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Uric acid is the end product of purine metabolism in humans, and its excessive accumulation leads to hyperuricemia and urate
crystal deposition in tissues including joints and kidneys. Hyperuricemia is considered an independent risk factor for
cardiovascular and renal diseases. Although the symptoms of hyperuricemia-induced renal injury have long been known, the
pathophysiological molecular mechanisms are not completely understood. In this review, we focus on the research advances in
the mechanisms of hyperuricemia-caused renal injury, primarily on oxidative stress, endothelial dysfunction, renal fibrosis, and
inflammation. Furthermore, we discuss the progress in hyperuricemia management.

1. Introduction

Uric acid (2,6,8-trioxypurine, molecular formula C5H4N4O3;
UA), the final metabolite of endogenous and exogenous
purine, is generated in the liver [1]. Owing to the evolution-
ary loss of urate oxidase, UA cannot be catabolized to allan-
toin in humans and primates, while most of other animals
can catabolize UA [1]. As a major antioxidant [2], UA is ben-
eficial to remove superoxide and oxygen free radicals in pri-
mates, which is unable to self-generate vitamin C [3, 4].
Hyperuricemia is clinically defined as the serum UA level ≥
7mg/dL in men and postmenopausal women and ≥6mg/dL
in premenopausal women, causing various diseases, such as
gout and urinary stones [3–5]. An elevated UA level is also
tightly associated with diabetes and cardiovascular and kid-
ney diseases [6]. Recently, because of the changes in lifestyle
and the increasing population of older people, the incidence
of hyperuricemia in China has risen from merely 1.4% in
the early 1980s to 10% in the early 21st century [7]. In fact,
the morbidity from hyperuricemia has risen up to 20% in
some coastal areas and developed cities in China, nearly
reaching the level of developed countries [8, 9].

Numerous studies have shown that hyperuricemia is
closely associated with kidney diseases [2, 10–13]. In a 6-
year cohort study of 10,677 Chinese individuals with a nor-
mal estimated glomerular filtration rate (eGFR) and without
proteinuria, a higher UA level was found to contribute to the
onset of kidney disease and a rapid decline of eGFR [14]. A
long-term follow-up cohort study of 13,338 volunteers with
normal kidney function in two communities showed a signif-
icant relationship between the baseline UA level and the risk
of kidney disease, with the risk of developing kidney disease
rising by 7% to 11% per 1mg/dL serum UA [15]. Another
cohort study, which lasted for more than 25 years and
enrolled 177,570 patients, showed an independent associa-
tion between high UA levels and end-stage renal diseases
(ESRDs) [16]. Hyperuricemia is now considered an indepen-
dent risk factor for the occurrence and development of dia-
betic nephropathy (DN) [17, 18], acute kidney injury (AKI)
[2, 12, 13], chronic kidney disease (CKD) [10, 11], and ESRD
[16]. However, inconsistent results had been reported
regarding the role of UA in the progression of CKD and there
were insufficient evidences to suggest lowering UA therapy to
prevent the progression of CKD [19–23]. Thus, the causal
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relationship between hyperuricemia and CKD remains
controversial, and the pathophysiological mechanisms of
hyperuricemia-induced renal injury are not entirely clear.
In this review, we attempt to elucidate the recent advances
in the mechanisms of hyperuricemia-induced renal injury.

2. Pathogenesis of Hyperuricemia

The cause of hyperuricemia is the imbalance between UA
production and excretion. Purines are mainly degraded by
xanthine oxidase (XO) in the liver, and targeting this enzyme,
e.g., with allopurinol or febuxostat, is an effective therapeutic
method for lowering serum UA levels [24]. A high-purine
diet, increased purine metabolism, and excessive alcohol con-
sumption contribute to the increased production of UA.
Tumor lysis syndrome, in which a large number of cells are
damaged, and the metabolism of nucleic acids is promoted,
leads to an increase in UA production [25]. Other rare causes
inducing acute hyperuricemia include seizures, rhabdomyol-
ysis, and excessive exercise.

