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Introduction to oxygen 
measurements
Tissue oxygenation is heterogeneous over time and space. 
It is upregulated over time, e.g. through the microcircu-
latory bed during exercise to meet the metabolic demand 
of skeletal muscle, and over space, as cell-to-cell oxygen 
levels vary based on the cell’s distance from the microves-
sels supplying it oxygen.1 There are also macroscopic vari-
ations corresponding to physiological function (the heart 
consumes more oxygen than the kidneys, both in total and 
per weight of the organ).1

While large differences in oxygen concentration or average 
pO2 exist among normal tissues, there is often a more 
profound heterogeneity associated with pathologies, like 
within cervix tumors, at any given timepoint.1–6 Although 
tissue oxygenation is an important measurement because 

it can impact therapeutic response and overall disease 
outcomes, this utility is limited as real-time microscopic 
variations in oxygen levels cannot be measured. Current 
measurement techniques merely present data averaged over 
time and space.1

Techniques to measure oxygen in vivo include electron 
paramagnetic resonance (EPR) oximetry, phosphorescent 
probes, electrodes (i.e. Eppendorf histography), moni-
toring of hemoglobin or mitochondrial cytochromes, nico-
tinamide adenine dinucleotide (NADH) and flavin adenine 
dinucleotide (FADH) fluorescence, and imaging methods 
such as nuclear magnetic resonance (NMR).7 These 
methods may be clinically applied in different ways, such as 
through repeating oxygen measurements before and during 
treatment to determine how therapies affect oxygenation. 
Which method is most appropriate depends on the clinical 
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Abstract

While it is well-established that hypoxia is a major factor that affects clinical outcomes in cervical cancer, widespread 
usage of clinically available methods to detect and evaluate hypoxia during the course of treatment have not been 
established. This review compares these methods, summarizes their strengths and weaknesses, and assesses the path-
ways for their useful employment to alter clinical practice. We conducted a search on PubMed for literature pertaining 
to imaging hypoxic cervical cancer, and implemented keywords related to oxygen measurement tools to improve the 
relevance of the search results.
Oxygenation level-dependent applications of MRI have demonstrated hypoxia-induced radioresistance, and changes in 
cervix tumor oxygenation from hyperoxic therapy.
The hypoxic areas within tumors can be indirectly identified in dynamic contrast-enhanced images, where they gener-
ally display low signal enhancement, and diffusion-weighted images, which demonstrates areas of restricted diffu-
sion (which correlates with hypoxia). Positron emmision tomography, used independently and with other imaging 
modalities, has demonstrated utility in imaging hypoxia through tracers specific for low oxygen levels, like Cu-ATSM 
tracers and nitroimidazoles. Detecting hypoxia in the tumors of patients diagnosed with cervical cancer via medical 
imaging and non-imaging tools like electron paramagnetic resonance oximetry can be utilized clinically, such as for 
guiding radiation and post-treatment surveillance, for a more personalized approach to treatment. The merits of these 
methods warrant further investigation via comparative effectiveness research and large clinical trials into their clinical 
applications.
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needs of the particular circumstance. While these methods have 
an advantage of accuracy over imaging due to their ability to 
measure tissue oxygen directly, instead of indirectly assessing 
parameters correlated with oxygen in tissues, certain imaging 
tools that are already used to derive benefits such as identifying 
target regions for radiation therapy can also provide clinical 
utility as oxygen measurement tools.

Hypoxic cervical cancer: evidence of the 
need for oximetry
Cervical cancer under hypoxic conditions is associated with 
metastatic progression, extracellular matrix remodeling, and 
poor outcomes.8,9 The significance of these consequences is 
exacerbated by the fact that cervical cancer itself is an inde-
pendent risk factor for hypoxic tumors.10 Oxygen measure-
ments of cervix tumors are of paramount importance, not only 
to provide more accurate prognoses, but also to personalize 
treatments for patients, taking into account the presence of 
hypoxic areas that are less responsive to radiation therapy. For 
example, when the Eppendorf histograph was used to directly 
measure tumor oxygenation, it found poor prognoses post-
radiotherapy in poorly oxygenated tumor tissues, particularly 
in sarcoma, head and neck cancers, and cervical cancer.11–14

