
Article
Improving the Accuracy of Protein Thermostability
Predictions for Single Point Mutations
Jianxin Duan,1,* Dmitry Lupyan,2 and Lingle Wang2
1Schrödinger GmbH, Mannheim, Germany and 2Schrödinger Inc., New York, New York
ABSTRACT Accurately predicting the protein thermostability changes upon single point mutations in silico is a challenge that
has implications for understanding diseases as well as industrial applications of protein engineering. Free energy perturbation
(FEP) has been applied to predict the effect of single point mutations on protein stability for over 40 years and emerged as a
potentially reliable prediction method with reasonable throughput. However, applications of FEP in protein stability calculations
in industrial settings have been hindered by a number of limitations, including the inability to model mutations to and from pro-
lines in which the bonded topology of the backbone is modified and the complexity in modeling charge-changing mutations. In
this study, we have extended the FEPþ protocol to enable the accurate modeling of the effects on protein stability from proline
mutations and from charge-changing mutations. We also evaluated the influence of the unfolded model in the stability calcula-
tions using increasingly longer peptides with native sequence and conformations. With the abovementioned improvements, the
accuracy of FEP predictions of protein stability over a data set of 87 mutations on five different proteins has drastically improved
compared with previous studies, with a mean unsigned error of 0.86 kcal/mol and root mean square error of 1.11 kcal/mol, com-
parable with the accuracy of previously published state-of-the-art small-molecule relative binding affinity calculations, which
have been shown to be capable of driving discovery projects.
SIGNIFICANCE The structure and the function of the protein are tightly coupled. Single point mutations can drastically
change the stability of a protein structure. The ability to predict such changes is valuable in understanding diseases but
also in designing therapeutics or industrial proteins. Free energy perturbation is an accurate method for predicting free
energy changes upon mutations. In this work, we have implemented a new, to our knowledge, method for proline
mutations. We show free energy perturbation can very accurately predict protein thermal stability changes of single point
mutations for all 20 natural amino acids. We believe the accuracy of the predictions is sufficient to drive protein engineering
projects.
INTRODUCTION

The function of a protein is tightly coupled with its structure
and dynamic behavior. Therefore, understanding the ther-
mostability of proteins can provide fundamental insight in
how proteins fold and how they work (1,2). This structure-
function relationship is clearly manifested in protein muta-
tions. Disease-causing single point missense mutations may
directly affect protein function, conformational dynamics,
and protein-protein interactions. Many of these mutations
have been found to be related to protein thermostability
(3–8). From a practical perspective, protein stability engi-
neering has wide applications in biotech industries. For
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example, industrial enzymes for food, detergents, paper, or
fuel may need to be designed to be stable and functional
at desired environments (9–11). The stability of therapeutic
antibodies needs to be engineered to have longer shelf-life
and prevent aggregation (12–16). In addition, protein stabil-
ity engineering is frequently used in crystallography, e.g.,
crystallization of the transmembrane domain of G-protein-
coupled receptors (17).

Significant efforts have been devoted to computationally
predicting the stability change upon mutations. Some ap-
proaches rely on machine learning, and other methods use
empirical energy potentials or statistical potentials (18).
These approaches depend to varying extents on existing
structural and mutational data and therefore are potentially
biased. For example, the vast majority of existing mutational
data contain destabilizing mutations, and hence, machine-
learning models may be biased toward negative predictions
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(19), whereas in real applications, we are often more inter-
ested in stabilizing mutations. Furthermore, these models
are generally based on static protein structures and do not
consider potential structural reorganization or dynamic
changes and the solvent effects are generally estimated
implicitly.

Free energy perturbation (FEP) (20), based on molecular
dynamics simulations with an explicit solvent model, is a
rigorous method to calculate the change of free energy
upon residue mutation or ligand structural modification
without the need for any training sets. In the applications
of FEP to calculate the effect of residue mutation on protein
stability, the native residue is alchemically ‘‘morphed’’ to
the mutant residue in both folded and unfolded states. The
free energy changes for the folded and unfolded states are
estimated from the simulations and the difference,DDG, be-
tween the folded and unfolded transformation corresponds
to the change of protein thermostability upon mutation.
The same principle with slight modifications in the thermo-
dynamic cycle can also be used to calculate the relative
binding affinities between two structurally similar ligands
to the same protein receptor. The FEP method implemented
in FEPþ software (Schrödinger, New York, NY) has been
successfully applied in retrospective and prospective predic-
tions of relative protein-ligand binding affinities in which
the average root mean square error (RMSE) was found to
be generally around 1 kcal/mol (21–24).

The application of FEP and thermodynamic integration
(25) for the calculation of protein stability was first pio-
neered in the late 1980s, and a number of studies have
been published over the years (26–35). Because of the
intensive computational resources required for the FEP
and thermodynamic integration calculations, the early ap-
plications for protein stability simulations were typically
very short and with limited solvation around mutation sites
(26–30). Although the initial results were promising, the
number of mutations studied was few, providing little
statistical significance. Later works have expanded the
number of mutations. However, they only targeted one pro-
tein, or only mutations to alanine were attempted (34,36).
Gapsys et al. applied a more recently developed alchemical
free energy method, the Crooks fluctuation theorem
(37,38), to predict protein thermostability for 143 single
point mutations in barnase and staphylococcal nuclease us-
ing up to six different force fields (33). They found the best
average unsigned error for each target to be 0.91 and
0.84 kcal/mol, respectively, with multiple force fields.
Two recent studies in 2017 by Steinbrecher et al. (39)
and Ford et al. (40), respectively, covered many more mu-
tations on different proteins. The results showed that FEPþ
could clearly predict the direction of stability change of
proteins upon single point mutations, but overall, the errors
were still relatively large, especially for mutations in which
the formal charge was altered, suggesting there is room to
improve.
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In addition to the large errors inmodeling charge-changing
mutations, none of the earlier studies, as far as we are aware,
included mutations involving prolines. Proline is unique
among the 20 amino acids because its side chain cyclizes
with the backbone to form a covalent bond. Mutations to or
from proline involve the formation or breaking of a covalent
bond, which can lead to numerical instability problems dur-
ing the FEP simulations (41). Furthermore, proline residue,
because of its cyclization, has restricted flexibility and hence
reduced entropy loss upon folding. It has been hypothesized
that mutations to proline can stabilize proteins, and indeed, a
number of studies that introduced prolines in strategic loca-
tions such as loops and b-turns were found to increase stabil-
ity of the protein (42–47).

