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Abstract
Acupuncture has been used in China for thousands of years and has become
more widely accepted by doctors and patients around the world. A large number
of clinical studies and animal experiments have confirmed that acupuncture has a
benign adjustment effect on gastrointestinal (GI) movement; however, the
mechanism of this effect is unclear, especially in terms of neural mechanisms, and
there are still many areas that require further exploration. This article reviews the
recent data on the neural mechanism of acupuncture on GI movements. We
summarize the neural mechanism of acupuncture on GI movement from four
aspects: acupuncture signal transmission, the sympathetic and parasympathetic
nervous system, the enteric nervous system, and the central nervous system.
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Core tip: Acupuncture has been applied in the treatment of gastrointestinal (GI)
dysmotility diseases worldwide for decades. However, its underlying neuromechanisms
in regulating GI motility have not been fully established. The neural regulation of GI
function depends on its endogenous and exogenous nervous system. This review
discusses the mechanisms of acupuncture on GI motility from various perspectives
including the afferent signals, autonomic nervous system, as well as central nervous
system based on its physical/pathological neural control.
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INTRODUCTION
Acupuncture,  as  a  complementary  and  alternative  medical  treatment,  is  used
worldwide due to its advantages in terms of efficacy and safety. A literature analysis
summarized the clinical diseases and symptoms that could be treated by acupuncture
and moxibustion  by  collecting  and analyzing  published randomized controlled
studies in the PubMed database. This analysis identified more than one hundred
diseases and symptoms that were unanimously considered effectively treated, among
which gastrointestinal (GI) diseases accounted for a quarter of the diseases[1-3].  GI
motility  disorder  is  a  common pathological  feature  in  many clinical  diseases[4,5],
including  gastroparesis,  irritable  bowel  syndrome  (IBS),  functional  dyspepsia,
pseudo-obstruction, and chronic constipation, causing premature satiety, nausea,
vomiting, abdominal pain, bloating, loss of appetite, and other clinical symptoms[6-10].
Taking diabetic gastroparesis as an example, as many as 25%–55% of patients with
type 1 diabetes have gastroparesis, with a slightly higher incidence rate in patients
with type 2 diabetes, causing great suffering and poor quality of life in patients[11]. GI
motility  disorder  is  becoming a  serious  public  health  problem and a  significant
burden to society; however, current treatment options for gut dysmotility are limited
because of serious side effects[12,13].

In  previous  decades,  many studies  confirmed the  efficacy  of  acupuncture  for
functional GI disorders and more recent medical research has made some progress in
determining its  mechanisms.  The nervous system plays a  key role  in the benign
regulation of GI movement in acupuncture. GI motility is the result of the combined
effects of the nervous system, humoral factors, and the myoelectric activity of the GI
tract itself, in which the nervous system plays a main role. Neural regulation of GI
function depends on the following three levels:  The local enteric nervous system
(ENS) (endogenous regulation), the autonomic nervous system (ANS), and the central
nervous system (CNS) (exogenous regulation). The aim of this review is to discuss the
possible neuromechanisms of acupuncture in GI motility, based on its afferent signals
and the neural regulation of GI motility.

AFFERENT FIBERS AND RECEPTOR MECHANISM OF
ACUPUNCTURE
The effect of acupuncture is based on the somatic afferent signals induced by the
insertion of needles into the body manually (manual acupuncture, MA) or electrically
(electroacupuncture, EA). Somatic afferent nerve fibers are classified into several
types according to their diameter, including A-α, A-β, A-δ, and C-fibers, and it is
widely accepted that these fibers underlie the neural mechanism of acupuncture[14].
MA stimulation can activate all four groups of somatic afferents and deliver the signal
to the CNS, while the type of fibers activated by EA stimulation depends on the
intensity[15]. Nevertheless, only when the intensity of stimuli is over the threshold of
Aδ and/or C-fibers can acupuncture obviously modulate GI motility[16].