Not surprisingly, these poor prognoses post-radiotherapy 
have been associated with hypoxia-related proteins (such 
as hypoxia-inducible factor-1α, or HIF-1α).15 While reverse 
transcription quantitative PCR (RT-qPCR) can be used to 
confirm hypoxia-related gene expression as a biomarker for 

aggressive hypoxia tumors, data on suitable reference genes 
for cervix tumors are sparse, motivating one study to iden-
tify 182 genes unaffected by hypoxia in cervical cancer. Three 
genes have been identified (CHCHD1, SRSF9, and TMBIM6) 
not associated with tumor volume, stage, lymph node 
involvement or progression of disease and were thus deter-
mined to be a suitable set of reference genes for RT-qPCR 
evaluation of hypoxia-related gene expression in squamous 
cervix tumors.16

Studies investigating tissue oxygen tension (pO2) have 
suggested hypoxia to be common in cervix tumors, though 
there are large intratumor heterogeneities in their oxygen 
levels.17 The principal limitations are associated with the 
region that is measured and potential perturbations in pO2 as a 
result of the method.7 These hypoxic conditions are dynamic, 
expanding and diminishing in accordance to tumor growth 
and treatment.18 One study found that while the oxygenation 
levels of normal tissues (determined by the pO2 of arterial 
blood) did not change significantly following 40–45 Gy of 
radiation, in 15/19 patients with cervical cancer, the tumor 
region experienced an increase in oxygenation following 
40–45 Gy of radiotherapy (delivered in 20 fractions over 4 
weeks).19 Changes in oxygenation can also occur over short 
time periods, as cervical cancer xenografts have been shown 
to undergo temporal fluctuations in pO2 over durations under 
1 hr, and a study on mice found the magnitude of these pO2 
fluctuations to be greater in tumors than physiologic tissues 
like muscle.20,21

Figure1. Bold MRI in Axial Plane: Cervical Tumor Oxygenation by Hyperoxic Breathing (a) T2-weighted image of a cervical tumor 
(T) in a patient. (b) T2-weighted images obtained using multi-shot EPI. The tumor and iliacus muscle are outlined in blue and 
green, respectively. (c) Map of the % in SI for the tumor and muscle, showing a heterogeneous response. (d) The mean tumor SI 
from hyperoxic breathing (5.4+3.1%) was greater than that of the iliacus muscle (-0.2+2.5%). The vertical bars at each Point indi-
cate one standard error (SE) at each point in time. (e) Maps the distribution of this hyperoxic breathing-induced % in the SI in the 
tumor (blue) and muscle (green). Reproduced from: Hallac RR. Oxygenation in cervical cancer and normal uterine cervix assessed 
using blood oxygenation level-dependent (BOLD) MRI at 3T.NMR Biomed. 2012;25;1321-1330
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In addition to identifying tumor subpopulations that are hypoxic 
and are thus prone to radioresistance, oxygen measurements in 
tissue could also allow for the screening of patients more likely 
to respond well to immunotherapy, as evidence is accumulating 
that oxygen levels affects immunotherapy efficacy.22,23 Repeated 

measurements are particularly useful for cancer, where neoan-
giogenesis results in leaky arteriole vessels that are less efficient 
in delivering oxygenated blood, growth of the tumor results in 
the degradation of local vessel integrity, and the metabolic switch 
to glycolysis characteristic of tumors may all result in regional 
hypoxia.24,25

EPR oximetry: imaging in preclinical and 
spectroscopy in clinical studies
EPR oximetry (also called electron spin resonance) is a mini-
mally invasive technique that allows for repetitive in vivo and 
in vitro oxygen level measurements over a period of time. The 
technique involves a paramagnetic oxygen sensor or probe that 
is implanted in tissues or cell cultures, and interacts with the 
unpaired electrons of oxygen atoms. This interaction broadens 
the sensors linewidth, a parameter of the EPR’s sensor. The 
ability of the linewidth to be broadened by oxygen’s electrons 
determines the sensor’s sensitivity to oxygen. This broadening 
is directly proportional to the oxygen concentration of the 
surrounding tissue.