Since the initial study of FEPþ on protein stability in
2017, a number of improvements have been made in the
FEPþ program. In particular, an alchemical water method
was introduced for perturbations involving net charge
changes in the two physical end states (48), and this method
was applied successfully to both protein-ligand binding and
protein-protein relative binding affinity predictions, with an
overall RMSE of 1.2 kcal/mol (49). Also, the numerical
instability problem in perturbations involving covalent
bond formation or breaking was addressed by introducing
a soft bond-stretch potential (50) and has been applied in
the pharmaceutical industry, including scaffold hopping mu-
tations (51) and macrocycle formation (24,52). With these
recent advances in FEPþ, we revisited the question of
how accurate FEPþ prediction on protein stability can be,
with the focus on charge-changing mutations and proline
mutations. For that purpose, we used a carefully curated
data set by Pucci et al. (19) and additional data from the
literature and performed FEPþ stability calculations on 87
mutations on five different protein targets. We explored
the effects of different models of the unfolded state in the
simulation and the accuracy of FEPþ prediction on both
charge-changing and proline mutations. The overall accu-
racy was found to be comparable to that of small mole-
cule-protein binding affinity FEPþ predictions.
MATERIALS AND METHODS

Data set selection and preparation

The protein stability data set in Pucci et al. (19) covers 15 different protein

structures associated with 342 mutations in which all wild-types and mu-

tants have crystal structures with resolution below 2.5 Å. We extracted

only the experimental data points measured at pH 7 5 1, resulting in 13

structures with 96 mutations. To gain statistically meaningful results,

only the proteins with more than five mutations were kept for this study.

In total, there are four protein structures with 69 mutations (Protein Data

Bank, PDB: 1EY0, 1BN1, 2LZM, and 1L63). Two additional systems

were used to further validate the effect of proline mutations on overall pro-

tein stability (PDB: 1RGG and 1PGA) (43,53).

The PDB structures were downloaded and prepared using Protein Prep-

aration Wizard in Maestro (Schrödinger Release 2019-2; Schrödinger), re-

taining all resolved water molecules in the crystal structures. The hydrogen
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atoms were added, and hydrogen-bonding networks were sampled. The

ionization states of the residues were predicted using Propka at pH 7.0,

and the final structures were minimized with restraints on the heavy atom

using the OPLS3e force field. The minimization was terminated when the

heavy-atom root mean square deviation reached 0.3 Å.
FEPD simulation

The FEPþ simulations for nonproline mutations were carried out using the

2019-2 release of Schrödinger Suite (Schrödinger) and OPLS3e force field

(54,55). FEPþ for mutations involving proline was only fully implemented

in more recent 2019-4 release; therefore, all FEPþ predictions for proline

mutations in the Pucci set and the complete proline set were from the

most recent version of the software. The prepared protein structures were

solvated in a box of water molecules with 5 Å buffer width with no coun-

terions added to the system. As unfolded models, we used capped monop-

eptide, tripeptide, pentapeptide, or heptapeptide with the mutation site in

the center of the peptides. The capping groups were acetyl on the N-termi-

nus and an N-methyl group on the C-terminus. Both the sequences and co-

ordinates of the peptides were directly extracted from the crystal structures

of the corresponding native proteins. The solvation buffer width for

unfolded models was set to 10 Å. When the mutation involves a charged

residue, the buffer width was chosen to be 8 Å for the folded protein.

Further, both the folded and unfolded systems were neutralized by adding

an appropriate number of sodium or chloride ions in addition to a NaCl so-

lution at physiological concentration (0.15 M). The ions were randomly

placed in the simulation box. The mutated residue is included in the replica

exchange solute tempering (REST) region (56,57), which effectively in-

creases the temperature for the residue. During the outlier analysis of

2LZM, the side chains of Leu36, Leu103, and Val23 for mutations

involving Thr62 and side chains of Val23 and Ile72 for the mutations

involving Val66 were included in the REST region.

The solvated systemswere relaxed and equilibrated using the default Des-

mond (Desmond Molecular Dynamics System; D. E. Shaw Research, New

York, NY) (58) relaxation protocol implemented in Maestro, which consists

of a series of minimizations and short simulations with restraints. Each

perturbation was performed over 12 lwindows for charge conserving muta-

tions and 24 l windows for charge altering mutations. Each l window was

simulated for 5 ns by default or up to 100 ns. For charge mutations, a co-

alchemical water approach was employed to maintain an overall neutral sys-

tem charge. The protocol essentially mutates an alchemical ion, sodium or

chloride, to awatermolecule at the same time as the charge-changing residue

mutation (48). For mutations involving a proline amino acid, a core-hopping

protocolwas deployedwith 16 lwindows. In this protocol, a ‘‘CG-CD’’ bond

within the pyrrolidine ring is replaced by a softcore bond, allowing bond

breaking to accommodating a noncyclic side-chain mutation.
WaterMap simulation

WaterMap (59–61) simulations on Staphylococcus nuclease (S. nuclease)

structures were also carried out using the Schrödinger 2019-2 release

(Schrödinger). WaterMap was initially designed for analysis of protein-

ligand binding pockets; hence, the analysis region is identified by the

ligand. A probe, dimethylpropane, was manually placed close to Thr62

and Val66, and a region with 10 Å within the probe was analyzed. Before

the simulations, all mutant structures were aligned on the wild-type struc-

ture, PDB: 1EY0. The probe was merged into the mutant structures

ensuring that the same region was analyzed.
Residue scanning

Residue scanning calculation (62), as implemented in BioLuminate (Schrö-

dinger Release 2019-2; Schrödinger), samples only the side-chain rotamers
of the mutated residue followed by minimization. The stability DDG is

defined by DGunfolded � DGfolded, where each individual term is the energy

difference between the mutant and the wild-type in unfolded or folded

states. The protein backbone and the neighboring side chains are kept fixed.

