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Abstract

Cancer remains the leading cause of death worldwide. Traditional treatments such as surgery, 

radiation, and chemotherapy have had limited efficacy, especially with late stage cancers. Cancer 

immunotherapy and targeted therapy have revolutionized how cancer is treated, especially in 

patients with late stage disease. In 2013 cancer immunotherapy was named the breakthrough of 

the year, partially due to the established efficacy of blockade of CTLA-4 and PD-1, both T cell co-

inhibitory molecules involved in tumor-induced immunosuppression. Though early trials promised 

success, toxicity and tolerance to immunotherapy have hindered long term successes. Optimizing 

the use of co-stimulatory and co-inhibitory pathways has the potential to increase the effectiveness 

of T cell-mediated antitumor immune response, leading to increased efficacy of cancer 

immunotherapy. This review will address major T cell co-stimulatory and co-inhibitory pathways 

and the role they play in regulating immune responses during cancer development and treatment.
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Introduction:

Recent advancements in the field of tumor immunology have shown that harnessing the 

potential of the immune system is needed to eradicate cancer. Immune responses are 

modulated by a complex network of checks and balances, which include co-stimulatory and 

co-inhibitory pathways involved in regulating T cell activation and function. Activation of T 

cells requires at least two signals delivered by the antigen presenting cells (APC). The first 

signal is antigen presented in the form of peptides bound to a major histocompatibility 

complex (MHC). The peptide recognized by the T cell receptor and this interaction provides 

specificity to the T cell response. The second signal is provided by co-stimulatory ligands on 

APCs that interact with corresponding receptors on the T cell surface. Without co-

stimulation T cells will either die or become anergic [1]. T cells require co-stimulatory 

signals for optimal proliferation, differentiation, and survival making co-stimulation 
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necessary to induce productive immune responses. Antitumor immune responses depend on 

efficient presentation of tumor antigens and co-stimulatory signals by host antigen 

presenting cells. Cancer evades the immune system through various mechanisms including 

the use of regulatory cells, anti-inflammatory cytokines, decreased stimulatory receptors, 

defective antigen presentation, T cell tolerance, and apoptosis. Traditional therapies 

including chemotherapy, radiation, and surgery are often accompanied with transient 

immune suppression. This can increase a patient’s risk of infection along with decreased 

ability of immune responses to cancer [2]. Though these pillars of cancer treatment are still 

used today new strategies for tumor treatment are developing. New therapies include using 

cellular targets such as T regulatory cells and myeloid derived suppressor cells, vaccine 

therapy, and adoptive T cell transfer therapy.

The latest tumor immunotherapy is molecular therapy directed against co-stimulatory and 

co-inhibitory markers in the tumor microenvironment. The expression of these markers is 

highly versatile and responsive to changes in the tissue environment, making them ideal 

candidates for tumor immunotherapy. Co-stimulatory and co-inhibitory signals can be 

broken down into a few major families, two of which are addressed in this review (Figure 1), 

the Ig family and the TNF family. Studies into CD28 were the first to explore and identify 

the Ig superfamily of receptor-ligand pairs. Interactions between receptors and ligands in the 

Ig family are key for T-B cell interaction and development of some secondary lymphoid 

organs. This family includes ICOS, PD1, LAG3, CTLA-4 and CD28 [3]. These receptors 

were first thought to only control the expansion and survival of naïve T cells, but more 

recently have been shown to have both co-stimulatory and co-inhibitory functions on naïve 

and activated T cells [4]. The TNF superfamily of ligands and receptors provide key 

communication between various cell types during development. This family consists of 

TNFR1 and 2, HVEM, CD30, 4-1BB, OX40, GITR, CD27, and CD40. Many members of 

the TNFR family share ligands and downstream signaling pathways creating a dense 

network of co-stimulatory and co-inhibitory pathways [5]. Understanding the mechanism of 

action of these receptors and ligands will help achieve therapeutic effectiveness in human 

diseases.

Ig-Superfamily Receptors

CD28 and CTLA-4

Expression and Signaling—CD28 is one of the best characterized co-stimulatory 

molecules on T cells. Functional CD28 is critical for co-stimulation of naïve T lymphocytes 

and T regulatory (Treg) cells [6, 7]. Without CD28 co-stimulation T cell receptor (TCR) 

signaling often induces an anergic state or cell death [8]. CD28 plays a critical role in the 

survival of both effector T cells and Treg cells, as shown by the rapid expanse of T cells in 

culture after CD28 ligation [9]. The function of CD28 in activated T cells is counteracted by 

CTLA-4, which competes for ligand binding at the immune synapse. CD28 and CTLA-4 

compete for binding to ligands CD80 and CD86. Since CTLA-4 displays a higher avidity for 

the ligands it displaces CD28 [10]. CTLA-4 dampens T cell responses, potentially through 

increasing the threshold for TCR signaling, which can protect against the development of 

autoimmune diseases, such as lupus and autoimmune thyroid disease [8]. CTLA-4 reduces 
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IL-2 production and increases apoptosis, whereas CD28 increases IL-2 production and leads 

to increased cell survival [11]. In vitro assays show that CTLA-4 blocks the activation of 

transcription factors preferentially activated by CD28, including cJun and NFκB [12].

Immunotherapy—As humans age CD28 levels decrease on T cells, especially CD8+ 

populations, which may decrease the potential use for treatment in aging cancer populations 

[13]. Previous studies suggest that this decrease may be an adaptation of the immune system 

against chronic stimulation. It was noted that the change was due to a decrease in the 

percentage of CD28+ cells, not in the expression of CD28 per cell [14]. Early attempts at 

manipulating CD28 in disease were unsuccessful partially because of the low avidity of 

CD28 for its ligands and nonspecific polyclonal T cell activation. In contrast, CTLA-4 was 

very effective at binding CD80/86. CTLA-4 blocks the engagement of CD28 with CD80/86 

and is able to inhibit the progression of cell cycle, differentiation, and survival making it an 

ideal treatment candidate for long-term organ graft survival [15–17]. Studies show that 

tumor cells transfected with CD80/86 become more immunogenic and are subsequently 

rejected, increasing interest in using this pathway for tumor immunotherapy [18, 19]. Early 

CD28 super-agonist trials were associated with serious toxicities and abandoned in phase I 

clinical trials [20, 21]. Since then, localized and targeted use of CD28 monoclonal antibodies 

(mAbs) has been tested for improved effects compared to early super-agonists [22].

Chimeric antigen receptor modified T cells (CAR-T) have been created in the hopes of 

harnessing the antibody specificity, homing, tissue penetration, and target destruction of T 

cells to fight B cell lineage malignancies. The chimeric receptor features the extracellular 

antigen binding domain from a tumor specific monoclonal antibody, typically anti-CD19. 

The transmembrane and intracellular domains of the receptor are derived from T cell 

signaling molecules, including CD3 and costimulatory signaling domains. The second 

generation of CAR-T cells used the CD28 co-stimulatory cytoplasmic domain to further 

enhance T cell function [23]. Studies have shown a complete response rate of over 90% 

when treating pediatric or adult acute lymphoblastic leukemia (ALL) with second-

generation CAR-T cells. When treating solid tumors, the efficacy of CAR-T therapy is 

reduced. This may be due to several reasons including immunosuppressive factors present in 

the tumor microenvironment and T cell access to tumors. This immunosuppressive barrier 

has prompted further studies into third-generation CAR-T cells, which combine multiple 

intracellular costimulatory domains to enhance cytotoxicity and durability, and more 

recently T cells redirected for universal cytokine mediated killing (TRUCKs). TRUCK cells 

are developed from second-generation CARs with additional genes for cytokine production 

and release [24].