Most of UA is excreted by the kidneys (65–75%) and
intestines (25–35%). The renal handling of UA consists of
glomerular filtration, tubular reabsorption, tubular secretion,
and reabsorption after secretion. A decrease in UA excretion
and an increase in UA reabsorption cause hyperuricemia.
UA transporters are required for the renal handling of UA
and can be roughly divided into reabsorption-related and
secretion-related proteins. Reabsorption-related proteins
mainly include urate anion transporter 1 (URAT1), organic
anion transporter 4 (OAT4), and glucose transporter 9
(GLUT9), while secretion-related transporters mainly con-
sist of OAT1, OAT3, multidrug resistance protein 4
(MRP4/ABCC4), and breast cancer resistance protein
(BCRP/ABCG2) [26]. For example, the function of URAT1
is to reabsorb UA at the apical membrane of proximal tubule
epithelial cells (TECs) [27, 28]. GLUT9 acts as a transporter
that reabsorbs both UA and glucose into tubular cells [26].
ABCG2, which was first found to be involved in the develop-
ment of multidrug resistance in cancer cells, also takes part in
the secretion of UA from proximal TECs through an ion
pump [29]. Genetic defects or mutations in secretion-
related transporters also contribute to hyperuricemia. In
addition, some drugs, such as cyclosporine and diuretics,
cause hyperuricemia by decreasing renal urate clearance [30].

3. Mechanisms of Hyperuricemia-Induced
Renal Injury

3.1. Monosodium Urate (MSU) Crystal Deposition-Induced
Renal Damage. UA has the characteristic of a weak organic
acid, and most of it is ionized to MSU crystal at pH7.4 and
a temperature of 37°C [31, 32]. A solubility study showed that
serum was supersaturated for MSU crystal when the concen-
tration of UA exceeded 6.5mg/dL [31]. As a consequence,
UA and urate crystals may deposit in the joints, kidneys,
and other tissues, inducing tissue damage. A reduced expres-
sion of BCRP/ABCG2 in TECs induced by hyperuricemia
may promote MSU crystal deposition in TECs and the renal
interstitium, resulting in substantial renal damage [33, 34].

Under long-term low pH and high UA concentration condi-
tions in crude urine, urate crystal deposition in the renal
tubular lumen and ureters contributes to cast formation
and obstructive nephropathy [35–37]. Upon obstruction, a
series of complications occur, such as local damage, infection,
bleeding, and hydronephrosis [38]. In particular, insulin
resistance leads to impaired UA excretion at a low urinary
pH, contributing to the formation of urate stones [39].

3.2. Hyperuricemia-Induced Oxidative Stress. Once trans-
ported into the cell, UA becomes a prooxidant, which
increases the production of reactive oxygen species
(ROS), including the superoxide anion (O2

−), H2O2, and
8-isoprostane [40, 41]. Many studies have shown that
hyperuricemia-induced oxidative stress affects multiple
organs and systems, including the kidneys [42–44]. Patho-
logically, hyperuricemia-associated oxidative stress gives rise
to DNA damage, oxidation and inactivation of enzymes,
inflammatory cytokine production, and cell apoptosis [45].

Mitochondria are the center of intracellular energy
metabolism and the main site of oxidative phosphorylation,
in which ROS are produced by the transfer of electrons from
electron transport chain complexes to O2. It has been
reported that long-term hyperuricemia could induce renal
mitochondria dysfunction associated with renal cortex oxi-
dative stress and tubular damage in rats [46]. Hyperuricemia
was shown to mediate mitochondrial calcium overload and
eventually cause endothelial dysfunction through mitochon-
drial Na+/Ca2+ exchange, which increases the production of
ROS [47]. The mechanism of UA-induced endothelial dys-
function is closely associated with reduced mitochondria
mass and ATP production [48]. Although mitochondria in
TECs may undergo substantial damage under oxidative
stress, glutathione (GSH) treatment shows an effective resis-
tance as an antioxidant [46]. Another important source of
ROS is NADPH oxidase. UA has been found to stimulate
the synthesis of ROS by NADPH oxidase in various cells,
such as adipocytes, vascular smooth muscle cells, and vascu-
lar endothelial cells [49]. Using stable isotope labeling with
amino acids in cell culture and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) to analyze differ-
entially expressed proteins and the functional status of
UA-stimulated human umbilical vein endothelial cells
(HUVECs), Zhang et al. [50] found a significant relation-
ship between hyperuricemia-induced endothelial dysfunc-
tion and aldose reductase- (AR-) mediated oxidative
stress. Meanwhile, it has been reported that hyperuricemia
induced endothelial dysfunction via regulation of AR, while
inhibition of AR or degradation of ROS could restore endo-
thelial function [51]. Similarly, antioxidant therapies, such
as tempol and reduced GSH, may be beneficial for the
recovery of endothelial function [45, 46]. Taken together,
hyperuricemia-mediated oxidative stress directly damages
the kidney, thus being a biotherapeutic target for UA-
induced renal damage.