While EPR oximetry is not currently used in clinical practice 
for reasons such as patient compliance and a lack of a consensus 
on clinical values, it has been used to quantitatively and directly 
measure oxygen in vivo, with repeated measurements over time, 
in both preclinical studies26 27–29 and clinical studies.19,27,30 It has 
great potential for clinical application particularly because of its 
ease of long-term repeatability (over days, months or longer) as 
well as its capability of continuous short-term monitoring (over 
minutes).

As methods being tested to increase tumor oxygenation to 
improve tumor response to ionizing radiation are often unsuc-
cessful, repeated EPR measurements before and after hyper-
oxic interventions could be used to screen for tumors that have 
responded well to the interventions and are thus more likely 
to have improved responses to radiation therapy or identify 
hypoxic tumors that will not respond to these hyperoxic inter-
ventions and thus require a different approach.29,31–36 Identi-
fying these subgroups can provide a more accurate prognosis, 
as patients with hypoxic tumors have lower survival rates and 
increased recurrence relative to patients with more oxygenated 
tumors.36–42 EPR oximetry studies have also been used to test the 
oxygenation techniques themselves, and found sodium hydro-
sulfide, or NaHS, administration to be potentially effective in 
oxygenating hypoxic tumors.22,23 Other studies involving human 
and murine models have also suggested EPR oximetry may be 
beneficial for cervical cancer patients in order to determine if 
oxygenation methods will be effective.43–45

Though EPR oximetry serves as a suitable example of how 
oxygen measurements are clinically useful, similar applica-
tions of medical imaging tools are of particular interest in this 
review, as they allow for the visualization of hypoxia prior to 
and during treatment, in addition to their traditional benefits of 
detecting anatomical irregularities and providing information to 
determine target regions and radiation doses.30,46 While direct 
methods of measuring tumor oxygenation like EPR (Eppendorf 

Figure 2. DCE-MRI of Cervical Carcinoma from the Axial Plane 
a: T2-weighted image of a cervical tumor marked 't' for tumor 
(posterior to the structure labeled 'b'- the bladder).b: T1-
weighted image with the ROIs marked for the Whole tumor 
and four tumor subregions, before Gd-DTPA administration.
Reproduced from: Lyng H. Assessment of tumor oxygenation 
in human cervical carcinoma by use of dynamic Gd-DTPA-
enhanced MR imaging. J Magn Reason Imaging. 2001;14:750-
756.
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histography) have some advantages over indirect methods like 
imaging, such as accurately quantifying the response to hyperox-
ygenation interventions, different imaging methods offer other 
unique advantages discussed later.

BOLD and TOLD MRI for oximetry
One way in which low tissue oxygenation levels may be detected 
via MRI is by utilizing the unusually high deoxyhemoglobin 
(dHb) levels found in hypoxic conditions and the generally low 
blood oxygen levels in these areas. Because dHb is paramagnetic, 
an MRI scan of these hypoxic tissues will show an increase in 
R2, and thus a decrease in the T2 weighted image intensity.47This 
use of MRI scanning has been described as blood oxygenation 
level-dependent MRI (BOLD). In one study, BOLD imaging 
was conducted on patients with cervical cancer both before and 
during hyperoxygenation treatment (inhaling supplemental, 
hyperoxic gas), showing a positive shift in the tumor’s signal 
intensity during the initiation of oxygen breathing.48 Figure  1 
shows how a greater change in T2 weighted signal intensity 
was recorded in cervix tumors compared to the nearby iliacus 
muscle in response to breathing hyperoxic gas, demonstrating 
the dynamic nature and heterogeneity of oxygenation associated 
with cervical cancer.48

The Department of Radiology of the Sungkyunkwan Univer-
sity School of Medicine in Seoul used BOLD for 30 cervical 
cancer patients to evaluate how radiotherapy changes tumor 
oxygenation, and found the tumor’s R2, detected quantitatively, 
was notably higher post-radiotherapy (reflecting an increase in 
dHb levels and potentially an increase in hypoxia), perhaps as 
a result of vascular damage induced by the radiation treatment, 
and that the higher R2 was negatively correlated with the degree 
of tumor shrinkage.49,50 Imaging-based detection and localiza-
tion of regions of tumor hypoxia could thus alter the treatment 
approach, deliver additional radiation dose to such regions in 
order to overcome their hypoxia-related radioresistance.