CD28 and CTLA-4 are critical regulators in autoimmune disease and tolerance to solid 

organ transplants. Animal models using CD28 deficient mice have shown a reduction of 

disease intensity in some autoimmune diseases [25–27]. In fact, CD28- T cells have been 

used in transplants to promote tolerance by tolerizing allogeneic antigen presenting cell 

(APCs). The interaction of CD28- T cells with allogeneic APCs induced the expression of 

inhibitory receptors and down-regulation of costimulatory molecules on the APCs. This in 

turn converted effector T cells into suppressive FOXP3+ T regulatory cells [28]. But, it is 

unclear to date whether CD28- T cells are the cause or consequence of infectious and 
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inflammatory conditions [29, 30]. Studies of mutations in the CTLA-4 locus highlighted the 

importance of CTLA-4 in immune homeostasis. Patients with CTLA-4 mutations were 

observed to have decreased suppressive function in Treg cells and extensive CD4+ T cell 

infiltrate in several organs [31, 32]. Clinical trials using CTLA-4Ig for reversing 

autoimmune disease and inducing allograft tolerance are currently ongoing in addition to the 

proven use of CTLA-4Ig in arthritis and prevention of rejection of renal transplants [33–35]. 

Currently, the long-term benefits of CTLA-4Ig treatment outweigh the potential drawback of 

lymphoproliferative disorder [36, 37]. The use of CTLA-4 on Treg populations in vivo has 

shown contradictory results in solid organ transplant models. Some studies show no change 

to circulating Treg cells, but a significant increase in FoxP3/CD3 ratios in graft biopsies after 

CTLA-4 treatment [38]. Other studies show that CTLA-4 antibodies in vivo do not promote 

the expansion of Treg cells and will not induce tolerance in solid organ transplants [39]. 

Many clinical trials looking at different disease types are still ongoing for both CD28 and 

CTLA-4 (Table 1). Most of the completed trials used CTLA-4 blockade as a monotherapy, 

but ongoing and future clinical trials are increasingly combining this therapy with other 

traditional or molecular therapies. FDA has approved a monoclonal antibody targeting 

CTLA-4 (ipilimumab) to treat melanoma and more recently renal cell carcinoma. 

Unfortunately, treatment has been associated with severe and potentially fatal adverse side 

effects in about 10–20% of patients. Dermatologic toxicity, enterocolitis, hepatotoxicity, and 

neurological toxicity are the most commonly reported immune related adverse events 

following treatment [40, 41].

ICOS and ICOS-L

Expression and Signaling—ICOS was named for being an inducible co-stimulatory 

molecule found mainly on activated CD4+ T cells. Expression has not been found on resting 

T cells but is rapidly induced on CD4+ and CD8+ T cells following TCR engagement [42–

45]. The ligand for ICOS, ICOS-L, is expressed on professional APCs including B cells, 

DCs, and macrophages [46]. ICOS has a similar structure and signaling pathway to CD28, 

promoting T cell proliferation and cytokine secretion. Studies using CD28 knockout mice 

have shown that ICOS is a more potent activator of the PI3K/Akt pathway than CD28 and 

can lead to enhanced activation of downstream MAPKs cascade [43, 47–49]. ICOS-

dependent CD4+ T cell proliferation is independent of IL-2 [43, 45, 50]. ICOS favors Th2 

and Th17 lymphocytes, but is critical for the induction, maintenance, and homing of Tfh 

cells [42, 51–54]. Studies using ICOS deficient mice have shown that ICOS deficiency on T 

cells does not affect primary clonal expansion of memory CD4+ T cells, but these cells have 

defective reactivation in vivo [55]. Similarly, ICOS-deficient patients have decreased 

circulating CD4+ memory T cells [56].

Immunotherapy—ICOS can enhance or dampen Th1 or Th2 responses dependent on the 

pathogenic challenge [57]. Common variable immunodeficiency (CVID), characterized by 

low serum gamma globulins, occurs in humans that have a homozygous ICOS deficiency. 

Patients with ICOS gene mutations had increased susceptibility to infections, mainly due to 

defects in B cell compartments [58, 59]. Studies involving ICOS have mainly pursued its 

role in hypersensitivity and autoimmune diseases because of its expression on Th2 and Tfh 

cells [60]. Lupus patients treated with anti-ICOSL antibodies have diminished antibody 
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production and decreased disease associated symptoms. Neutralization of ICOSL on innate 

lymphoid cells has also been shown to decrease release of cytokines central to airway 

hypersensitivity. Transplantation studies looking at modulating ICOS have had less 

definitive results. Cardiac allograft survival in rats increased after anti-ICOS treatment, but 

in kidney transplant models no effect was observed. In cardiac allograft models the 

combination of an ICOS blockade with a CD28 or a CD40 blockade increased long-term 

allograft survival [57, 61, 62]. Other studies have shown that a blockade of ICOS lessens 

GVHD, especially when used in combination with traditional transplant therapies or CD28 

blockade [63, 64].

Since ICOS is only expressed on activated T cells, there is interest in using it to identify 

immunocompetent T cells within tumors [49]. Studies analyzing the peripheral blood from 

colon cancer patients identified ICOS expression, along with other B7 family members, as 

significantly decreased compared to control expression, suggesting that ICOS expression 

profile may serve as an early indicator of colon cancer [65]. ICOSL is highly expressed on 

human melanomas and may directly drive activation and expansion of Treg cells in the 

tumor microenvironment. Therefore blockade of ICOSL or ICOS may have a therapeutic 

benefit by decreasing intratumoral Treg cells [66]. In preclinical models of melanoma and 

pancreatic cancer, ICOS activation had a synergistic effect with CTLA-4 blockade. The 

combination therapy was able to reject established melanoma and prostate cancers in mice. 

The authors hypothesize that this occurs because CTLA-4 blockade enables activation of 

tumor-reactive T cells with up-regulation of ICOS. Then the engagement of ICOS, through 

the IVAX vaccine, a whole cell vaccine consisting of ICOS-L expressing B16 melanoma, is 

able to further enhance T cell proliferation, survival and migration into the tumor [67]. 

Though few trials using anti-ICOS therapies are ongoing, preclinical tumor data have led to 

four new trials that were recently proposed (Table 1).

LAG-3 (CD223)

Expression and Signaling—LAG-3 was once identified as a marker of Treg cells [68]. It 

was discovered to be upregulated on activated CD4+ and CD8+ T cells as well as NK cells 

[69]. LAG-3 resembles the CD4 co-receptor and binds to MHCII with a higher affinity, but it 

may also have additional ligands. The binding of CD4 and LAG-3 to MHC II is required for 

interaction with the APC [70, 71]. LAG-3 functions as a negative regulator of T cell 

responses, especially expansion, to MHC II restricted antigen presentation [70, 72, 73]. 

Studies using LAG-3 deficient mice have shown that signaling of LAG-3 decreases 

homeostatic expansion of both CD4+ and CD8+ T cells. Dysregulation of T cell 

homeostasis, due to the lack of LAG-3 expression, resulted in the expansion of other cell 

types including B cells, macrophages and dendritic cells [71]. LAG-3 is co-expressed with 

PD1 on exhausted CD8+ T cells. Antibody studies have shown that antagonism of LAG-3 

and PD1 synergistically reactivated exhausted CD8+ T cells, suggesting a non-overlapping 

role of LAG-3 and PD1 in regulating immune responses [74, 75].