3.3. Hyperuricemia-Induced Endothelial Dysfunction. The
renin-angiotensin system (RAS) mainly regulates the cardio-
vascular function and maintains the body fluid balance in
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cooperation with other compensatory mechanisms. Evidence
from animal and patient studies showed that UA-mediated
RAS activation is closely related to diabetic complications,
such as cardiovascular and kidney diseases [52]. Upon UA
stimulation, the expression of angiotensinogen, angiotensin-
converting enzyme (ACE), and angiotensin II receptors was
notably upregulated in vitro, resulting in the inhibition of
proliferation and promotion of senescence, inflammation,
and apoptosis of endothelial cells [53]. Moreover, UA-
induced senescence and apoptosis of HUVECs were blocked
by enalaprilat (an ACE inhibitor) or telmisartan (an angio-
tensin II receptor antagonist). These findings indicated that
RAS activation was a novel mechanism of UA-induced endo-
thelial dysfunction [40].

Endothelial cells secrete various vasoactive substances to
regulate the relaxation and contraction of blood vessels,
including the potent vasoconstrictor endothelin 1 (ET-1)
and the effective vasodilator nitric oxide (NO) [54]. An
imbalance between ET-1 and NO drives endothelial dysfunc-
tion, which plays an essential role in the pathophysiology of
cardiovascular and renal diseases. Under physiological con-
ditions, ET-1 stimulates the synthesis of NO by endothelial
cells, while NO exerts a negative feedback effect on ET-1
[55]. Overexpression of ET-1 may elevate blood pressure
and cause vascular and kidney injuries, such as reduced renal
artery flow and small artery stiffening [56]. Accumulating
evidence indicates that UA impacts endothelial function
through downregulation of NO production and endothelial
nitric oxide synthase (eNOS) activity, which subsequently
decreases NO bioavailability. UA was shown to affect the
activity of eNOS and production of NO in a dose- and
time-dependent manner [57]. L-arginine is the substrate of
eNOS and is converted to NO in mammalian endothelial
cells [58]. However, it was reported that UA could not only
stimulate arginase, an enzyme degrading L-arginine, but also
enhance the affinity of L-arginine to arginase, which reduced
the availability of the substrate for NO synthesis [58]. In
addition, recent studies have demonstrated that UA mark-
edly reduced the binding between eNOS and calmodulin
(CaM), an eNOS activator, in both HUVECs and bovine aor-
tic endothelial cells [57, 59]. Zhang et al. [60] suggested that
high-level UA can induce endothelial dysfunction through
miR-155-mediated eNOS suppression. In addition, UA reg-
ulated the PKC/eNOS pathway and endoplasmic reticulum
(ER) stress, leading to endothelial dysfunction and apopto-
sis in HUVECs [57]. Although it was clearly demonstrated
that UA inhibited eNOS activity and the interaction
between eNOS and CaM, it did not influence the expres-
sion of eNOS and the intracellular amount of CaM [59].
The reason for the latter is not fully understood and may
be related to posttranslational modifications and the activa-
tion of eNOS.

UA induces endothelial dysfunction via various path-
ways, while targeted therapy may ameliorate the endothelial
dysfunction and alleviate kidney damage. It has been
reported that iptakalim, an ATP-sensitive potassium channel
opener, could improve endothelial dysfunction and defend
against hypertension and hyperuricemia [60]. Additionally,
XO inhibitors, such as allopurinol and febuxostat, exhibited

protective effects on endothelial dysfunction in clinical ther-
apy and animal models [24, 61, 62].