Another emerging NMR technique that could detect hypoxic 
conditions is tissue oxygen-level dependent MRI (TOLD). 
Though similar to BOLD, this method allows dissolved oxygen 
to decrease oxygen dependent R1 (increasing T1). When utilized 
on cervical cancer patients during hyperoxygenation therapy, 
the signal intensity for the cervix tumors increased greatly.51 This 
demonstrates the high sensitivity of TOLD imaging to variations 
in tissue oxygen levels.

TOLD and BOLD imaging have provided illuminating results 
in studies of cervical cancer, from radiotherapy increasing the 
tumor’s R2 and dHb levels to how the high R2 associated with 
hypoxic conditions correlate with radioresistance. These relevant 
findings support their continued usage in research studies, as 
well as further investigations into applications of MR-technology 
to evaluate hypoxic conditions.

Dynamic contrast-enhanced (DCE) and 
diffusion-weighted (DW) MRI for oximetry
DCE imaging involves a baseline image without contrast 
enhancement preceding a set of images obtained over time 

after an intravenous contrast agent (CA) is introduced and 
transported to the cancerous tissue through the bloodstream. 
This CA alters the calculated signal intensity for MRI and the 
measured X-ray attenuation for CT in a non-linear and linear 
fashion, respectively. The time–concentration curves, which 
can be constructed from the changes in contrast enhancement 
over time, allows for the quantification of parameters relevant to 
tumor tissue oxygenation levels and the local venous and arterial 
system in the tumor.52

While DCE imaging has not been shown to directly measure 
oxygenation levels in tumors, its usage with low-molecular weight 
CAs has allowed for visualization of tumor biology relevant to 
hypoxic cervix tumors.53 Some semi-quantitative measures, such 
as the area under the uptake curve (AUC) and the initial slope of 
the curve (or relative signal increase), have been found to correlate 
with pO2 or hypoxic fraction in both CT and MRI studies of cervix 
tumors.53–55 This means that regions of hypoxic cervical cancer 
generally display low signal enhancement in DCE images. This 
concept is demonstrated in Figure 2, which depicts a cervix tumor 
before and 90 s after 0.1 mmol per kg body weight Gd‐DTPA was 
administered, which enhanced the signal of the images in areas of 
greater perfusion and oxygenation (as well as greater cell density).54 
Gd-DTPA administration dependent signal enhancement 
improved the identification of more hypoxic areas with less signal.

More quantitative image parameters, specifically Ktrans from the 
Tofts model (representing blood perfusion) and ABrix from the 
Brix model (representing a combination of perfusion and the 
size of the extravascular and extracellular spaces) have been 
found to be positively correlated with each other and with posi-
tive outcomes (as measured by parameters like progression-
free survival) in a study including 78 cervical cancer patients.56 
Studies have demonstrated an inverse relationship between Ktrans 
or ABrix and pO2 levels in cervical cancer, and a strong correlation 
between ABrix and expression of hypoxia-related genes (tumors 
with low ABrix values had upregulated levels of HIF-1 targets and 
UPR genes).54,57 Other studies looking at ABrix and Ktrans values 
have shown a general trend in which low pre-treatment contrast 
enhancement correlates with poor locoregional control.58,59 The 
only correlation between the location of local recurrence that 
has been identified is a cluster analysis showing simple uptake 
kinetics to be the strongest correlate with location of recurrence.60

Another advanced MRI application involves diffusion-weighted 
(DW) MRI. The apparent diffusion coefficient (ADC), which 
measures the magnitude of water diffusion within a tissue, can be 
calculated clinically using DWI. Like DCE imaging, this DWI-
ADC MRI technique has been established for its potential use in 
evaluating biology relevant to cervix tumor hypoxia. While there 
are no universal guidelines for how to best utilize DWI-ADC, 
tumors with low perfusion (low ADC values) are associated with 
tumor hypoxia, giving ADC clinical value as a potential biomarker 
for tumor hypoxia. In addition, DWI-ADC has value as a potential 
means to evaluate the effectiveness of treatment (degree to which 
ADC values increase), as ADC values increase during treatment 
in which the tumor responds well and the cervical tissue signal 
returns towards normal.