Immunotherapy—Since LAG-3 was identified on Treg cells, it was also studied in 

autoimmune disease onset. Though LAG-3 deficiency alone does not result in autoimmunity, 

when combined with a non-obese diabetic (NOD) mouse background it results in 100% 
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diabetes onset at a time when other NOD mice exhibit only 15% disease onset. Studies have 

also shown that blocking LAG-3 can exacerbate type 1 diabetes [76, 77]. Animal models of 

allergen-specific immunotherapies show a positive correlation between LAG-3 expression 

and IL-10 production from Treg cells [78]. Together these studies suggest an 

immunoinhibitory role of LAG-3 on T cell function.

When studied in models of cancer and chronic viral diseases, LAG-3 is highly expressed on 

dysfunctional and exhausted T cells. These T cells have defects in proliferation and effector 

function [79]. Using LCMV clone 13 to model chronic infection, LAG-3 correlated strongly 

with severity of infection. Virus specific CD8+ T cells co-expressed PD1 and LAG-3. The 

blockade of LAG-3 alone had little effect on T cell activity, but when combined with PDL1 

blockade T cell response was dramatically improved [74]. In the setting of chronic malaria 

infection, combined blockade improved parasite clearance mediated by CD4+ T cells. The 

combined blockade of PD-1 and LAG-3 was able to clear blood stage malaria as well as 

prevent chronic infection. This is believed to be due to the combination therapy increasing 

Tfh and plasma cells, which clear the infection [80]. Patients with melanoma and colorectal 

cancer often have high expression levels of LAG-3 on Treg cells expanded in PBMC, lymph 

nodes, and tumor tissue. These LAG-3 expressing Treg cells produce high levels of IL-10 

and TGF-β [81]. Tumor specific T cells that were LAG-3+PD1+ had impaired IFNɣ and 

TNFα production compared to single positive cells. LAG-3 and PD1 are often co-expressed 

on tumor infiltrating lymphocytes (TILs), and the blockade has significantly improved anti-

tumor T cell responses. Combination LAG-3 and PD1 blockade during T cell priming 

augmented the proliferation and cytokine production of tumor specific CD8+ T cells [75, 

82]. In addition, increased LAG-3 expression on tumor infiltrating T cells is associated with 

poor prognosis of colorectal cancer as well as ovarian cancer [83]. Blockade of LAG-3 

synergizes with anti-tumor vaccination to improve CD8+ T cell activation. This was shown 

to be a due to a direct role of LAG-3 on CD8+ T cells and independent of its role on CD4+ T 

cells [84]. Together, these promising preclinical data with viral and tumor models have led to 

increased interest in new clinical trials using LAG-3 blockade as a monotherapy and in 

combination with other existing immunotherapies (Table 1). However, future studies on 

LAG-3 still need to look into its function in modulating effector T cells, Treg cells, and NK 

cells in different diseases and disease stages.

PD1 and PDL1/PDL2

Expression and Signaling—After the immunosuppressive function of PD1 and its 

ligands was discovered, immense interest and investment have been placed into studies of 

the receptor/ligand pair. PD1 is expressed on T lymphocytes during thymic development. 

The expression of PD1 on early thymocytes weakens the interaction of autoreactive T cells 

with DCs presenting self-antigen [85, 86]. PD1 is also expressed on activated T cells, B 

cells, NKT cells, monocytes and some DC subsets. The expression of PD1 is upregulated 

upon antigenic stimulation of T cells, both CD4+ and CD8+, and B cells [87]. One ligand, 

PDL1, is expressed on resting T cells, B cells, DCs, macrophages, parenchymal cells, 

endothelial cells, and pancreatic islets. PDL1 can be expressed on hematologic and non-

hematologic tissues. Antigen presenting cells often co-express CD80/86 with PDL1 [88]. 

The second ligand, PDL2, is more selectively expressed on activated DCs, macrophages, and 
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B cell subsets [85, 87]. PDL2 has a 3-fold higher affinity than PDL1 for binding with PD1 

[86]. Interaction of PD1 and its ligands leads to inhibition of T cell receptor mediated 

proliferation and cytokine secretion, thereby acting as a major mechanism of peripheral 

tolerance. The interaction can also decrease the cytolytic function of T cells and NKT cells 

[85, 87, 88]. PD1 is a member of the CD28 family of T cell regulators. The trans-membrane 

domain of PD1 resembles the Ig region of the CD28 family. Phosphorylation of PD1’s 

immunoreceptor tyrosine-based switch motif (ITSM) results in the direct dephosphorylation 

of signaling molecules directly downstream of the TCR. Ligation of PD1 augments PTEN 

inhibition of PI3K activity to decrease T cell proliferation, survival, protein synthesis, and 

IL-2 release [86].

Immunotherapy—PD1 expression and signaling have been shown to be important in 

many aspects of immune dysregulation such as autoimmunity, infectious disease, and cancer. 

PD1 helps regulate the balance between stimulatory and inhibitory signals needed for the 

maintenance of T cell homeostasis and immune responses. The complete knockdown of PD1 

in animal models results in a breakdown in peripheral tolerance in hosts [88]. The high 

expression of PD1 and PDL1 on Treg cells enhances the expansion of these cells, which 

control the development, maintenance, and function of peripheral responses [87]. In viral 

models, PD1 is rapidly upregulated following viral infection, but downregulated as the virus 

is cleared. In cases of chronic infection, CD8+ T cells express PD1 constitutively, leading to 

the “exhausted” T cell phenotype [85]. Studies of HIV were among the first to show that a 

PD1/PDL1 blockade could regain effective immunity [89]. In HIV studies, it was discovered 

that PDL1 could be upregulated on neutrophils, and expression was induced by IFNα, 

TLR7/8, and LPS. The upregulation of PDL1 on neutrophils in HIV is correlated to T cell 

exhaustion and expression of PD1 on T cells [90]. Animal studies using mouse hepatitis 

virus (MHV) in PD1 deficient mice showed significant tissue damage, especially of the liver. 

Blockade of IFNɣ and TNFα in the infected mice led to reduced mortality, suggesting that a 

major role of PD1 in viral infection is controlling the release of pro-inflammatory cytokines 

[91]. A similar role for PD1 control of cytokine secretion was observed in models of 

autoimmune disease. In diabetes models, ligation of PD1 leads to the reduction of cytokine 

production through the truncation of TCR signaling. The blockade of PD1 or PDL1 led to 

increased onset of diabetes [92]. The role of PD1 in other autoimmune diseases is not as 

well defined. PD1 deficient mice often display lupus-like disease, but the blockade of PD1 

in established lupus delays disease progression. In animal models of lupus, the expression of 

PDL1 on Treg cells suppresses autoreactive B cells that express PD1 [87, 93].

Many of the major breakthroughs using PD1 therapy have been in studies of cancer. Tumors 

often use this pathway to silence the immune system. Tumor cells can evade T cell killing by 

upregulating PDL1 and PDL2 following T cell infiltration and release of IFNɣ [85, 86]. 

Functional PDL1 expression on tumors can also suppress IL-2 production by T cells to 

further inhibit T cell proliferation and survival within the tumor microenvironment [94, 95]. 

In most tumors the expression of PDL1 is a poor prognosis for overall survival and tumor 

control, and early studies using an antibody blockade of PDL1 have had promising outcomes 

with higher response rates and durable responses [96, 97]. Blockade of this pathway in late 

stage cancers can significantly reduce tumor burden and promote a durable tumor regression 
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as seen in studies of advanced melanoma and renal cell cancer [98, 99]. The blockade of this 

pathway has recently been used in many studies looking at the combination with co-

stimulatory agonists on T cells. Though PD1 can limit proliferation of T cells, it is 

dependent on strength of signal delivered via the TCR and CD28. A strong enough TCR

+CD28 signal can overcome PD1 mediated inhibition [88]. The use of PD1 and PDL-1/-2 

therapy in clinical trials has been growing rapidly over the years. These treatments have been 

used in multiple cancer types, autoimmune diseases, viral infections, and much more. The 

excitement over this pathway can be seen in the dramatic increase in clinical trials that are 

currently recruiting or recently proposed (Table 1). Recently two anti-PD1 (pembrolizumab 

and nivolumab) and one anti-PDL1 (atezolizumab) antibodies have been approved by the 

FDA for use in various solid and hematological cancers, which include melanoma, non-

small cell lung cancer (NSCLC), urothelial carcinoma and Hodgkin’s lymphoma [100]. 