The input structures are identical to those for FEPþ, and because the

method uses the implicit solvation model VSGB (63), all crystallographic

water molecules were removed before the calculations.
RESULTS

Data sets

Pucci et al. (19) collected a set of protein stability data from
the ProTherm database (64), in which high-resolution crys-
tal structures are available for both wild-type proteins and
their mutants. The experimental conditions such as pH
and temperatures were also recorded, as well as the relative
protein stability inDDG. In this work, we focused on the ex-
periments conducted at pH 7 5 1, resulting in four sets of
data with 69 mutations. Two of the mutation sets were
measured using thermal unfolding assays, and two were
from protein unfolding measurements at room temperature
(20–25�C) using chemical denaturants. The two thermal un-
folding assay sets were both from T4 lysozyme but with
different wild-type crystal structures (PDB: 2LZM and
1L63). The chemical denaturation assay sets were from S.
nuclease and barnase (PDB: 1EY0 and 1BNI). This data
set will be referred to as the ‘‘Pucci set.’’ To collect sufficient
data on the accuracy of proline mutations, we included an
additional eight mutations, of which five involved prolines
from ribonuclease Sa (43) and 10 involved proline muta-
tions from protein G (53), and the stabilities of these muta-
tions were all from thermal unfolding experiments. This
data set will be referred to as the ‘‘proline set.’’ Information
about the mutations, their location, and type is shown in
Fig. 1. The data set includes a large number of combinations
of residue types, and, not surprisingly, the apolar-to-apolar
mutations are the most common ones. Curiously, apolar res-
idues mutated to other residue types are rare. In fact, there
were only four cases in which apolar residues were mutated
to polar, acidic, or basic residues. Of the total 87 mutations,
20 mutations involved proline, 20 alanine, nine acidic, and
seven basic residue types.
FEPD predictions of the Pucci set: approximating
an unfolded state of the protein

We examined four different unfolded models based on short
peptides with the native sequence flanking the mutation
sites. The simplest one is a single capped amino acid (mo-
nopeptide), which was used in previous studies (39,40).
The other three models are capped tri-, penta-, and hepta-
peptide. In each of these models, the residue that is being
mutated is flanked by one, two, or three neighboring amino
acids, respectively. The input conformations for the
unfolded models were from the corresponding wild-type
Biophysical Journal 119, 115–127, July 7, 2020 117



FIGURE 1 Crystal structures of the wild-type

proteins with colored spheres indicating the muta-

tion sites: (A) S. nuclease (PDB: 1EY0), (B) barnase

(PDB: 1BNI), (C) T4 lysozyme (PDB: 1L63), (D)

T4 lysozyme (PDB: 2LZM), (E) protein G (PDB:

1PGA), and (F) ribonuclease (PDB: 1RGG). The co-

lor codes indicate whether the mutations involve

apolar residues (yellow), polar residues (green),

basic residues (blue), acidic residues (red), or pro-

line (orange). Polar residues include T, S, C, N,

and Q; basic residues are K and R; and acid residues

are D and E. The remaining nonproline residues,

including Y, are apolar residues. In cases in which

the mutations change residue types, we color based

on the following rank: proline > charge > polar >

apolar, e.g., the color of a mutation from a polar res-

idue to proline or reverse will be colored orange

(proline). (G) The number of mutations for each mu-

tation type is shown. To see this figure in color, go

online.
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crystal structures. Across the different systems in the Pucci
set, the error reduced significantly (p < 0.016) when tripep-
tide was used instead of monopeptide. Mean unsigned error
(MUE) dropped from 1.71 (monopeptide) to 1.05 (tripep-
tide) and RMSE from 2.80 to 1.63. Extending the peptide
further slightly reduced the MUE further, to 0.95 (pentapep-
tide) and 0.89 (heptapeptide). We noticed that although
there are only five mutations in the Pucci set that involved
proline, their absolute prediction errors for the monopeptide
unfolded model can be as high as 10 kcal/mol. By removing
these proline mutations, the monopeptide MUE dropped
down to 1.20 kcal/mol, whereas the MUE for tripeptide,
pentapeptide, and heptapeptide remained the same. It seems
that mutations involving prolines is the chief beneficiary of
using tripeptide as an unfolded model. As the largest benefit
seems to come from using tripeptide instead of the monop-
eptide, we focused our additional analysis on predictions us-
ing tripeptide as an unfolded model.
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There were a number of clear prediction outliers with
absolute prediction error larger than 2.8 kcal/mol, which
correspond to a 100-fold difference in the predicted
folded/unfolded population ratio compared to that of
experiment. These include Thr62Val, Val66Lys, and
Val66Leu in 1EY0 and Ile3Cys and Gly156Asp in
2LZM. Thr62Ser in 1EY0 was also included in the anal-
ysis, although the absolute error was 2.44 kcal/mol. We
will describe each of the outliers in detail in the next sec-
tion. After addressing the outliers, the MUE and RMSE
for the tripeptide unfolded model reduced to 0.85 and
1.11 kcal/mol, respectively (Fig. 2, A and B; Tables S1
and S2), which is comparable with FEPþ prediction accu-
racy of small molecule-protein relative binding affinities
(22,23). If we disregard the proline mutations, the
improvement in accuracy using the tripeptide unfolded
model compared to the monopeptide is smaller. MUE
and RMSE for monopeptide are 1.16 and 1.67 kcal/mol



FIGURE 2 (A) MUE and RMSE of predictions in

the Pucci set after outlier analysis, (B) MUE and

RMSE for nonproline mutations, (C) error distribu-

tion for Pucci set mutations, and (D) error distribu-

tion for nonproline mutations. The orange bar

corresponds to predictions using the tripeptide

unfolded model before outlier analysis, and the

green bar is after outlier analysis. Error distribution

is expressed as log[U]/[F], where [U] is the concen-

tration of the unfolded state and [F] is the concentra-

tion of folded state. To see this figure in color, go

online.
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and for tripeptide are 0.87 and 1.14 kcal/mol. However,
the difference is still significant (p ¼ 0.04).