3.4. Hyperuricemia-Induced Renal Fibrosis. Renal fibrosis,
characterized by glomerulosclerosis and tubulointerstitial
fibrosis, is a common pathological process in all patients with
CKD, leading to the loss of effective nephrons and a progres-
sive decline in renal function, resulting in ESRD [63]. A clin-
ical study of 1,700 biopsy-confirmed patients demonstrated
that patients with high levels of plasma UA displayed not
only more serious clinical renal dysfunction but also more
severe renal pathology, particularly segmental glomerulo-
sclerosis and tubular atrophy/interstitial fibrosis [64].
Recently, a line of evidence has indicated that hyperuricemia
may directly cause glomerulosclerosis and tubulointerstitial
fibrosis.

3.4.1. Hyperuricemia-Induced Glomerulosclerosis. Mild
hyperuricemia causes renal arteriolosclerosis and glomerular
hypertension and disrupts renal autoregulation, ultimately
resulting in glomerulosclerosis [65]. Recently, the deleterious
effects of hyperuricemia on glomerular intrinsic cells were
explored, which may uncover the potential mechanisms of
hyperuricemia-induced glomerulosclerosis.

As mentioned in the previous section, multiple pathways
are involved in hyperuricemia-induced endothelial cell
injury; thus, mild hyperuricemia may impair glomerular
endothelial cells via similar mechanisms. In addition, similar
to epithelial-to-mesenchymal transition (EMT), endothelial-
to-mesenchymal transition (EndoMT) greatly contributes to
the activation of fibroblasts and myofibroblasts and subse-
quent renal fibrosis [66]. EndoMT contributed to renal fibro-
sis in three mouse models of CKD, including unilateral
ureteral obstructive nephropathy, streptozotocin-induced
DN, and Alport kidney disease models [67–69]. These stud-
ies suggested that endothelial-origin myofibroblasts possibly
contribute to the progression of glomerulosclerosis [68, 70].
Recent research has demonstrated that UA induced the phe-
notype transition in HUVECs via induction of oxidative
stress and glycocalyx shedding [71]. However, direct evi-
dence is still lacking for the contribution of UA-induced
EndoMT to glomerulosclerosis. Therefore, further studies
are needed to identify the role of UA-induced EndoMT in
glomerulosclerosis by utilizing a conditionally immortalized
human glomerular cell line [72] in vitro and an endothelial
lineage-traceable mouse line in vivo [68].

Abnormal proliferation of glomerular mesangial cells
(MCs) and overproduction of extracellular matrix (ECM)
contribute to glomerulosclerosis. UA-mediated activation of
the COX-2/mPGES-1/PGE2 inflammatory cascade not only
has a direct proinflammatory effect but also induced the pro-
liferation of MCs [73, 74]. Moreover, UA time-dependently
induced MC proliferation through the NADPH/ROS/extra-
cellular signal-regulated kinase (ERK)1/2 signaling pathway
[75]. Albertoni et al. [76] proved that soluble UA stimulated
the proliferation and contraction of human MCs via an
angiotensin II-dependent mechanism and the production of
ET-1 in vivo, which might have a long-term effect on glomer-
ular function. In addition, soluble UA induced ER stress by
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upregulating the expression of α-smooth muscle actin (α-
SMA), fibronectin (FN), and transforming growth factor-β
1 (TGF-β1) in a time- and concentration-dependent manner,
which resulted in a phenotypic change in rat glomerular MCs
[77]. Thus, UA-induced proliferation of glomerular MCs and
production of extracellular matrix may lead to glomerular
hypertrophy and sclerosis. These novel mechanisms suggest
some potential targets for the treatment of hyperuricemia-
induced glomerulosclerosis.

Notably, hyperuricemia also influences the function of
glomerular podocytes, a key player in maintaining the glo-
merular filtration barrier, leading to albuminuria. Electron
microscopy of kidney biopsies from patients with gout
revealed varying degrees of podocyte proliferation and
damage [78]. Signs of significant albuminuria were found
in hyperuricemic model rats, accompanied by upregulation
of desmin, a podocyte injury marker, and downregulation
of podocin, a key component of the podocyte slit dia-
phragm [79, 80].