Unfortunately, PD1 and PDL1 are also expressed on cardiomyocytes which have recently 

led to substantial adverse effects. Some patients treated with PD1 or PDL1 inhibitors have 

developed severe and sometimes lethal myocarditis and heart failure [101, 102].

TIM family Receptors

TIM3 (HAVCR2)

Expression and Signaling—TIM3 was initially discovered as a cell surface molecule 

that was selectively expressed on IFNɣ producing Th1 and CD8+ T cells. More recently 

TIM3 has been identified on DCs, NK cells, and monocytes [103]. TIM3 is upregulated on 

mature and functional NK cells, serving as a marker of IFNɣ producing NK cells [104, 105]. 

There are currently several ligands known to interact with TIM3 such as Gal9, HMGB1, and 

CEACAM1 [106–108]. When co-expressed with PD1 on CD8+ T cells, TIM3 identifies 

highly dysfunctional cells that are unable to respond to antigen stimulation [109]. These T 

cells are typically referred to as exhausted T cells. A role for TIM3 in regulating the function 

of Treg cells has recently been proposed. Studies have shown that TIM3+ Treg cells have 

superior suppressive function compared to TIM3- Treg cells [110]. TIM3+ Treg cells have 

been identified at tumor sites as well as within allografts [111–115]. TIM3 has also recently 

been shown to indirectly suppress immune function through MDSCs. Overexpression of 

TIM3 on T cells promoted the expansion of MDSCs [116]. Therefore, when considering a 

TIM3 blockade on human tumors, it is important to remember that a blockade would affect 

multiple target cell types. This includes CD4+, CD8+, Treg cells, NK cells, DCs, and 

MDSCs [117].

Immunotherapy—In autoimmunity and chronic viral infections, TIM3 is a prognostic 

indicator of disease course and a negative regulator of type 1 immunity. Mouse models have 

shown that TIM3 blockade can lead to spontaneous autoimmunity. This is due at least 

partially to dampening the immunosuppressive function of Treg cells. Mice treated with 

anti-TIM3 antibody showed hyperproliferation of Th1 cells and increased Th1 cytokine 

release. These studies suggest that TIM3 might act as an inhibitory molecule that serves to 

reduce cytokine driven inflammation [118, 119]. Treatment with anti-TIM3 antibody in mice 

also led to development of hyper-acute EAE, which was accompanied by uncontrolled 

macrophage activation [103]. TIM3 in both humans and mice has a role in regulating 
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monocyte and macrophage function. Downregulation of TIM3 increases macrophage 

production of IL-1B, IL-6, IL-10, IL-12, and TNFα, which suggest a role of TIM3 as a 

regulator of pro- and anti-inflammatory immune responses [112, 120]. TIM3 can also inhibit 

DC activation by limiting expression of pro-inflammatory cytokines, which leads to reduced 

inflammation. Studies of mouse and human tumors show that TIM3 is highly expressed on 

tumor associated DCs. When tumors were treated with a DNA vaccine, TIM3 diminished 

the efficacy of the vaccine by interfering with the recruitment of nucleic acids into the DC 

endosomes. This decreased the immunogenicity of tumor cells [121]. Altogether, TIM3 

appears to be protective in autoimmune disorders although its expression is poorly defined; 

in contrast in cancer models TIM3 is highly expressed but contributes to the dampening of 

protective immunity.

TIM3 marks dysfunctional T cells in cancer [122]. The frequency of TIM3+ T cells 

correlates with cancer severity and poor prognosis in several cancer types, including 

NSCLC, and follicular lymphoma (FL) [111, 112]. In models of melanoma, NSCLC, and 

FL, TIM3 blockade improves T cell function [122, 123]. The effect of TIM3 blockade was 

further enhanced when used in combination with a 4-1BB agonist [124]. The increased 

efficacy of the combination treatment may be due to the interaction of TIM3 and Gal9 on 

tumor cells [125, 126]. The cells that are TIM3+ and PD1+ are often the most dysfunctional 

in tumor studies [122]. Studies of chronic viral infections have offered insights to how TIM3 

blockade may enhance tumor clearance. Using a model of chronic LCMV, TIM3 marks 

virus specific CD8+ T cells that have the worst defects in pro-inflammatory cytokine 

production. These virus specific T cells co-express PD1 and TIM3. It was observed that a 

co-blockade of PD1 and TIM3 was most effective in chronic LCMV models [109]. Blockade 

of TIM3 in HIV was shown to restore proliferative potential to T cells in response to HIV 

peptides [127]. The restoration of T cell function after using TIM3 blockade has been 

repeated in several other models of chronic viral infections [128–131]. In HIV TIM3 can be 

found on T cells that lack PD1, suggesting that TIM3 and PD1 have non-redundant and 

synergistic functions in inhibiting T cell responses [127]. This finding has driven studies into 

using combination TIM3 and PD1 therapy to treat advanced cancers. Though only a few 

clinical trials have been completed using TIM3 blockade many more have been proposed 

and are now recruiting patients (Table 1).

TNF-Superfamily Receptors

4-1BB and 4-1BBL

Expression and Signaling—4-1BB (CD137) was first discovered on activated T 

lymphocytes [132]. 4-1BB has been found on all subsets of T cells including Treg cells. It 

has more recently been discovered on NK cells, B cell, neutrophils, and cells within the 

myeloid lineage [133, 134]. Ligation with 4-1BBL was found to induce T cell activation, 

survival and effector functions [133]. 4-1BB and 4-1BBL ligation especially favored 

proliferation through IL-2 production [135, 136]. 4-1BB is expressed rapidly after T cell 

activation and expression remains detectable on activated T cells [137]. Like many of 

members of the tumor necrosis factor receptor superfamily (TNFRSF), 4-1BB uses TRAF 
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adapter proteins, namely TRAF2 and TRAF5, that result in increased NFκB and MAP-

kinase signaling [138–140]

Immunotherapy—The use of a 4-1BB agonist has shown a role in maintaining immune 

cell homeostasis. Studies using knockout mice to look at precursor cell turnover in primary 

and secondary lymphoid organs have shown that 4-1BB also plays a role in myelopoiesis 

[133]. Agonizing antibodies to 4-1BB in mouse studies have been shown to increase graft 

versus host disease (GVHD), accelerate rejection of cardiac allografts, and eradicate 

established tumors. In tumor models, studies suggest that this is due to 4-1BB preferentially 

stimulating CD8+ T cells, but largely not affecting CD4+ T cells [141, 142]. Agonists to 

4-1BB have recently entered phase 1 trials. Phase 1 studies looking at serum samples from 

patients with solid tumors and B cell non-Hodgkin’s lymphoma showed that with agonist 

4-1BB treatment tumor infiltrating CD8+ T cells and NK cells significantly increased while 

effector CD4+ and CD4+FoxP3+ Treg cells decreased. An increase in pro-inflammatory 

cytokines was also noted after agonist treatment. The specific agonistic activity increased T 

cell and NK proliferation and activity to eradicate remaining tumor cells [22, 143]. Targeted 

therapies, such as cetuximab (EGFR- targeting mAb), can lead to upregulation of 4-1BB on 

NK cells. NK mediated cytotoxicity of tumor cells following cetuximab therapy was further 

enhanced when combined with a 4-1BB agonist. This combination therapy is dependent on 

NK and CD8+ T cells, as depletion of either cell type abrogated therapy efficacy [144]. The 

role of NK cells in 4-1BB function remains controversial: some murine tumor models show 

the requirement of NK cells for the functionality of the 4-1BB agonists, while studies using 

different tumor models show no reliance on NK cells [142, 145]. Combination studies 

involving radiotherapy and chemotherapy have reported synergism with 4-1BB agonists. 