Further, we analyzed the error distribution of the predic-
tions in the Pucci set, which is expressed as log of the
unfolded/folded concentration ratio (Fig. 2,C andD). An er-
ror of 1 log unit means that the prediction is off by 10-fold,
corresponding to RTln (10) in free energy, which is
�1.37 kcal/mol. After addressing the outlier as discussed
in the following section, �80% of all the predictions were
accurate within 1 log unit, and none were greater than 3
log units.
Outlier analysis of the Pucci set

Understanding these apparent ‘‘failures’’ is paramount to the
characterization of the domain of applicability. Without the
knowledge of the ‘‘truth’’ in the form of mutant crystal
structures, outlier analysis can be speculative. Fortunately,
in this study, the outlier mutants all have crystal structures.
This section is organized by the type of outliers.

One of the outliers in 2LZM, Ile3Cys, is a stability neutral
mutant that FEPþ predicted to be destabilizing by 2.8 kcal/
mol. The crystal structure of the Ile3Cys (PDB: 172L) re-
vealed a disulfide bond between Cys3 and Cys97, and the
mutant structure is markedly different compared to the
native fold (Fig. 3 A). Because the formation of the disulfide
bond could not be modeled by FEPþ, this mutation falls
outside the domain of applicability, and the poor prediction
is expected.

The second outlier in 2LZM, Gly156Asp, is an excellent
example of uncertainty in protonation states of ionizable
residues. The mutant was destabilizing by 2.3 kcal/mol,
whereas FEPþ predicted it to be 5.39 kcal/mol. The envi-
ronment surrounding residue 156 is highly polar and solvent
exposed. It is located next to a salt bridge between Arg95
and Asp92. The crystal structure of mutant (PDB: 1L16)
showed a surprising head-to-head interaction between
Asp92 and Asp156, and this particular interaction is not
an artifact due to crystal packing (Fig. 3 B). The pKa of
Asp156 was predicted to be 5.3 by Propka (65) as imple-
mented in Maestro, and the stability measurement was
done at pH 6.5 (66), which suggests that a small fraction
of the residue would be protonated in the folded state. A
similar phenomenon has been observed for small mole-
cule-protein and protein-protein binding and is a common
source of prediction error. It is particularly acute when the
pKa of the ionizable group and the experimental pH are
close. A pKa correction has been developed requiring
FEPþ simulations of both neutral and ionized forms and
with the intrinsic pKa of the ionizable group and experi-
mental pH as input (67). This approach provides a rigorous
treatment of the ionization equilibria in unfolded and folded
forms. By following the free energy changes as a function of
time, the convergence of the simulations could be tracked
(68). To achieve convergence, the FEPþ calculations of
Gly156Asp in both forms were extended to 25 ns. The
intrinsic pKa of aspartic acid is 3.9 (69), and after pKa
correction, the prediction is 3.62 kcal/mol (Fig. 4). A closer
examination of the FEPþ trajectories showed agreement
with the mutant crystal structure. A protonated Asp156 fluc-
tuates between interacting directly with Asp92 and stacking
with Arg95, whereas the deprotonated form appears to
interact with Arg95 only.

There are four outliers in the 1EY0 set: Thr62Ser,
Thr62Val, Val66Lys, and Val66Leu. The largest outlier,
Val66Lys, is a destabilizing mutation with experimental
DDG of 7.5 kcal/mol. FEPþ correctly identified the desta-
bilizing effect but overestimated by more than 5 kcal/mol
Biophysical Journal 119, 115–127, July 7, 2020 119



FIGURE 3 (A) An overlay of the Ile3Cys mutant

structure in orange with wild-type, PDB: 2LZM, in

gray. (B) An overlay of the Gly156Asp mutant struc-

ture is shown in orange with wild-type, PDB: 2LZM,

in gray. (C) An overlay of S. nuclease mutant struc-

tures in position 66 is shown with wild-type, PDB:

1EY0, in gray. The residues Val66Lys are in orange,

Val66Leu in green, and Val66Ile in cyan. (D) An

overlay of mutant structures in position 62 with

wild-type, PDB: 1EY0, in gray is given. The resi-

dues Thr62Ser are in green and Thr62Val in orange.

The red spheres are Thr62Ser WaterMap hydration

sites with DDG >5 kcal/mol, and the green surface

is a cavity map representing areas lacking hydration

in the Thr62Ser mutant structure. Cavity maps of

similar size were also found in analyzed S. nuclease

structures but are not shown for clarity reason. To

see this figure in color, go online.
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independent of the unfolded model we used. A close exam-
ination of the Val66Lys mutation crystal structure (PDB:
2SNM) revealed that the protein structure maintained native
fold, and lysine ε-amine is entirely buried in the hydropho-
bic core without salt bridge or hydrogen-bonding partners
(Fig. 3 C). This suggests that the amine should be neutral
to avoid the desolvation penalty and the structure must be
solved at high pH. Indeed, Stites et al. found that Val66Lys
is highly unstable at pH 7; therefore, it was only possible to
crystalize the structure at high pH (70). Because FEPþ by
default mutated to a positively charged Lys, it is conceivable
that the additional desolvation penalty for charged Lys in the
predicted DDG was a key reason for the overestimation. We
carried out FEPþ calculations for Val66Lys in both neutral
and ionized forms and applied the pKa correction scheme
(67). The experimentally determined pKa of lysine residue
at 26�C in a GGKGG peptide is 10.5 (69), and the pKa-cor-
rected FEPþ prediction for Val66Lys was 6.69 kcal/mol,
which is in agreement with the experimental value of
7.5 kcal/mol.