3.4.2. Hyperuricemia-Induced Renal Interstitial Fibrosis.
Myofibroblasts act as collagen-producing cells in various
pathologies, including renal interstitial fibrosis. During renal
interstitial fibrosis, half of the myofibroblasts are derived
from renal resident fibroblasts [81]. Under the stimulation
of cytokines and growth factors, fibroblasts undergo activa-
tion and proliferation, achieve myofibroblast phenotype,
and synthesize ECMs, including structural scaffolds, fibro-
nectin, and various types of collagens [82]. UA promotes
the renal fibroblast–myofibroblast transition mainly through
the activation of the TGF-β/Smad3, epidermal growth factor
receptor (EGFR), and ERK1/2 pathways [83, 84]. However,
after treatment with 3-deazaneplanocin A, a selective
inhibitor of the enhancer of zeste homolog 2, the above-
activated pathways were inhibited, and the proliferation
of renal fibroblasts was suppressed, alleviating renal inter-
stitial fibrosis [83].

EMT is a physiological or pathophysiological process,
leading to the phenotype transformation of renal tubular
cells, which lose their epithelial phenotype and acquire that
of mesenchymal cells [63, 85, 86]. It has been reported that
almost one-third of myofibroblasts originate from EMT
rather than from preexisting local fibroblasts [87]. EMT plays
a primary role in the accumulation of myofibroblasts and the
resulting production of ECM, which are the key steps in the
progression of renal interstitial fibrosis [86, 88]. EMT is often
accompanied by a decreased expression of the epithelial cell
marker E-cadherin via upregulation of Snail and Slug and
an increased expression of mesenchymal cell markers, such
as α-SMA, vimentin, fibronectin, and smooth muscle 22
(SM22) [86]. Substantial evidence indicates that the TGF-
β/Smad3 pathway plays a dominant role in the progression
of EMT [84, 89, 90]. It has also been shown that UA activates
the TGF-β/Smad3 signaling pathway in type 2 DN, promot-
ing EMT and profibrogenic progression [18]. Setyaningsih
et al. [91] reported that hyperuricemia induced EMT and
kidney tubular injury in mice via regulation of the
Wnt5a/Ror2 signaling pathway. Zhou et al. [63] also found
that UA caused EMT through the stimulation of the toll-

like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) path-
way. Furthermore, hyperuricemia may induce EMT through
the PI3K/Akt signaling pathway [92]. EMT has already been
deemed a new therapeutic target due to its reversibility
[91, 93, 94]. Studies have demonstrated that UA-induced
EMT could be inhibited by probenecid, an organic anion
transport inhibitor [66]. In addition, in a hyperuricemia
nephropathy rat model, a traditional Chinese medicine
decreased the UA level and relieved renal interstitial fibro-
sis via inhibition of the EMT process [95]. Tao et al. [96]
demonstrated that UA-induced EMT was prevented after
blocking ERK1/2 with the specific inhibitor U0126.

Matrix metalloproteinases (MMPs) are zinc-dependent
endopeptidases involved in the degradation of extracellular
and basement membranes [97]. It was shown that MMPs
could promote EMT and establish a profibrotic environment,
which may contribute to renal interstitial fibrosis [98–100].
Reports have shown that MMP2 and MMP9 were signifi-
cantly activated in renal tissue of hyperuricemic rats [96].
Moreover, inhibition of the NF-κB/MMP9 signaling pathway
by chloride channel 5 (CIC-5) overexpression suppressed
TGF-β1-induced EMT [101]. ER stress is a cellular physio-
logical or pathological response to the accumulation of mis-
folded and mismatched proteins in ER [102]. ER stress is
closely associated with renal fibrosis [102, 103]. Recently,
He et al. [104] found that a marker of ER stress (RTN1A)
was markedly upregulated in hyperuricemic nephropathy;
however, febuxostat suppressed ER stress, thereby improving
kidney injury and interstitial fibrosis [105]. Thus, MMPs and
ER stress may be additional hallmarks and therapeutic tar-
gets for hyperuricemia-induced renal interstitial fibrosis.

3.5. Hyperuricemia-Induced Renal Inflammation. During
necrosis, the dying cell releases amount of danger signals,
such as ATP, high-mobility group box protein 1 (HMGB1),
heat shock proteins, and UA, to activate immune response.
UA may crystallize into MSU crystal in the extracellular fluid
and can be recognized by pattern recognition receptors (e.g.,
TLRs) expressed on antigen-presenting cells (APCs, such as
macrophages and TECs) as one of the danger-associated
molecular patterns (DAMPs), which ultimately activates
immune and inflammatory responses. Notably, hyperurice-
mia may induce renal inflammation via crystal-dependent
and crystal-independent pathways [106].