When looking at poorly immunogenic tumors, including murine lung carcinomas, spinal 

tumors, and melanomas, they often became refractory to 4-1BB treatment alone. Yet tumor 

regression could be achieved even in established tumors.by ‘educating’ cytotoxic T 

lymphocytes (CTLs) with a tumor antigen vaccine in combination with 4-1BB agonism. 

Tumor regression of established tumors was also observed when 4-1BB therapy was 

combined with an IL-12 secreting vaccine. In studies combining chemotherapy and 4-1BB 

agonism, mice also rejected a re-challenge with the original tumor, suggesting a long-lasting 

tumor-specific memory [146–150]. However, treatment with the agonists does result in 

adverse effects including mild liver inflammation, which is dependent on the presence of 

4-1BB, IFNɣ, and TNFα [151].

The cytoplasmic tail of 4-1BB has also recently been used in CAR-T cell therapy 

development. This addition of the 4-1BB tail is critical to support the persistence and 

expansion of the modified CAR-T lymphocytes. The addition of the cytoplasmic domain of 

4-1BB also reprogrammed the CAR-T cells for increased cytokine secretion of 

predominantly Th1 cytokines, with low or undetectable levels of anti-inflammatory 

cytokines [152]. Second generation CAR-T therapy generally combined CD28 or 4-1BB 

cytoplasmic domains with a CD3 intracellular domain in order in increase intratumoral 

persistence and function, but third generation CARs are now combining more T cell co-

stimulatory domains to further enhance persistence. Recent studies including ICOS domain 

along with a 4-1BB domain saw increased anti-tumor effects and increased persistence in 
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vivo compared to second generation CARs. This study also determined that the placement of 

each domain in the CAR-T cells determines the in vivo functions, only when ICOS was 

proximal to the cell surface was the third generation CAR most effective [153].

Few clinical trials have been completed using 4-1BB and 4-1BBL therapies, but many more 

have recently begun recruiting patients. The ongoing or recently completed trials have used 

4-1BB as an important component in CAR-T therapy in both hematological tumors and solid 

tumors (Table 2). Despite initial successes with 4-1BB expressing CAR-T cells in 

hematological tumor, these cells still face a barrier overcoming the immunosuppressive 

microenvironment in solid tumors [154].

OX40 and OX40L

Expression and Signaling—OX40 was first discovered on activated CD4+ T cells [155, 

156]. Transiently expressed, OX40 appears 12 hours after activation and decreases by 4 days 

[157]. OX40 expression is important to the survival, expansion and memory formation of T 

cells [157, 158]. It is also important for the reactivation of CD4+ and CD8+ memory 

populations [159]. More recently expression of OX40 has been seen on NK cells, NKT cells 

and neutrophils [160–162]. OX40L has been identified on activated APCs, hematopoietic, 

non-hematopoietic cells, and activated endothelium cells [163–167]. The ligand is the 

limiting factor in OX40 signaling [168]. Ligation of OX40 recruits TRAF2 and TRAF3, 

which activate both the canonical and non-canonical NFκB pathways. This leads to 

enhanced T cell expansion, differentiation, and generation of long lived memory cells [169, 

170].

Immunotherapy—Stimulation of OX40 can cause pro-inflammatory or pro-survival 

effects dependent on disease type and expression pattern. In animal models of sepsis, anti-

OX40L treatment was able to decrease disease severity and improve survival. In this context 

OX40L activation was macrophage dependent and T cell independent. Patients with sepsis 

have elevated OX40L on neutrophils and monocytes that correlates to disease severity [171]. 

Several disease models have been used to determine the role of OX40 in disease progression 

including asthma, allergies, colitis, GVHD and diabetes. In each of these models, blockade 

of OX40 has played an important role in reducing disease severity [172–175].

In cancer immunotherapy, agonism of OX40 is thought to play an important role in the 

reduction of Treg-mediated immunosuppression. In animal models of colon cancer, it was 

observed that intratumoral injection of an OX40 agonist was able to induce tumor rejection 

in a CD8+ T cell-dependent manner. The authors show that both Treg cells and effector T 

cells must be triggered by OX40 for tumor rejection [176]. It has also been shown that OX40 

agonist treatment can reactivate memory T cell population, therefore playing an important 

role in tumor antigen recall and anti-tumor activity. Studies show that in both new and 

established tumors, OX40 was critical for early priming of CD8+ T cells by APCs and recall 

response of previously primed CD8+ T cells. OX40 plays a role in the survival and 

accumulation of these primed CD8+ T cells at the tumor site [177–179]. The agonism of 

OX40 promotes the proliferation and survival of activated T cells and generates a CD8+ T 

cell response with increased secretion of IFNɣ and granzyme B [180, 181]. Preclinical 
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models using OX40 agonist have shown effectiveness in sarcomas, CT26 colon carcinomas, 

breast cancer, and melanoma. Many of these models study the use of OX40 agonists in 

combination with other tumor treatments. When combined with chemotherapy agents, OX40 

agonism was able to provide potent antitumor immunity and decrease the size of established 

animal tumor models. This combination therapy resulted in a significant decrease in tumor-

infiltrated Treg cells, but interestingly an increase in peripheral Treg cells. When used in 

combination with radiation, OX40 agonists worked by increasing proliferation of tumor 

antigen specific CD8+ T cells. The combination with radiation significantly increased 

disease-free survival [182, 183]. Preclinical ovarian cancer models using checkpoint 

inhibitor combinations have proven successful by engaging multiple immune subsets to 

combat the tumor challenge. A murine model combining TIM3 blockade and OX40 agonism 

showed that the combination treatment was able to inhibit ovarian cancer growth 

significantly better than either mono-treatment. A similar study looking at the combination 

with anti-PD1 saw tumor growth inhibited in the majority of host mice. This is due to the 

increase in CD4+ and CD8+ effector T cells combined with a decrease in Treg and myeloid 

derived suppressor cell (MDSC) populations [124, 184]. From these preclinical models, two 

humanized anti-OX40 mAbs are currently on the verge of clinical development. Ongoing 

clinical trials using OX40 monoclonal or combination trials have mainly focused on use in 

advanced stages of cancers (Table 2).

GITR and GITR-L

Expression and Signaling—GITR was first discovered as a TNF family receptor 

induced by glucocorticoids [185]. GITR is unique in that it is constitutively expressed on T 

regulatory cells, but only expressed on effector CD4+ and CD8+ T cells after TCR 

engagement [186–190]. Expression of GITR has also been reported on dendritic cells, 

monocytes, and NK cells [188, 191]. The ligand for GITR, GITRL, is highly expressed on 

activated DCs, B cells, macrophages, and endothelial cells at the site of inflammation [192, 

193]. The ligation of GITR recruits TRAF2 and TRAF5 to its cytoplasmic tail, activating 

MAP-kinase and NFκB signaling pathways [194]. GITR is important in CD28-driven 

activation of CD8+ T cells by lowering the threshold of activation. GITR is crucial for 

CD28-mediated NFκB activation; activated GITR-/- T cells had impaired nuclear 

translocation of NFκB compared to GITR+/+ T cells when stimulated with anti-CD3 and 

anti-CD28 [195].

