methylation level of promoter of KRT8 in LUAD determined by UALCAN database. (D)

The methylation level of promoter of KRT19 in LUAD determined by UALCAN database. P<0.05 was considered as statistically

significant.

genes in the PPI networks according to node degree. Further analysis revealed that there were 8 up-regulated genes
that were commonly appeared in the MET pathway and the top 50 hub genes, and 5 down-regulated genes that were
also commonly appeared in the EMT pathway and the top 50 hub genes. The following analyses were mainly about
the 8 up-regulated genes and 5 down-regulated genes, which were defined as the key genes-related to EMT/MET
in LUAD. Expression of the 13 key genes were further validated and prognostic values of them in LUAD were also
evaluated using TCGA LUAD expression and survival data. Identical with previous analytic results, all of these key
genes were significantly dysregulated in LUAD. However, only KRT8, KRT19, DCN and CXCL12 had significant
prognostic values. We also found that KRT8 (DCN) expression was positively linked to KRT19 (CXCL12) expression.
Finally, the expression levels of the four genes were determined in cell lines by the method of qRT-PCR, and a similar
outcome was observed.

Taken together, two up-regulated genes, KRT8 and KRT19, and two down-regulated genes, DCN and CXCL12,
seem the most important genes in tumorigenesis and progression of LUAD. KRT8 and KRT19 are two members of
the keratin family. Both KRT8 and KRT19 have been well demonstrated to function as two oncogenes in development
of human cancers. For example, Tan et al. have suggested that KRT8 up-regulation promotes metastasis of clear cell
renal cell carcinoma [26]. Fang et al. have found that KRT8 can facilitate gastric cancer progression and metastasis
[27]. KRT19 acts as a key molecule in hepatocellular carcinoma invasion and angiogenesis [28]. KRT19 expression
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also correlates with poor prognosis in patients with breast cancer [29]. Furthermore, Wikman and co-workers have
suggested that KRT8 and KRT19 are significantly up-regulated in LUAD tissues [30]. DCN encodes a proteogly-
can named decorin. Multiple studies have suggested that DCN can suppress lung cancer progression. The group of
Biaoxue R found that decreased expression of DCN correlates with lymphatic metastasis in patients with lung cancer
[31]. Liang et al. showed that overexpression of DCN markedly inhibited proliferation and migration of LUAD A549
cell line [32]. Shi et al. suggested that DCN was responsible for progression of non-small-cell lung cancer by promot-
ing cell proliferation and metastasis [33]. CXCL12 is also found to be closely associated with onset and development
of human cancer [34]. These previous reports together with our current results indicate that the four key genes may
play important roles in EMT/MET of LUAD.

Further investigation revealed that high expression of KRT8 and KRT19 could jointly forecast poor prognosis
in LUAD. And the potential mechanisms of them in LUAD were preliminarily investigated. Numerous studies have
validated that gene expression is negatively regulated by upstream miRNAs [12,13]. With the help of miRNet database,
42 and 2 potential miRNAs were predicted to target KRT8 and KRT19, respectively. Some of these miRNAs have been
found to act as tumor suppressors in lung cancer. For example, miR-26b-5p suppresses proliferation, migration and
invasion of lung cancer [35,36]. miR-335-5p inhibits proliferation of lung cancer by targeting Tra2 [37]. Dysregulated
methylation status of gene promoter can lead to gene aberrant expression [38,39]. Therefore, we further detected the
methylation levels of two up-regulated genes, KRT8 and KRT19. Intriguingly, both promoters of KRT8 and KRT19
were significantly hypomethylated in LUAD tissues compared with normal controls.

Although excellent results are obtained, lacking of experimental confirmation is an obvious limitation in this study.
In the future, much more lab experiments and large-scale clinical trials need to be conducted to further validate these
findings.

Conclusions
On the whole, all current findings confirmed that KRT8 and KRT19 are two key genes in the pathogenesis of LUAD.
Both of them are significantly hypomethylated and overexpressed in LUAD and linked to unfavorable prognosis.
KRT8 and KRT19 may be utilized as two diagnostic, therapeutic and prognostic biomarkers in LUAD in the future.
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