3.5.1. MSU Crystal-Induced Renal Inflammation. It is gener-
ally accepted that hyperuricemia induces renal inflammation
in a crystal-dependent manner. Macrophages are considered
key mediators and have been studied most in MSU crystal-
induced renal inflammation. MSU crystals deposited in the
tubular lumen or interstitial space can be recognized and
engulfed into renal resident or infiltrated macrophages
[63, 107]. Upon stimulation with MSU crystal, the produc-
tion of chemokines, such as CXCL-12, which induce direc-
tional chemotaxis in nearby inflammatory cells, was
significantly enhanced in tubular cells possibly leading to
the accelerated renal recruitment of macrophages [108].
Moreover, MSU crystals strongly activated human primary
macrophages to secrete the lysosomal protease cathepsin,
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proinflammatory cytokines, such as interleukin- (IL-) 1β, IL-
18, and interferon through the Src/Pyk2/PI3K signaling
pathway [109]. Nod-like receptor pyrin domain-containing
protein 3 (NLRP3), an important member of NLRs, senses
danger signals, including pathogen-associated molecular pat-
terns (PAMPs) and DAMPs, in the cytosol and activates ster-
ile inflammation [108, 110]. NLRP3 then assembles the
functional NLRP3 inflammasome, which subsequently leads
to the transformation of immature pro-IL-1β and pro-IL-
18 into mature, bioactive IL-1β and IL-18, respectively,
ultimately activating the entire cascade and amplifying
downstream inflammatory signals [111]. Through endocyto-
sis into macrophages, lysosomes capture MSU crystal for
degradation; however, MSU crystal cannot be degraded but
instead ruptures the lysosomal membrane and releases lyso-
somal cathepsins into the cytoplasm, leading to the activation
of the inflammasome [33]. Active caspase-1 may cleave
gasdermin D (GSDMD) into GSDMD-N, triggering cell pyr-
optosis [112, 113]. Interestingly, MSU crystal-induced mac-
rophages not only secrete proinflammatory cytokines at the
inflammatory activation stage but also produce anti-
inflammatory cytokines during the resolution phase of
inflammation. In particular, it was reported that MSU crys-
tals promoted macrophages to secrete TGF-β1 through
mediation of the metastatic tumor antigen 1 (MTA1)/trans-
glutaminase 2 (TG2) signaling pathway, which contributed
to self-limitation of inflammation [114]. TGF-β1 acts as a
strong profibrotic cytokine, and aberrant TGF-β1 derived
from MSU crystal-induced macrophages may promote renal
fibrosis. Besides macrophages, infiltrated T cells not only
could phagocytize MSU crystals but also could be directly
activated and stimulated to proliferate by MSU crystals in
the absence of APC [115].

Injured TECs also produce a lot of cytokines and chemo-
kines to promote renal inflammation. Urate crystals can
adhere to renal TECs through hydrogen bonding and hydro-
phobic interactions to induce TEC injury [116]. In addition,
damaged TECs rapidly secrete migration inhibitory factor
(MIF), a mediator of delayed-type hypersensitivity, to recruit
macrophages and other immune cells [117]. MSU crystal also
induces NLRP3 inflammasome activation in TECs triggered
by lysosomal rupture. Released lysosomal cathepsins can ini-
tiate RIP3/MLKL-dependent necroptosis, which was con-
firmed by a study that showed that RIP3 deficiency
attenuated hyperuricemia-caused tubular injury and renal
inflammation in mice [118]. Necroptosis of TECs leads to
the release of danger signals, further promoting renal inflam-
matory response in a positive feedback loop.

3.5.2. Soluble UA-Induced Renal Inflammation. Recent stud-
ies suggest that soluble UA may also have proinflammatory
effects, independent of crystal formation. Braga et al. [119]
found that soluble UA could also stimulate the activation of
the NLRP3 inflammasome and the synthesis of IL-1β
in vivo and in vitro. Moreover, soluble UA activated NLRP3
inflammasome to secrete IL-1β in macrophages and stimu-
lated the release of CXCL12 and HMGB1 in TECs, while
interaction between macrophages and TECs promoting the
progression of DN [108]. Soluble UA significantly enhanced