Immunotherapy—GITR has a critical role in supporting effector T cell activity by 

inducing T cell proliferation, effector function, and survival. Agonizing GITR on T cells 

increased effector function by increasing cytotoxic killing of a mouse mastocytoma cell line 

[195, 196]. In animal models of melanoma, agonism of GITR at early timepoints in tumor 

growth was able to decrease tumor burden. This is believed to be due to the decreased 

suppressive function of Treg cells after ligation of GITR [197]. The mechanism of increased 

effector T cells in the tumor microenvironment is due to direct targeting of GITR on Treg 

cells. This may work through directly depleting intratumoral Treg cells or via targeting 

GITRL on suppressive myeloid cells. Agonizing GITR was shown to decrease the stability 

of intratumoral Treg cells and result in the loss of FoxP3 expression as well as decreased 

infiltration into the tumor [198, 199]. Agonists to GITR have shown synergism when 

O’Neill and Cao Page 12

Adv Cancer Res. Author manuscript; available in PMC 2020 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combined with vaccines, TLR agonists, and other immunostimulatory mAbs. Combined 

GITR agonism with a DNA vaccination was able to offer increased protection from a lethal 

challenge with melanoma. This combination treatment led to prolonged persistence of the 

antigen-specific CD8+ T cells and enhanced recall response to a booster vaccine. These 

findings are supported by additional tumor models, including myeloma [200, 201]. When 

downregulation of Treg activity is critical for success, this pathway has recently been shown 

to be effective when combined with other therapies, such as PD-1 and CTLA-4 blockade. 

The combined treatments have shown a durable effect associated with CD4+ and CD8+ 

memory response. PD-1 combined with GITR therapy resulted in increased frequency of 

IFNɣ producing cells and decreased MDSCs. The tumor microenvironment shifted from 

immunosuppressive to immunostimulatory [202, 203]. Launched from these preclinical data, 

a few clinical trials studying the role of GITR have been completed. A number of new trials 

have been proposed to use GITR therapy on solid and hematological cancers (Table 2).

CD27 and CD70

Expression and Signaling—CD27 is unique as a T cell co-stimulatory molecule in that 

it is constitutively expressed at significant levels on the majority of T cells, including naïve 

T cells and Treg cells. CD27 expression is lost on T cells following differentiation and 

activation but is retained on memory cells [204–206]. CD27 is also expressed on early 

hematopoietic cells, memory B cells, plasma cells and a subset of NK cells [206–208]. 

CD27 has recently been shown to drive the cytolytic activity of some subsets of NK cells 

[209]. Expression of CD27 on naïve T cells helps T cells with low affinity TCRs enter the 

cell cycle [210]. This pathway is important for sustained effector functions, T cell survival, 

and development of memory T cells [211, 212]. CD70, the ligand for CD27, regulates the 

interaction with CD27 because it is only transiently expressed on activated APCs, T cells, 

NK cells [208, 213, 214]. During chronic inflammation it has been observed that CD70 can 

become constitutively expressed causing dysregulation of this pathway [215]. The chronic 

signaling of CD27 has been shown to lead to T cell exhaustion [216]. The ligation of CD27 

recruits TRAF2 and TRAF5, which activate the NFκB and c-Jun pathways to promote cell 

survival, enhance expansion, and increase effector functions [217, 218]. As a co-stimulatory 

molecule, CD27 counteracts apoptosis by increasing anti-apoptotic Bcl-xl and decreasing 

FasL on CD4+ and CD8+ T cells [219, 220]. Signaling through CD27 also rapidly induces 

the expression of Pim-1, which is known to increase aerobic glycolysis and protein 

translation [221]. SIVA1 can also be recruited to the cytoplasmic tail of CD27. This protein 

is known to promote caspase dependent apoptosis [222]. Together these findings suggest that 

under certain circumstances CD27 can act as either a co-stimulatory or a co-inhibitory 

receptor.

Immunotherapy—Therapies involving the CD27-CD70 pathway must appreciate the 

pathways inhibitory and stimulatory effects under different immune contexts. During acute 

challenges CD27 has thus far been regarded as important for the formation and function of 

effector and memory T cells. Studies analyzing influenza and acute viral challenges are 

examples of the co-stimulatory role CD27-CD70 have on primary T cell responses. CD27+ 

and CD70+ cells often secrete higher levels of IFNɣ and are therefore more effective at 

inhibiting viral replication [220]. This is in contrast to studies looking at CD27 in the 
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context of strong and persistent immune challenges, such as chronic infections or GVHD, 

where CD27-CD70 have been shown to play an inhibitory role on T cell responses [216, 

223–225]. The role of CD27 in diseases is also dependent on tissue context and duration of 

expression [22]. Use of antagonists or agonists will require precise triggering in specific 

tissues and cell types.

The CD27-CD70 pathway has been studied in several different autoimmune diseases. In 

models of lupus high levels of soluble CD27 and CD27+ plasma cells correlate to an 

increased disease index. Patients also have increased CD70+CD4+ T cells with a memory-

like phenotype. In rheumatoid arthritis patients, CD70 is found in higher levels on naïve and 

memory CD4+ T cells compared with healthy patients. These T cells also secrete higher 

levels of IFNɣ and IL-17. In mouse models, treatment with an anti-CD70 antibody was able 

to ameliorate autoimmune disease. Animal studies using an anti-CD70 treatment in multiple 

sclerosis decreased TNFα production and prevented disease. But in similar models of 

multiple sclerosis CD27 or CD70 deficiency was seen to exacerbate disease. Increased 

sCD27 in cerebrospinal fluid has been validated as a biomarker of intrathecal T cell 

activation in neuro-immunological diseases [226].

Solid and hematological tumors have been reported to have overexpression of CD70 at high 

levels [227, 228]. CD70 has been identified as a biomarker for renal cell cancers as well as 

several hematological malignances [229]. Using an anti-CD70 antibody against the 

malignant T and B cells has been shown to regulate their expansion. Neutralization of CD70 

has also been shown to inhibit the signaling of CD27, therefore blocking the activation of 

and proliferation of Treg cells [228, 230]. In some models of lymphoma expression of CD70 

on tumor cells and APCs improves anti-tumor immunity. Unfortunately, in other tumor 

models intact CD27/CD70 signaling has been associated with decreased anti-tumor immune 

responses and increased intratumoral Treg cells through the reduction of Treg apoptosis and 

increased production of IL-2 necessary for Treg survival [231]. Recently, the use of a CD27 

agonist has shown protection against intravenous injection of two lymphoma cell lines. The 

agonism of CD27 induced proliferation and cytokine production from T cells [232]. Since 

this discovery, ongoing clinical trials for use of a CD27 agonist in combination with PD1 

antibodies have been approved for non-Hodgkin lymphoma and some solid tumors [233]. 

Prostate cancer bearing mice treated with a combination of a DC vaccine and CD27 agonist 

showed decreased tumor growth and increased T cell proliferation and effector function 

when compared to controls. A CD27 agonist is also being used to treat B-cell lymphomas 

and melanomas [232, 234]. Combined results from these studies suggest that the agonism of 

CD27 can lead to improved anti-tumor immunity and favors long term persistence of TILs 

[232, 235–237].

Recently preclinical models using CD70 CAR-T cell therapies to treat cancers expressing 

CD70 have been tested, and this therapeutic strategy has been approved for phase I/II 

clinical trials. In normal tissue, CD70 is expressed only on activated lymphocytes, therefore 

targeting this pathway with CD70 expressing tumors may spare toxicity to other normal 

tissues. Creating CARs with the extracellular binding portion of CD27 along with 

intracellular co-stimulatory domains of CD28 and 4-1BB in animal models was able to cure 

tumor bearing mice with limited toxicities [229]. The use of CD70 targeting CAR-T cells 
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has also recently been tested in preclinical models of gliomas. These preclinical studies 

show that CD70 expression is associated with poor prognosis in patients with recurrent 

tumors. This led authors to identify CD70 as an immunosuppressive mediator in part 

because of its production of pro-tumor chemokines and inducing CD8+ T cell death [238].