At the same position, the Val66Leu mutation was slightly
destabilized by 0.3 kcal/mol in experiment, but the FEPþ
predicted it to be stabilized by �3.12 kcal/mol. Although
the FEPþ error for Val66Ile mutation was not as large as
that for Val66Leu mutation, the stability of the mutant
was also overpredicted by 1.3 kcal/mol (�0.3 kcal/mol by
FEPþ and 1 kcal/mol by experiment). Furthermore, two
mutations on the Thr62 position, Thr62Val and Thr62Ser,
were also predicted to be more stable in FEPþ than in the
experiments. Val66 and Thr62 are located on the same helix
and belong to the same hydrophobic core formed by Leu36,
Val23, Thr62, and Val66. At first glance, the crystal struc-
tures of the mutants and the wild-type are very similar.
Upon closer inspection, a number of side chains have
120 Biophysical Journal 119, 115–127, July 7, 2020
observed partial occupancies. These changes were observed
in the mutant crystal structures, but not in the wild-type
structure, suggesting increased flexibility. These include
Leu36, Leu103, and Val23 in the Thr62Ser and Thr62Val
crystal structures (PDB: 2EYH and 2EYJ) and Val23 and
Ile72 in the Val66Ile mutant structure (PDB: 2F0G). We
also analyzed the structure and energetics of the water mol-
ecules in the hydrophobic core for both the wild-type and
mutant structures using WaterMap (59), which revealed a
conserved cavity (71) in this hydrophobic core. Three addi-
tional high-energy hydration sites with estimated free en-
ergies of 5.23, 6.25, and 8.46 kcal/mol, respectively, were
observed in the Thr62Ser mutant (Fig. 3D), suggesting a de-
stabilizing effect. Indeed, the experiment measured a desta-
bilization of 2.1 kcal/mol for Thr62Ser mutation. We
hypothesized that the water molecules and side-chain flexi-
bilities were insufficiently sampled by the default 5 ns per l
window. To address this group of outliers, we extended the
FEPþ calculation for all four mutants to 100 ns, adding the
abovementioned residues with partial occupancies in the
REST (56,57) region, ‘‘heating up’’ these side chains in
the intermediate l windows to improve their sampling.
With the extended simulations, the prediction error for the
Thr62Ser mutant reduced substantially from 2.44 to
1.01 kcal/mol, and the errors for Thr62Val and Val66Leu
also reduced marginally, from 2.86 to 2.63 kcal/mol and
from 3.42 to 3.01 kcal/mol, respectively (Fig. 4).

In a separate FEPþ study on protein-protein binding (49),
it was observed that mutations can cause slight reorganiza-
tion of the side chains and allow water molecules to pene-
trate the binding interface, but the simulations were
difficult to converge; hence, the prediction accuracies
were low. Running FEPþ for hundreds of nanoseconds
would require days of simulations for one mutation and it



FIGURE 4 Correlation between the FEPþ prediction and experiment for

both the Pucci and proline sets. The dashed gray lines show the boundary of

1 log unit error. The red points are outliers in 1EY0, and the purple point is

the outlier in 2LZM. The colored dashed line shows how the predictions

changed after outlier analysis. The FEPþ prediction of Val66Lys mutant

before outlier analysis was 16.28 kcal/mol and therefore off the chart. To

see this figure in color, go online.
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is simply impractical for large numbers of mutations. How-
ever, for mutations in a tightly packed hydrophobic core that
can trigger complex side-chain and water reorganization,
longer simulations should be considered.

After addressing these outliers by pKa corrections or
more extensive sampling, the MUE was significantly
reduced (Table 1).
FEPD predictions of additional proline mutations

To collect sufficient data on the accuracy of proline muta-
tion predictions, another 18 mutations, including 15
involving prolines on protein G (1PGA) and ribonuclease
(1RGG), were predicted using FEPþ. The results were in
agreement with what was observed for the Pucci set. The
MUE for 1PGA was 1.11 kcal/mol and for 1RGG is
TABLE 1 Summary of the System Studied in this Work

Protein PDB DDG Range (kcal/mol) # Mutations

S. nuclease 1EY0 �1.0 to 2.1 27

Barnase 1BNI 0.5 to 4.5 13

T4 lysozyme 1L63 �0.6 to 2.7 16

T4 lysozyme 2LZM �0.8 to 2.3 13

Protein G 1PGA �0.8 to 3.5 10

Ribonuclease 1RGG �0.8 to 1.3 8

The DDG refers to the experimental free energy difference between the wild-type

destabilization. The numbers in parenthesis are before outlier analysis.
0.58 kcal/mol (Table 1). No outlier predictions were found
for this set.
Overall performance

For both the Pucci and proline sets, the coefficient of deter-
mination (R2) for FEPþ prediction using tripeptide model
was 0.66, the slope was 1.03, and the intercept �0.12
(Fig. 4). The MUE and RMSE were 0.86 and 1.11 kcal/
mol. This shows that FEPþ-predicted DDG is directly in
line with experimental measurements. The experimental
data were derived using either thermal unfolding (2LZM,
1L63, 1RGG, and 1PGA) or chemical unfolding (1EY0
and 1BNI) assays. There is no clear difference in FEPþ pre-
diction accuracy compared with each of the types of assay.
In this study, the proline set and proline mutations in the
Pucci set were predicted using a more recent release
(2019-4 release) that has the full support of proline muta-
tions for FEP calculation, whereas the other nonproline mu-
tations were performed using an earlier version of the FEPþ
product. To confirm that the two releases are consistent with
each other for the nonproline mutations, we also rerun
FEPþ using the 2019-4 release on nonoutlier mutations in
1L36 and 2LZM, including most of the charge-changing
and proline mutations. The mean unassigned deviation and
root mean square deviation between the predictions from
the two releases were 0.20 and 0.29 kcal/mol, respectively.
In addition, the MUE and RMSE of the predictions as
compared with the experimental measurements from the
two releases differed by no more than 0.02 kcal/mol.