NLRP3, tumor necrosis factor- (TNF-) α as well as IL-1β in
TECs, while AMP-activated protein kinase (AMPK) exerted
a protective effect on UA-induced inflammatory response
[120]. In the absence of lysosomal ruptures, mitochondria-
derived ROS may mediate soluble UA-activated NLRP3
inflammasome [119]. In a rat model, hyperuricemia induced
renal inflammation and promoted the progression of renal
disease via a monocyte chemoattractant protein-1- (MCP-
1-) related mechanism [121]. In cultured TECs (NRK-52E)
and a hyperuricemia mouse model, UA induced the infiltra-
tion of inflammatory cells (T cells and macrophages) in tubu-
lar interstitial spaces and upregulated the production of the
inflammatory cytokine tumor necrosis factor-α (TNF-α)
and MCP-1 and regulated upon activation normal T cell
expressed and secreted factor (RANTES) expression via the
NF-κB signaling pathway [63]. In another rat model, soluble
UA stimulated the production of MCP-1 in vascular smooth
muscle cells (VSMCs), subsequently promoting the infiltra-
tion of inflammatory cells in kidney, causing profound renal
vasoconstriction and chronic renal injury [122–124]. Soluble
UA was also shown to directly stimulate proinflammatory
cytokine production in human peripheral blood mononu-
clear cells (PBMCs) through breaking the IL-1β/IL-1 recep-
tor antagonist (IL-1Ra) balance [125]. Plasma UA was
found to induce endothelial dysfunction and inflammation
in renal allograft recipients, which might lead to chronic
renal allograft damage [126]. Therefore, the reduction in
UA levels may bring many benefits. For example, after
urate-lowering therapy (ULT) with benzbromarone in
healthy volunteers for two weeks, the serum inflammatory
cytokine IL-18 was significantly decreased [127]. Moreover,
lowering plasma UA levels markedly decreased renal dam-
age, the expression of MCP-1, and the macrophage M1/M2
ratio in a hyperuricemic mouse model [128].

High levels of UA significantly upregulate the expression
of HMGB1 through activation of TLR4 and the MEK/ERK
pathway [129]. HMGB1 amplifies inflammatory responses
via various pathways, including the promotion of mononu-
clear cells to secrete proinflammatory cytokines, such as IL-
1β and TNF-α, the expression of adhesion molecules, and
inflammatory cell infiltration [130]. In particular, HMGB1
promotes its own release from endothelial cells by a
positive-feedback mechanism. After binding to the receptor
of advanced glycation end products (RAGE), UA-induced
HMGB1 activates the NF-κB signaling pathway and promotes
the production of cytokines, such as TNF-α and IL-6, leading
to oxidative stress and inflammatory responses [131].

Recent evidence has demonstrated another inflammatory
mechanism of renal damage, which involves hyperuricemia-
induced Na+/K+-ATPase (NKA) degradation in lysosomes,
whereas AMPK was shown to alleviate NKA downstream
inflammation and maintain renal function. AMPK activa-
tors, such as metformin and 5-aminoimidazole-4-carboxa-
mide-1-β-D-ribofuranoside (AICAR), significantly relieved
hyperuricemia-induced renal damage and NKA signaling
impairment in a rat model, although these compounds did
not lower the serum UA levels in rats [132]. Recent studies
have confirmed that autophagy also plays a functional role
in hyperuricemia-induced inflammation [33, 133, 134].
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Activation of autophagy may limit inflammasome activity
induced by hyperuricemia through targeting ubiquitinated
inflammasomes for degradation [135] and decreasing the
production of ROS [136] and downstream inflammatory
responses [137]. However, Bao et al. [138] demonstrated that
the inhibition of autophagy with 3-methyladenine (3-MA)
not only delayed the progression of renal fibrosis but also
suppressed the infiltration of immune cells and the secretion
of various inflammatory cytokines. More evidence is needed
to explore the protective or deleterious role of autophagy in
hyperuricemia-induced renal inflammation.