http://birpublications.org/bjr
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DWI-ADC improves the sensitivity and specificity of conven-
tional MRI and provides qualitative and quantitative information 
regarding the tumor microenvironment and oxygenation status.61 
Figure  3 shows DWI-ADC applied to cervical cancer.62 In this 
imaged patient and in the other patients in the study who expe-
rienced either complete or partial remission following treatment, 
the ADC values increased after treatment. For example, among 
patients who experienced complete remission, the ADC value 
(×10–3 mm2/s) increased from an average pretreatment value of 
0.764 ± 0.073 to a value 15 days after treatment of 1.703 ± 0.0.

Neither DCE imaging nor DWI-ADC imaging have universal 
guidelines for how to best utilize the DCE imaging method to 
derive the most meaningful parameters relevant to hypoxia in 
cervical cancer. However, DWI-ADC imaging does boast a 

highly sensitive and specific ability to evaluate properties of a 
cervix tumor’s microenvironment, such as its degree of hypoxia. 
In doing so, DWI-ADC may help steer oncology away from a 
“one-size-fits-all” model, towards a more personalized approach, 
in the detection, characterization, and post-treatment surveil-
lance of a patient’s specific hypoxic cervix tumors.

Positron emission tomography (PET) and 
multimodal imaging
Molecular imaging is an emerging field with broad applica-
tions, such as the ability to detect molecular events associated 
with the risk of developing a particular disease before disease-
induced anatomic properties are detectable by radiologic imaging, 
enabling earlier intervention. Molecular methods used to measure 
tumor oxygenation include the use of hypoxia markers (such as 

Figure 3. Difussion-weighted MRI of cervical squamous cell carcinoma These are sagittal T2 weighted images of a 45-year-old 
patient before treatment (A),15 days after treatment (B), and 2 months after treatment (c). The tumor (indicated by the arrow) 
size reduced (and the ADC values increased) after treatment. Reproduced from: Chen J. The Value of DW MRI in predicting the 
Efficacy of Radiation and Chemotherapy in Cervical Cancer. Open Life Sciences. 2018; 13(1) 305-311

Figure 4. PET/CT imaging of Cu-ATSM and F-FDG uptake in hypoxic and normoxic cervix tumors Top: These sagittal images are 
of a patient with a hypoxic cervix tumor. They show high 60Cu-ATSM(left) and high 18F-FDG(right)uptake in the tumor.Bottom: 
These sagittal images are of a patients with an overall normoxic cervix tumor. There is a sharp decrease in 60Cu-ATSM(left) uptake 
compared to the hypoxic tumor, but still a fairly high 18F-FDG(right)uptake compared to the hypoxictumors than 18F-FDG.Repro-
duced from: Lyng H. Hypoxia in cervical cancer: from biology to imaging. Clin Transl Imaging. 2017; 5(4): 373-388.
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hypoxia-induced expression of GLUT1 and CAIX) and tracers in 
conjunction with imaging modalities such as PET.63,64 Hypoxic 
tissues exhibit increased uptake of hypoxia-specific tracers rela-
tive to surrounding normal tissues (which is how hypoxic tissues 
are identified as hypoxic using PET). However, the extent of this 
uptake can be hindered by radiation-induced vascular damage, 
which, although can contribute to hypoxia by reducing blood flow, 
interferes with PET tracer delivery and uptake (radiation therapy 
may also induce direct cell killing, which reduces uptake to the 
necrotic areas). Unlike BOLD and TOLD MRI applications, PET 
does not rely on hyperoxygenation therapy making it more feasible 
for clinical use. In addition to its feasibility, PET has been shown to 
be the best direct imaging tool for non-invasive three-dimensional 
visualization of hypoxic conditions through the use of hypoxia PET 
tracers: copper labeled diacetyl-bis(N4-methylthiosemicarbazone) 
analogs, or Cu-ATSM, and fluorine-labeled nitroimidazoles.65,66 
Although not yet clinically successful, iodine-124-labeled iodo-
azomycin-galactoside has also shown promise as a hypoxia-
imaging PET tracer.67