Another way to look at the prediction performance is to
calculate the sensitivity (true positive rate), specificity
(true negative rate), and accuracy. True positive is defined
as both the predicted and experimentally measured DDG
of a mutation being below 0 kcal/mol. The accuracy, sensi-
tivity, and specificity across both sets were 0.86, 0.88, and
0.85.

The performance of FEPþ predictions can be compared
with the following two null models. 1) There are 69.4% de-
stabilizing mutations in both sets, and if we predict all mu-
tations to be destabilizing, the accuracy would be 0.69,
sensitivity 0, and specificity 1. Clearly such a null model
is not useful at all because it cannot drive improvement in
the prediction. 2) Randomly predict 69.4% of the mutations
Monopeptide MUE (kcal/mol) Tripeptide MUE (kcal/mol)

2.01 0.78 (1.14)

0.93 1.11

1.13 0.64

2.51 0.91 (1.19)

NA 1.11

NA 0.58

and the mutants. A negative value indicates stabilization and positive value

Biophysical Journal 119, 115–127, July 7, 2020 121



Duan et al.
to be destabilizing and the remaining to be stabilizing. We
repeated the experiment 1000 times and found the average
accuracy to be 0.57, average sensitivity 0.31, and average
specificity 0.69 with this null model. The performance of
FEPþ is indisputably better than both the null models.

We also compared the accuracy of FEPþ predictions with
a less computationally expensive MM-GBSA-based stabil-
ity predictions, as implemented in the Residue scanning
(62) panel that is part of BioLuminate. Unlike FEPþ, the
stability energies of Residue scanning in BioLuminate
cannot be directly compared with the experimental free en-
ergies; hence, the MUE and RMSE are not at all meaningful.
The R2 for Residue scanning is much lower at 0.33 for the
entire data set. We classified a mutation as stabilizing if
the predicted stability energy is below 0 or 3 kcal/mol.
The choice of 3 kcal/mol is based on earlier observation
of a shift in Residue scanning predicted protein-protein af-
finity energies versus the experimental energies (62). With
0 kcal/mol as cutoff, the sensitivity is 0.46, the specificity
is 0.86, and the resulting accuracy is 0.74. Lifting the cutoff
to 3 kcal/mol improved the sensitivity drastically to 0.81;
specificity, however, was reduced to 0.71, and the accuracy
remained the same.
DISCUSSION

Significant improvement of FEPD prediction
accuracy

Previous works on large-scale protein stability predictions
using FEPþ technology have shown relatively large error.
For example, Steinbrecher et al. found that the RMSE for
over 700 mutations were 2.27 or 2.07 kcal/mol if the subset
of charge-changing mutations were removed (39). The
MUE was slightly lower at 1.58 or 1.38 kcal/mol. Neverthe-
less, these errors are significantly larger than the small mole-
cule-protein relative binding affinity prediction errors by
FEPþ, in which RMSE is estimated to be 1.1 kcal/mol
(22) over a large data set. Ford et al. (40) also benchmarked
FEPþ predictions. Unfortunately, their data set consists of
mutations with DTm-values, and it was not possible to
calculate average prediction errors (40). In both studies,
FEPþ was compared with many other methods using static
structures only, including MM-GBSA-based methods, and
the authors found that FEPþ indeed performed better. In
this work, our aim is not to provide yet another comparison
between different methods, but rather to assess how we can
improve FEPþ’s prediction power compared with earlier
work and whether it is possible to speed up the screening
process without sacrificing the performance too much.

As a starting point, we analyzed possible reasons for why
the reported FEPþ prediction performance for protein sta-
bility appeared to be much worse than that of small-mole-
cule relative binding affinity to proteins. The main reason
relates to the quality of the data set. The selected data set
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in Steinbrecher et al. (39) was very large, and it was imprac-
tical to ensure that all experimental conditions were consis-
tent. For example, the pH at which the measurements were
performed may have an especially large impact on the pre-
diction results. At extreme pH conditions, the protonation
states of the ionizable residues are likely to be very different
compared to neutral pH. It was also unclear whether the mu-
tants would adapt different conformations compared to the
wild-type. For example, the mutant structure could be
partially or fully unfolded. Because the simulations lasted
only 5 ns per l window, the sampling is insufficient to cap-
ture large structural transitions, which may lead to incorrect
predictions. For small-molecule FEPþ studies, this would
correspond to molecules adopting different binding modes
in the same chemical series, a known cause of large predic-
tion errors (72). Pucci et al. collected a set of protein stabil-
ity mutations from the ProTherm database (64) in which the
experimental pH was noted (19), enabling us to focus only
on the stability measurements done at pH 7 5 1. There
are additional data points that were measured at pH between
6 and 2. At those pH ranges, the protonation state of the
acidic residues may be dynamic, and the current version
of FEPþ is not able to handle them properly. More valuably,
the authors have identified all crystal structures of the pro-
tein mutants, which allows us to confirm that the wild-
type and mutant structures are conserved.

A second issue that Steinbrecher et al. (39) identified is
the large errors associated with charge-changing mutations.
A subset of these mutations may very well have been
measured at extreme pH, whereas they were simulated at
pH 7. Changing charges is in itself a challenge associated
with long-range electrostatic effects, polarization, salt con-
centration, etc., and it was largely addressed and applied
on small molecule-protein and protein-protein relative affin-
ity predictions (48,49). The nonproline mutations in our data
set have 20% charge-changing mutations, but our FEPþ
predictions for these mutations and with the monopeptide
unfolded model achieved an MUE of 1.09 kcal/mol,
showing clear improvement compared to the 1.58 kcal/
mol reported by Steinbrecher et al. (39). Although our
data set is much smaller, the improvement in MUE can pre-
sumably be attributed to both improved treatment of charge
perturbations and a clean data set. This suggests that the true
performance of FEPþ is likely better than what has been re-
ported before.