4. Perspective and Conclusion

Currently, the standard treatment for patients with hyperuri-
cemia is ULT, mainly including the XO inhibitors allopurinol
and febuxostat, the UA reabsorption inhibitor benzbromar-
one and urate oxidase (rasburicase). In 2012, the American
College of Rheumatology recommended using either allopu-
rinol or febuxostat for first-line ULT [139]. In contrast to XO
inhibitors, rasburicase lowers hyperuricemia quickly but does
not induce the accumulation of xanthine, which is usually
used in the prevention and treatment of tumor lysis symp-
toms. XO inhibitors may exert renoprotective effects beyond
lowering UA. XO produces ROS, and inhibition of XO by
allopurinol or febuxostat attenuates ROS-mediated kidney
injury [140–142]. Some drugs targeting URAT1, such as
SHR4640 and RDEA3170, are still under clinical trials, which
may raise new hope for the treatment of hyperuricemia.

Apart from classical ULT drugs, losartan, as an angioten-
sin II receptor blocker, has been proven to reduce serum UA
via inhibiting UA reabsorption mediated by URAT1 in TECs
[143, 144]. Sodium-glucose cotransporter 2 inhibitors, which
are approved antidiabetic drugs, promote UA excretion by
suppressing UA reabsorption via commandeering UA trans-
porter GLUT9 [145, 146].

Traditional medicines were also reported to reduce the
level of serum UA and attenuate hyperuricemia-induced kid-
ney injury. Extracts from Urtica hyperborea Jacq. Ex Wedd.
significantly reduced the renal expression of URAT1 and
increased that of OAT1, thereby lowering the serum UA level
and improving renal injury [147]. Epigallocatechin gallate
exerted hypouricemic effects by suppressing XO activity
and GLUT9 expression and promoting OAT1 expression
in vivo and in vitro [148]. Tu-Teng-Cao extract remarkably
decreased the concentration of serum UA in potassium
oxonate-induced hyperuricemia rats [149].

However, there is a long way to translate the identified
novel mechanisms of hyperuricemia-induced renal injury
based on experimental studies into clinical applications.
Research methods used for hyperuricemia-induced renal
injury have certain limitations. For instance, most of the
in vivo and in vitro studies related to hyperuricemia-
induced renal injury involve simple experimental models;
however, clinical patients are more complex, and most of
them either have a different underlying disease or various
accompanying complications. Hence, complex models, such
as models of CKD accompanied by hyperuricemia or hyper-
uricemia models with an AKI attack, should be considered

Hyperuricemia
(SUA or MSU)

Oxidative stress
Mitochondria ROS
generation
NADPH oxidase activation

DNA damage
Enymes inactivation
Cell apoptosis

Endothelial dysfunction
RAS activation
Imbalance between ET-1
and NO
NO bioavailability↓

Cell senescence and 
apoptosis
Hypertension
Vascular stiffness
Hyperfiltration

Inflammation
Immune cells proliferation,
differentiation and 
infiltration
Pro-inflammation factors 
and cytokines secretion:
Imflammasome activation
Lysosomal rupture and 
autophage

Inflammatory responses 
activation

Renal fibrosis
Arteriolosclerosis
EndoMT
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ER stress

Glomerulosclerosis
Interstitial fibrosis
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UA deposit in tubulars and
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Figure 1: Mechanisms of hyperuricemia-induced renal injury. UA: uric acid; SUA: soluble uric acid; MSU: monosodium urate; ROS: reactive
oxygen species; RAS; renin-angiotensin system; ET-1: endothelin 1; NO: nitric oxide; EndoMT: endothelial-to-mesenchymal transition; EMT:
epithelial-to-mesenchymal transition; MMP: matrix metalloproteinase; ER stress: endoplasmic reticulum stress.
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because they might be more in line with the actual situation
in clinical patients. Meanwhile, with the rapid development
of modern computers and gene-related technologies, more
emphasis should be placed on novel medical approaches,
such as gene and metabolic pathway analyses, as well as on
the combination of the modern information technology
and clinical cases, which may become a new direction in
the research of hyperuricemia-induced renal injury.

In conclusion, with a progressively higher incidence,
hyperuricemia not only increases the risks but also affects
the prognosis of renal diseases. The mechanisms of
hyperuricemia-induced renal injury mainly include oxidative
stress, endothelial dysfunction, renal fibrosis, and inflamma-
tion (Figure 1). However, the whole mechanisms of
hyperuricemia-caused renal injury are complex and not fully
understood, thus requiring further research. The novel
underlying mechanisms may contribute to the development
of clinical therapies with the potential to improve the treat-
ment of hyperuricemia and hyperuricemia-caused renal
injury.
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