60Cu-ATSM can efficiently diffuse given its high membrane 
permeability. Under hypoxic conditions, the Cu2+ component 
may irreversibly reduce to Cu+ and dissociate from ATSM, 
a dissociation that is prevented by re-oxidation in normoxic 
tissues, where the complex is cleared.68 Washington University 
conducted a multicenter trial regarding hypoxia and cervical 
cancer, in which PET with60Cu-ATSM was used on 38 patients, 

and data from 0 to 60 min or 30 to 60 min after injection were 
analyzed.69,70 The results showed that nearly every tumor had 
significant uptake of Cu-ATSM, and an additional compar-
ison of immunohistochemistry markers revealed patients with 
tumors that were more hypoxic had significantly higher levels 
of carbonic anhydrase 9 (a hypoxia-induced cell-surface enzyme 
involved in regulating the pH of hypoxic tumors).54 However, 
enthusiasm for Cu-ATSM was diminished in a study from the 
NIH showing tumor type variability in radiotracer uptake.71,72

Nitroimidazoles, another class of PET tracers that can be used 
to detect hypoxia, are lipophilic and thus passively diffuses 
through cell membranes. In the presence of hypoxia, the nitro 
group experiences a multistep reduction in which the interme-
diate products are highly reactive and are able to bind macro-
molecules, allowing for the accumulation of the reduced tracer 
in hypoxic tissues.73 18F-fluoromisonidazole (18F-FMISO) is 
the most common nitroimidazole used for imaging hypoxia.74 
Intervals of 2 h between 18F-FMISO injection and imaging are 
generally preferred to distinguish the hypoxic regions from 
normoxic regions, as the tracer clears from normoxic tissues 
very slowly.75 A study led by Dr Pinker of the Medical Univer-
sity of Vienna found pretreatment of 18F-FMISO PET demon-
strated an accurate diagnosis of hypoxia in every cervical cancer 
tumor present in the 11 patients who participated in the study, 
and found the hypoxic subvolume to be independent of overall 
tumor volume.76

Table 1. Applications, future directions, and limitations of current imaging modalities

Modality Applications/Future directions Limitations
Electron paramagnetic resonance oximetry •	 Use before and after hyperoxic interventions can 

screen for patient subpopulations more likely to 
benefit from ionizing radiation.

•	 Directly identify well-oxygenated tumors more 
likely to respond well to immuno-therapy.

•	 Is minimally invasive.
•	 Information obtained limited to oxygen 

measurement.

MRI •	 BOLD (decreased T2 signal) and TOLD 
(increased T1 signal) MRIs use the paramagnetic 
deoxyhemoglobin concentrations to evaluate tumor 
hypoxia and radioresistance.

•	 DWI demonstrates areas with decreased perfusion 
and oxygenation.

- Indirect and requires coordination with 
supplemental oxygen administration 
(BOLD and TOLD).

Dynamic contrast-enhanced imaging •	 Using contrast agents, a low signal enhancement 
(AUC and RSI) demonstrates relative tissue hypoxia.

•	 Ktrans and ABrix correlate with decreased efficacy to 
treatment.

- Indirect; Ktrans and Abrix measure tissue 
perfusion and correlate with hypoxic genes, 
thus indirectly measuring tumor hypoxia.

Positron emission tomography - Compounds such as60Cu-ATSM and 18F-FMISO 
directly demonstrate increased uptake in hypoxic 
cervical cancer.

- 18F-FETNIM and 18F-FAZA may lack 
correlation with traditional 18F-FDG PET.

Multimodality imaging •	 MTV, SUVmax, and TLG may be obtained with 
conventional 18F-FDG PET/CT to evaluate the 
tumor microenvironment.

•	 Improved spatial accuracy of PET with the addition 
of MRI.

•	 Hypoxic conditions (increase in ADC, and decrease 
in TBR and Ktrans) can be demonstrated with MP 
modalities utilizing 18F-FMISO PET.