Several clinical trials using anti-CD27 as a monotherapy in hematological tumors and 

autoimmune disease treatment have recently been completed. After early successes, new 

trials using CD27 and CD70 therapies are actively recruiting or recently proposed (Table 2).

CD40 and CD40L

Expression and Signaling—CD40 was initially characterized on B cells. Expression of 

CD40 has since been discovered on DCs, monocytes, platelets, macrophages and some non-

hematopoietic cells such as myofibroblasts, epithelial and endothelial cells [239, 240]. 

Depending on cell type and context CD40 can be constitutively or inducibly expressed. 

CD40L (CD154) is primarily expressed on activated CD4+ T cells. CD40L expression has 

also been seen on B cells and platelets. In inflammatory settings CD40L can be expressed on 

monocytic cells, NK cells, mast cells, and basophils [241, 242]. The CD40 receptor has no 

enzymatic activity and therefore must directly bind TRAF family proteins for signal 

transduction [243]. TRAF2, TRAF3, TRAF5 and TRAF6 have been shown to directly 

interact with CD40 receptor. This interaction results in the activation of MAPK signaling, 

cytokine secretion, proliferation and differentiation [240]. Ligation of CD40 on dendritic 

cells promotes the induction of other co-stimulatory molecules and facilitates cross-

presentation of antigens to the T cells [244]. Signaling of CD40 on DCs results in the 

heightened expression and increased stability of the MHC-antigen complex [245] and 

production of pro-inflammatory cytokines. On B cells, CD40 signaling promotes isotype 

switching, formation of germinal centers, and formation of long lived plasma cells [246]. 

The CD40-CD40L pathway plays a critical role in the survival of germinal center B cell, 

DCs, and endothelial cells in both normal and inflammatory conditions.

Immunotherapy—CD40 plays a major role in the initiation of T cell dependent 

autoimmune disease. CD40 functions during T cell selection in the thymus by promoting 

medullary thymic epithelial cells (mTECs), which leads to the development of self-tolerance 

[247]. A disruption of CD40 in the thymus can lead to failure of central tolerance. Signaling 

of the CD40-CD40L pathway results in the production of proinflammatory cytokines 

including IL-6. This signaling pathway can also skew differentiation towards Th17 cells 

[248]. The aberrant expression of CD40 in tissues where it is normally undetectable is a 

major contributing factor in autoimmune disease initiation [249]. In Grave’s disease, an 

autoimmune disease of the thyroid, CD40 is abnormally expressed on thyroid epithelial 

cells. This leads to the presentation of autoantigens to T cells [250]. Blocking with anti-

CD40L antibodies was able to prevent experimental thyroiditis in mouse models [251]. 

Antagonistic anti-CD40L antibodies have also been tested in the models of inflammatory 

bowel disease (IBD). Given at the time of colitis induction, blocking CD40L prevented 

disease onset, blocked lymphocytic infiltration of the gut, and decreased IFNɣ production by 

gut T cells [252, 253]. Production of IFNɣ in the gut can cause upregulation of CD40 on 

normal colonic fibroblasts. CD40+ cells including DCs, B cells and macrophages are found 
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within the intestinal mucosa of colitis patients [254, 255]. CD40 signaling in these cell types 

leads to the production of IL-6, IL-12, and IL-23, which contribute to disease initiation 

[248]. The CD40-CD40L pathway has been shown to be critical for IBD induction but not 

required for ongoing inflammatory responses [252]. Patients with active Lupus disease have 

overexpression of CD40L on CD4+ and CD8+ T cells [256]. Disease activity can be 

correlated to serum levels of CD40L [257]. Mouse models of lupus have shown that 

blocking CD40L prior to disease onset can prolong survival and ameliorate kidney disease 

[258, 259]; If treatment of these mice was stopped disease symptoms returned. Autoimmune 

models have shown that blocking CD40L prevents the relapse of ongoing disease or halts 

pathogenic progression in rheumatoid arthriris, lupus, multiple sclerosis, IBD and diabetes 

[260]. However, the blocking antibody has been ineffective in treatment of some established 

diseases. Ruplizumab was the first CD40L blockade used in clinical trials [261]. Patients 

with Lupus and Crohn’s disease showed partial therapeutic responses, but trials had to be 

halted due to development of thromboembolism [260]. Studies of allograft rejection sought 

to exploit the CD40 pathways because it was believed that the blockade of CD40L would 

limit APC maturation and decrease CD28 signaling resulting in T cell anergy [262]. 

Unfortunately, anti-CD40L blocking antibodies failed as a monotherapy in inducing 

allograft tolerance [263, 264]. This was due to the inability of the therapy to block rejection 

mediated by CD8+ T cells. Nonetheless, the combination of CD40L blockade and 

immunosuppressive drugs, such as rapamycin, promotes long term graft acceptance [265].

CD40-CD40L is critical for the development of protective anti-tumor immunity. Since CD40 

is expressed on a wide variety of normal tissue it has also been discovered on many tumor 

types. CD40 was first discovered on bladder carcinoma [266, 267]. More recently it has been 

discovered on melanoma, prostate cancer, lung cancer, cervical, lymphoma, leukemia, and 

myeloma [268–271]. Human CD40+ breast tumors have been shown to co-express CD40L 

that may increase proliferation, motility and invasion of tumor cells [266]. CD40 ligation in 

B cell malignancies has been shown to cause an increase in expression of anti-apoptotic 

factors such as Bcl-XL [272]. This protects the malignant cells from apoptosis. In vitro 
studies of non-Hodgkin’s lymphoma show that low level constitutive signaling of CD40 

leads to increased malignant cell proliferation [273]. Whereas in vitro and in vivo studies of 

Burkitt’s lymphoma show that treatment with sCD40L resulted in reduced proliferation of 

tumor cells [270]. Soluble CD40L alone or in combination with chemotherapy in models of 

breast and ovarian cancer can significantly inhibit the growth of the tumors and increase 

overall survival [274]. When used in combination with tumor vaccines, anti-CD40L 

blocking treatment inhibited the generation of protective immune responses and decreased 

potency of the vaccine [275]. This led to an increased interest in studying agonistic CD40 

antibodies, which act as powerful adjuvants for inducing tumor immunity. Agonizing CD40 

enhances anti-tumor immune responses by promoting DC maturation, survival, and 

proinflammatory cytokine secretion [276, 277]. CD40 stimulation also induces the 

upregulation of other co-stimulatory molecules that promote antigen presentation, priming, 

and cross-priming of T cells. In mouse tumor models CD40 agonism lead to increased 

survival of mice to primary tumor challenges, but decreased secondary responses [276]. 

However, the antibody therapy did induce liver toxicity after prolonged treatment. In 

addition, combination therapies with other co-stimulatory and co-inhibitory molecules and 
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cytokines have been performed in mouse disease models with promising results that 

encourage clinical trials in patients [278–281].

Phase I clinical trials in patients with non-Hodgkin’s lymphoma treated with recombinant 

CD40L showed partial to complete responses three months after treatment [282]. Also, 

promising results from early clinical trials in chromic lymphatic leukemia and multiple 

myeloma encouraged development of CD40 mAbs to be used in combination therapy.