A third possible source of prediction error is the represen-
tation of the unfolded state, for which we do not have exper-
imental structures. The extreme opposite of the folded state
would be a random-coil model in which the backbone tor-
sion angles of each amino acid are independent of its neigh-
bors. In effect, this means that the unfolded model has no
native structure characteristics (73,74). If this is true, then
a single capped amino acid should suffice as an unfolded
model, which was used in earlier studies (26,32,39,40).
The benefit of such a model is a significant reduction of
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the simulation system size and sampling needed for conver-
gence. However, numerous studies showed that the unfolded
form of a protein may still have residual secondary structure
elements and local interactions (73–77). An alternative
model is an extended and capped tripeptide with an Ala-
X-Ala or Gly-X-Gly sequence in which X is the mutation
site (27,31,33,34), but such a model would not account for
neighboring side-chain interactions. We rationalized that us-
ing the native sequence around the mutation site in its native
conformation should be ideal for preserving the native inter-
actions that may occur in an unfolded state. Using an
extended starting conformation may require much longer
simulations to sample native contacts. Furthermore, a turn
in the a-helix is �3.4 amino acids, and a b-turn is four res-
idues; hence, it seemed prudent to include capped penta-
and heptapeptides as well.

The FEPþ predictions clearly showed that there is signif-
icant improvement by adding just one flanking residue on
each side to the mutation site. The MUE dropped from
1.68 to 0.85 kcal/mol, and RMSE reduced from 2.79 to
1.11 kcal/mol. If we remove the five mutations involving
proline from the Pucci set, there is still a small but signifi-
cant improvement. It appears most of the improvements
are from proline mutations. We sought out an additional
15 proline mutations from two different proteins in the liter-
ature, and the prediction accuracy agreed very well. Adding
additional flanking residues to the tripeptide model reduced
both MUE and RMSE further but less pronounced. Across
both the Pucci and proline sets, the RMSE and MUE are
1.11 and 0.86 kcal/mol, respectively. The linear correlation
between the FEPþ predictions and the experimental en-
ergies has a slope of 1.03 and intercept of �0.12 kcal/mol.
Overall, the results clearly show that FEPþ-predicted pro-
tein stability energies can be meaningfully compared with
the experiments.

With a carefully curated data set, implementation of
charge-changing mutations, cyclization for proline muta-
tion, and capped peptides with three to seven residues as
unfolded model, the performance of FEPþ for protein sta-
bility prediction is on par with relative binding affinity pre-
dictions of small molecule-protein complexes. Small
molecule-protein relative binding affinity FEPþ predictions
have been extensively used in drug discovery programs,
with tens of thousands of predictions made at Schrödinger
alone. It has made remarkable impact on project progression
(22,23). Our results imply that FEPþ could be accurate
TABLE 2 Performance Comparison with Commonly Used Protein T

FEPþ MM-GBSA PoPMu

MUE 0.85 NA 1

RMSE 1.11 NA 1

R2 0.68 0.39 0

Accuracy 0.85 0.74 0

Sensitivity 0.89 0.46 0

Specificity 0.84 0.86 0
enough to drive the design of more stable (in at least a single
chain) proteins.
Comparison to other protein thermostability
prediction methods

In addition to the MM-GBSA-based Residue scanning pro-
tocol, there are a plethora of different protein thermosta-
bility prediction methods. Pucci et al. reported the
performance of 15 predictors (19), and we chose to compare
them with commonly used ones such as FoldX (78), Rosetta
(79), MUPRO (80), and PoPMuSiCsym (81) using the raw
data kindly provided by Pucci (Table 2; (78)). FEPþ com-
pares favorably to all methods except MUPRO, which is a
machine-learning model using only sequence information
and all mutations as part of its training set. Pucci et al.
observed that MUPRO suffered from training set biases
(19), and indeed, our analysis also showed that the RMSE
increased drastically for the reverse mutations (Table S4).
Because of its implementation of replica exchange technol-
ogy, FEPþ does not have any directionality. Furthermore,
FEPþ does not rely on any fitting to training sets, and there-
fore, it does not suffer from similar biases. FEPþ also out-
performs the other predictors as a classification tool,
assuming that the appropriate cutoff for stabilizing muta-
tions is 0 kcal/mol. Interestingly, MUPRO has almost per-
fect specificity but poor sensitivity for forward mutation,
which confirms that it is strongly biased by the abundance
of destabilizing mutations in the training sets.

Using the Crooks fluctuation theorem, Gapsys et al. also
reported excellent MUE of 0.89 kcal/mol for 143 unique
mutations in barnase and S. nuclease (33), which is very
similar to our study. The RMSE and R2 are slightly worse
at 1.22 kcal/mol and 0.47. Interestingly, none of the outliers
at positions Thr62 and Val66 in S. nuclease were in their
data set, and none of the mutations involved proline. The
same study also predicted the thermostability of five mu-
tants of a G-protein coupled receptor with DTm data, and
the correlation was outstanding, R2 ¼ 0.74 (33). Curiously,
the use of any membrane models was not mentioned.
Efficient screening cascade by combining
Residue scanning and FEPD

The FEPþ simulation for our data set typically takes 6 h on
a single Nvidia Pascal architecture graphics card. Because
hermostability Prediction Methods

SiC_sym MUPRO FoldX Rosetta

.08 0.70 1.20 1.65

.46 1.21 1.79 2.19

.27 0.36 0.22 0.39

.65 0.77 0.70 0.64

.68 0.32 0.68 0.53

.64 0.94 0.70 0.68
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the number of possible mutations on a protein can be very
large, FEPþ simulation as the sole filter may take too
long time unless a very large cluster is available. The idea
of using a faster filter before FEPþ simulation is not new
(40). Residue scanning in BioLuminate uses static structure
and only predicts the side-chain rotamer of the mutant res-
idue, followed by a short minimization by default in which
the solvent effect is treated using a modified MM-GBSA
solvent model (63). It has been established that similar
fast methods perform worse compared to FEPþ (40), which
agrees with our observation. Nevertheless, Residue scan-
ning calculation for each mutation takes minutes compared
with hours for FEPþ. We observed that Residue scanning
tends to introduce false positives, which can be filtered
out by FEPþ before experimental testing. Here, we
explored how Residue scanning can be used as a filter before
FEPþ in a screening cascade to drastically reduce the simu-
lation time without sacrificing performance.