- Higher SUV and ADC values correlate 
with higher Ki-67 values, but not directly 
with tumor hypoxia.

ADC, apparent diffusion coefficient; AUC, area under the curve; BOLD, blood oxygenation level-dependent; DWI, diffusion-weighted imaging; 
FAZA, fluoroazomycin-arabinoside; FETNIM, fluoroerythronitroimidazole; FMISO, fluoromisonidazole; MTV, metabolic tumor volume; PET, positron 
emmision tomography; RSI, relative signal increase; SUV, standardized uptake value; TLG, total lesion glycolysis; TOLD, tissue oxygen-level 
dependent.
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The radiopharmaceuticals used in conjunction with PET, such 
as 18F-FMISO and 60Cu-ATSM, are not without limitations. 
18F-FMISO exhibits a slow cellular washout (it takes 2 h post-
injection for the tracer to clear from normal background tissues, 
thus delaying imaging) and relatively low hypoxia-specificity, 
manifesting in a limited contrast between hypoxic tumors and 
normal tissues. 60Cu-ATSM is limited clinically by its short 
radioactive half-life of 0.40 h (64Cu, which has a longer half-
life or 12.7 h and potential to produce superior image quality 
compared to 60Cu, will likely be the subject of large clinical trials 
to come).77 Both 18F-FMISO and 60Cu-ATSM can be produced 
on a medical cyclotron at relatively low costs.

Other nitroimidazoles have also been used, like 18F-fluoro-
erythronitroimidazole (18F-FETNIM) and 18F-fluoroazomycin-
arabinoside (18F-FAZA). The administration of 18F-FETNIM 
PET to 16 cervical cancer patients prior to definitive chemoradio-
therapy showed patients with high tracer uptake (more hypoxic 
cervix tumors) had reduced survival, though the tumor speci-
ficity of the tracer appeared to be low, as the tracer uptake into 
the tumors were hard to distinguish from nearby normoxic soft 
tissues.78 The researchers did not observe a correlation between 
18F-FETNIM uptake and 18FDG uptake (which was markedly 
high in every tumor). This nonspecific uptake is demonstrated 
in Figure  4, which also contrasts it to the high specificity of 
60Cu-ATSM PET for hypoxic cervix tumors.45 With regards to 
18F-FAZA PET, imaging was conducted before, during, and after 
external chemoradiotherapy in one study of 15 cervical cancer 
patients, and the resulting images showed only five patients to 
have tumors that took up much of the tracer.79 Four of these five 
patients were observed to still have marked 18F-FAZA uptake 
during radiotherapy treatment (though post-treatment these 
patients were PET-negative).

Combined PET/CT is able to determine the extent of tumor 
progression and can visually assess regional lymph nodes and 
distant metastasis sites, allowing this multimodality tool to be 
helpful in pretreatment evaluation and radiation therapy plan-
ning. Quantitative parameters relevant to PET/CT include 
metabolic tumor volume, maximum standardized uptake value 
(SUVmax), and total lesion glycolysis. These parameters have 
been used to predict prognosis and clinical outcome, as well as 
to detect aggressive cervix tumors and quantify their degree of 
hypoxia.80 Another study agreed that imaging cervical cancer 
with PET/CT (this time with 60Cu-ATSM) may be helpful for 
prognostication, as well as radiation therapy planning, by 
enabling characterization of the tumor microenvironment, such 
as hypoxic status.81

Another multimodality tool, PET/MRI, has the potential to 
improve the detection of primary tumors and metastatic sites as 
a result of the improved soft tissue contrast resolution of MRI as 
compared to CT imaging. One study, which involved examining 
10 cervical cancer patients scheduled for radiation therapy with 
combined 3 T multiparametric (MP) PET/MRI, found the multi-
modality system as able to identify regions of tumor hypoxia 
(and did so in eight patients).82 A different study incorporated 13 
patients and involved repetitive imaging of cervix tumors prior 

to, during, and after radiochemotherapy using biomarkers with 
MRI and/or PET to assess spatiotemporal stability of hypoxia 
and other tumor environment characteristics. This longitudinal 
MP PET/MRI study concluded that while tumor cell density and 
perfusion decreased over time, a non-uniform hypoxia change 
during radiotherapy was observed.83