Concluding remarks

In the past 30 years, studies of co-stimulatory and co-inhibitory pathways have led to several 

breakthroughs in understanding of human diseases and development of immunotherapies. 

These co-stimulatory and co-inhibitory molecules equip immune cells a mechanism to sense 

environmental conditions and respond appropriately. These molecules create complex 

interactions due the vast number of receptor/ligand pairs and downstream signaling 

pathways. As more co-signaling molecules are discovered, many with unique and non-

overlapping functions, the simplistic “signal two” model will likely be replaced by a 

complex tidal model of co-signaling. Therefore, designing combination therapies that target 

multiple co-signaling pathways as well as the tumor microenvironment may offer the 

greatest chance of successful treatment of cancer.
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Figure 1: 
Costimulatory and coinhibitory molecules discussed in this review.
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Table 1:

Ig Superfamily completed, ongoing, and upcoming clinical trials.

Co-
stimulatory 

Molecule
Number Status Main Condition Treated Treatment

Early 
Phase 

1

Phase 
1

Phase 
2

Phase 
3

Phase 
4

N/
A:

CD28

14
Active, 

not-
recruiting

Hematological 
tumors Hepatitis CAR-T 

therapy: 10
Anti-viral: 1

No 
interventions: 

3

- 10 2 - - 1

Glioblastoma Other

33 Completed

Hematological 
tumors

Ovarian/
Breast Ex vivo T 

cells: 9 Anti-
viral: 7

Other: 10
No 

intervention: 
7

- 7 10 3 2 8
Kidney Lung

HIV/viral Other

Autoimmune/
Allergy

50 Moving forward: Not yet recruiting/Recruiting

CTLA-4

54
Active, 

not-
recruiting

Melanoma Pancreatic

Monotherapy: 
14

Combo-
therapy: 37

No 
interventions: 

3

2 18 24 9 1 1

Renal Autoimmune/
Allergy

Liver Breast/
Ovarian

Head Neck Hepatitis

Lung Solid tumor

79 Completed

Melanoma Autoimmune/
Allergy

Monotherapy: 
50

Combo-
therapy: 25

No 
interventions: 

4

1 27 32 21 - 2

Renal Breast/
Ovarian

Liver Hepatitis

Hematological 
tumors Pancreatic

Lung Solid tumor

Prostate

182 Moving forward: Not yet recruiting/Recruiting

ICOS 4 Moving forward: Not yet recruiting/Recruiting

LAG3

2
Active, 

not-
recruiting

Melanoma Combo-
therapy: 2 - 1 1 - -

Colorectal caner

6 Completed

Renal Cell 
Carcinoma Hepatitis

Monotherapy: 
5

Combo-
therapy: 1

- 6 - - - -Autoimmune/
Allergy Other

Breast

39 Moving forward: Not yet recruiting/Recruiting
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Co-
stimulatory 

Molecule
Number Status Main Condition Treated Treatment

Early 
Phase 

1

Phase 
1

Phase 
2

Phase 
3

Phase 
4

N/
A:

TIM3

6 Completed

Autoimmune/
Allergy Breast Monotherapy: 

2
Combo-

therapy: 1
No 

interventions: 
3

- 1 1 1 - 2Sepsis Lung

Glomerulonephritis

23 Moving forward: Not yet recruiting/Recruiting

PD1

176
Active, 

not-
recruiting

Hematological 
tumors Liver

Monotherapy: 
60

Combo-
therapy: 38

No 
interventions: 

2

2 74 78 36 1 2

Breast/Ovarian Melanoma

HIV/viral Lung

Autoimmune/
Allergy Brain

Renal Other

65 Completed

Hematological 
tumors Colorectal Monotherapy: 

30
Combo-

therapy: 17
No 

interventions: 
18

- 28 16 3 1 7
Breast/Ovariaon Melanoma

HIV/viral Lung

Autoimmune/
Allergy Other

847 Moving forward: Not yet recruiting/Recruiting

PDL1

98
Active, 

not-
recruiting

Breast/Ovarian Lung
Monotherapy: 

54
Combo-

therapy: 41
No 

interventions: 
3

- 29 30 42 - -

Hematological 
tumors Melanoma

Renal HIV/viral

Colorectal caner Other

Liver

21 Completed

Breast/Ovarian Lung Monotherapy: 
11

Combo-
therapy: 5

No 
interventions: 

3

- 9 6 2 - -

HIV/viral Pancreatic

Autoimmune/
Allergy Melanoma

Brain Other

227 Moving forward: Not yet recruiting/Recruiting
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Table 2:

TNF Superfamily completed, ongoing, and upcoming clinical trials.

Co-
stimulatory 

Molecule
Number Status Condition Treatment

Early 
Phase 

1

Phase 
1

Phase 
2

Phase 
3

Phase 
4

N/
A:

41BB

2
Active, 

not-
recruiting

Hematological 
cancer CAR-T 

therapy 1 - 1 - - -

Pancreatic Cancer

1 Completed Multiple Myeloma CAR-T 
therapy 1 - - - - -

17 Moving forward: Not yet recruiting/Recruiting

41BBL 3 Moving forward: Not yet recruiting/Recruiting

Ox40

9
Active, 

not-
recruiting

Advanced cancer Colon Monotherapy: 
5

Combo-
therapy: 2

CAR-T 
therapy: 2

- 8 1 - - -
Autoimmune/

Allergy Breast

Head and Neck Other

10 Completed

Advanced cancers Melanoma Monotherapy: 
4

Combo-
therapy: 1

CAR-T 
therapy: 1

No 
interventions: 

4

- 5 1 - - 3

Autoimmune/
Allergy Hepatitis

Glomerulonephritis Prostate

18 Moving forward: Not yet recruiting/Recruiting

Ox40L

3 Completed

Autoimmune/
Allergy

Monotherapy: 
2

No 
interventions: 

1

- 1 1 - - 1

2 Moving forward: Not yet recruiting/Recruiting

GITR

2
Active, 

not-
recruiting

Metastatic/
Advanced tumors Monotherapy: 

1 - 2 - - - -

3 Completed

Hepatitis
No 

interventions: 
3

- - - - - 3Glomerulonephritis

Uveitis

7 Moving forward: Not yet recruiting/Recruiting

CD27

2
Active, 

not-
recruiting

Refractory solid 
tumors

Monotherapy: 
1

Combo-
therapy: 1

- 1 - - - 1

Hepatitis

25 Completed
Hematological 

tumors Kidney Monotherapy: 
15 1 3 10 3 1 2
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Co-
stimulatory 

Molecule
Number Status Condition Treatment

Early 
Phase 

1

Phase 
1

Phase 
2

Phase 
3

Phase 
4

N/
A:

Autoimmune/
Allergy

Combo-
therapy: 5

Vaccination: 
2

No 
interventions: 

3

HIV/viral

Colon Cancer Other

Ovarian/Breast

22 Moving forward: Not yet recruiting/Recruiting

CD70

1
Active, 

not-
recruiting

Advanced cancers
Monotherapy - 1 - - - -

5 Completed

Renal Cancer

Monotherapy: 
5 - 5 - - - -Melanoma

Nasopharyngeal 
Carcinoma

4 Moving forward: Not yet recruiting/Recruiting

CD40

11
Active, 

not-
recruiting

Lymphoma Melanoma Monotherapy: 
8

Combo-
therapy: 2

No 
interventions: 

1

- 5 4 1 - -Non-Small Cell 
Lung Cancer

Respiratory 
disorder

153 Completed

Melanoma Diabetes Monotherapy: 
116

Combo-
therapy: 22

No 
interventions: 

15

1 48 61 18 14 19
Kidney GVHD

Solid Tumors HIV/viral

46 Moving forward: Not yet recruiting/Recruiting
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