Unfortunately, unlike FEPþ prediction, the MM-GBSA-
based energies are not comparable with the experimental en-
ergies, and hence, the exact cutoff for the filter is an un-
known factor. In retrospect, one can compare the
distribution of the experimental energy with that of the pre-
dicted energy to derive the cutoff, but such knowledge is not
possible a priori. To identify the best energy cutoff for the
Residue scanning, we retained mutations with predicted sta-
bility energies below 0, 1, 2, 3, 5 and 7 kcal/mol, and we
plotted the number of true positives that would come out
of the entire cascade (Fig. 5). We also examined how effi-
cient such a workflow would be compared to using FEPþ
simulations alone. Because the time needed for a Residue
scanning calculation is negligible compared with that for
FEPþ, we define efficiency as a number of retrieved actives
FIGURE 5 The performance of a computational screening cascade in

which Residue scanning is used as a first filter, followed by FEPþ as a sec-

ond filter. The blue bar shows the number of stabilizing mutations retrieved

by the cascade using different cutoff values for Residue scanning compared

to using FEPþ only. The yellow line (right y axis) shows the efficiency,

which is defined as the ratio of number of true positives retrieved per

FEPþ simulation. The red bar (right axis) shows the incremental efficiency,

which is defined as the number of additional true positives found per addi-

tional FEPþ simulation when a higher cutoff value is used. To see this

figure in color, go online.
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per FEPþ simulations. The efficiency of FEPþ alone was
therefore 23 actives divided by 86 simulations, i.e., 0.27.
Interestingly, the efficiency of the screening cascade using
different MM-GBSA energy cutoffs was flat at �0.5 up to
3 kcal/mol before it declined to �0.4. The efficiency of
0.5 suggests that for every two FEPþ simulations, we found
one active for this data set. We know that by using higher
cutoff value, more false positives were introduced, and
hence, more nonproductive FEPþ simulations were carried
out. We then defined incremental efficiency, which is a num-
ber of additional actives found per additional FEPþ simula-
tions. The incremental efficiency tells us the extra effort
needed to find new actives if we increase the cutoff. As an
illustrative example, when the Residue scanning cutoff is
raised from 3 to 5 kcal/mol, to find one additional stabilizing
mutant, we have to screen eight additional mutations using
FEPþ. Hence, the incremental efficiency would be 0.125.
The incremental efficiency was between 0.4 and 0.5 up to
3 kcal/mol cutoff before declining down to 0.125 at
5 kcal/mol cutoff. Therefore, 3 kcal/mol seems to be a
good compromise between speed and performance.

In the envisioned screening cascade, we would filter the
initial 86 mutations through Residue scanning with 3 kcal/
mol as a cutoff. Of these 86 mutations, 38 would be evalu-
ated by FEPþ, and only 22 would be passed on to experi-
mental measurement, resulting in 18 true stabilizing
mutations. Compared with using FEPþ alone, the cascade
will save 55% of FEPþ computational time, and compared
with using Residue scanning at 3 kcal/mol cutoff alone, it
will save 39% of the experiments. In the scenario of thou-
sands of mutation designs to be evaluated, this screening
cascade can significantly reduce both computational cost
as well as experimental cost. Based on the availability of
the GPU cluster and the project requirement, the cutoff
can be easily adjusted. In an era with easy accessibility of
GPU resources on the cloud, we think efficient screening
of stabilizing mutations using free energy calculations is
realistically possible with sufficient accuracy to impact the
projects.
CONCLUSION

In this study, we introduced improvements in FEPþ predic-
tion of protein stability, including more accurate modeling
of the unfolded states and methods for dealing with proline
mutations and charge-changing mutations. We found that
modeling the unfolded state as polypeptides with native
sequence and conformation improved the accuracy for sta-
bility prediction. The outlier analysis is particularly valuable
because it highlighted the potential pitfalls when running
FEPþ prediction on protein stability. This shows that
blindly running screening on all residues in a protein to all
19 amino acids is probably ill-advised. Careful thoughts
are desired to avoid obvious cases outside the applicability
domain. Charge-changing mutations close to charge clusters
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need to be treated with care regarding the protonation state,
and possibly pKa corrections are needed. Likewise, muta-
tions in the tight hydrophobic core may demand extended
simulations to permit sampling of water molecules and
side-chain reorganization. Encouragingly, the predictions
for these challenging cases often correctly classify or rank
the mutations. Within the applicability domain, FEPþ is
clearly able to accurately predict the protein stability change
upon mutations. The MUE was found to be 0.86 kcal/mol,
and RMSE is slightly higher at 1.11 kcal/mol, which is com-
parable with FEPþ prediction accuracy for small molecule-
protein relative binding affinity. FEPþ’s ability to identify
stabilizing mutations is substantially higher than randomly
guess with prior knowledge of fraction of stabilizing
mutations.

With the simulation time of a few hours on a GPU and ac-
cess to large GPU farms on the cloud, it is possible to screen
hundreds or thousands of mutations for stabilizing muta-
tions within a few days. Combined with a fast Residue scan-
ning method in a screening cascade, both computational and
experimental resources can be reduced. FEPþ technology
for small molecule-protein binding affinity prediction is
already being applied at a large scale in the pharmaceutical
industry and has been found to be sufficient to drive discov-
ery projects. The results in this work demonstrate a similarly
high level of accuracy in the prediction of change in protein
thermostability upon mutations and position free energy cal-
culations to play a guiding role in protein engineering
projects.
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