Another study also looked at spatiotemporal patterns of tumor 
parameters in the cervical tumors. This study used combined MP 
PET/MRI with 18F-FMISO to measure tumor hypoxia, perfu-
sion, and microstructure before, twice during, and after chemo-
therapy in 10 cervical cancer patients. The study concluded PET/
MRI was feasible and revealed spatiotemporal patterns (averaged 
apparent diffusion coefficient, or ADC, values increased, while 
TBR and Ktrans decreased over time), and that these patterns can 
help define subtargets for dose painting and response assess-
ment.84 Higher ADC (and SUV) values correlate with Ki-67 
expression (a protein upregulated in aggressive tumors), but not 
directly with tumor hypoxia.85

In conclusion, the specific uptake of compounds like 18F-FMISO 
and 60Cu-ATSM allows PET and multimodal methods to image 
hypoxia more directly than the imaging methods previously 
discussed. 18F-FDG PET/CT has been used to obtain values like 
metabolic tumor volume, SUVmax, and total lesion glycolysis 
to assess the tumor microenvironment like hypoxia, and quan-
tify this hypoxia to identify aggressive tumors. PET/MRI also 
shows great promise, as it can provide reliable target definitions 
for primary cervix tumors and can identify regions of tumor 
hypoxia to a high degree of spatial accuracy.

Conclusion
Additional methods for handling hypoxia are needed, particu-
larly for locally advanced stages, where radiotherapy is the main 
treatment option. While medical imaging and EPR oximetry 
offer several methods of providing clinical utility via direct and 
indirect measurements of cervical cancer tissue oxygenation, the 
benefits of each method vary, pointing to the need for clinical 
guidelines as to which method is most appropriate for a given 
circumstance. DWI can be used to identify tumor areas with 
decreased perfusion and oxygenation, while BOLD and TOLD 
MRI imaging have been useful for research in showing how 
radiotherapy can increase hypoxic cervix tumor’s relaxation rate 
R2 (and that the higher R2 correlates with radioresistance).

These imaging methods have not been preferred for the clin-
ical setting due to their reliance on supplemental oxygen, and 
the costs of imaging in general. However, recent investigations 
into the clinical utility of these and other methods for imaging 
hypoxic cervix tumors show some important advantages over 
spectroscopy techniques like EPR. For example, imaging can 
better guide radiotherapy, and can address deeper tumors than 
EPR.

Unlike BOLD and TOLD MRI, PET is feasible for clinical 
use, and it allows for the usage of radiopharmaceuticals like 
Cu-ATSM and nitroimidazoles. While PET may provide the 
best method of imaging hypoxia, other techniques like DCE 
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imaging can indirectly and quantitatively measure parameters 
relevant to tumor hypoxia and oxygenation. Multimodality 
imaging shows great promise, as 18F-FDG PET/CT may help 
in defining nodal targets and detecting pathological lymph 
nodes, and PET/MRI shows high potential to provide reliable 
target definitions in the primary cervix tumor, while both have 
been used with tracers to specifically contrast hypoxic cervix 
tumor regions from normoxic regions (Table 1). Particularly, 
intriguing is the possibility of the use of PET/DCE-MRI. 
Future research regarding dose-escalation and de-escalation 
are needed to tailor treatment responses with these imaging 
modalities in order to balance efficacy with toxicity.

The clinical benefits of taking oxygen measurements and 
visualizing hypoxia through imaging, as well as the utility of 
screening for patients more likely to respond to radiation and 
immunotherapy treatments directly through EPR oximetry, 
demonstrate the need for large clinical trials to investigate 

the clinical applications of these methods further. As no such 
method is currently in widespread clinical use, there is also 
a need for further comparative effectiveness research, which 
involves analyzing the effectiveness of medical practices real-
istic to the clinical setting, based on the treatment’s risks and 
benefits, head-to-head trials, or observational studies.86–90 
Comparative effectiveness research would also allow for the 
meticulous comparison of direct and indirect oxygen measure-
ment methods and could provide additional insight into their 
clinical utility.
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