A strong mechanical stimulus applied to the abdominal skin induces an inhibitory
effect on jejunal motility, and this effect was proven to be produced by excitation of
group IV (unmyelinated) cutaneous afferent nerve fibers in the T10 spinal nerve.
Similar stimuli applied to the skin of the upper chest, neck, forepaws, or hind paws
elicited a facilitative jejunal reflex that was evoked by excitation of mainly group III
(A-δ)  cutaneous afferent  nerve  fibers[17].  Another  study indicated that  duodenal
motility was inhibited by EA at intensities of more than 5.0 mA (suprathreshold of
group  IV  afferent  excitation)  at  acupoints  located  in  the  abdominal  area,  and
facilitated by EA at acupoints located in the hind paw with intensities of more than
2.0 mA (subthreshold of group IV, and suprathreshold for groups II + III afferent
excitation)[18].

A variety of somatosensory receptors are present in the skin and muscles, including
mechanoreceptors, thermoreceptors, and nociceptors. Among them, acid-sensing ion
channel 3 (ASIC3) is mainly located in Aβ-fibers innervating the skin and muscle to
respond to mechanical stimuli, and transient receptor potential vanilloid-1 (TRPV1) is
co-expressed with C-fibers rather than with myelinated nociceptors as a heat and
mechanical  sensor[19,20].  EA at  acupoints  located in the abdominal  area markedly
inhibits gastric motility in an intensity-dependent manner, and this inhibitory effect is
alleviated by capsazepine injection (an antagonist of the TRPV1 receptor) or TRPV1
gene knockout with no intensity dependence,  indicating that  TRPV1 is  partially
involved in the EA-mediated modulation of gastric motility[21,22]. A similar result for
EA was observed on jejunal motility[23]. In Asic3 gene deleted mice, the effect of EA at
ST36  and  CV12  on  gastric  motility  was  slightly  decreased,  with  no  statistical
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significance compared with that in wild-type mice[24].  The mean temperature was
around 43°C, referring to the thermal activation of Aδ- and C-fibers[25-27]. Nociceptive
43°C and 45°C heat stimuli  at  ST36 and CV12, rather than non-nociceptive 41°C,
produced significant regulatory effects on gastric motility, and this effect was also
decreased in Trpv1−/− mice, but not in Asic3−/− mice[28,29]. Results from morphological
observations  confirmed  the  role  of  TRPV1  and  ASIC3.  Western  blotting  and
immunofluorescence results  demonstrated an abundance of  TRPV1, TRPV4, and
ASIC3 in the anatomical layers of ST36[30]. Components of calcium wave propagation
(CWP, the proposed downstream sensing pathway) were also co-expressed with
TRPV1. However, only TRPV1 is regarded as a responding channel for acupuncture
by sensing peripheral information and conducting signaling via  the CWP and the
excitatory phosphorylated glutamate ionotropic receptor NMDA type subunit 1-
phosphorylated calcium/calmodulin dependent protein kinase II pathway, offering a
comprehensive  understanding  of  the  physical  stimulation  by  acupuncture  of
neurological signaling[31].

AUTONOMIC NERVOUS SYSTEM MECHANISM OF
ACUPUNCTURE

The parasympathetic and sympathetic nervous system
Neural  networks  to  control  GI  motility  are  positioned  at  three  levels:  The
parasympathetic and sympathetic nervous system (PNS, SNS), the ENS, and the CNS.
Although  the  intestines  are  capable  of  functioning  in  the  absence  of  extrinsic
innervation, movements of the upper GI tract are much more dependent on extrinsic
neural  pathways,  and  the  motility  of  the  small  and  large  intestines  are  mainly
monitored by the ENS[32,33]. The PNS and SNS comprise one of the factors affecting
extrinsic innervation of GI contractility. The SNS provides a predominantly inhibitory
effect on GI motility, and in contrast, the PNS exerts both excitatory and inhibitory
control over GI motility.

The role of the somatoautonomic reflex, which was demonstrated by Sato and his
colleagues in the 1960s[34,35], is now considered the neurological basis of acupuncture in
GI motility modulation[36,37], and this modulation exerts a regional-specific effect[38,39]

(Figure 1). Stimulating acupoints in the abdominal area inhibits gastric, duodenal, and
jejunal motility by increasing sympathetic efferent fiber activity, and stimulating
acupoints in the limb, which, in contrast, facilitates the above-mentioned gut motility
by exciting vagal efferent fiber activity[18,40-43]. The effect of acupuncture on GI motility
could be attenuated by vagotomy or sympathectomy[16,44-46]. The β1 and β2 receptors
are expressed in the GI tract and serve as the predominant subtypes in the inhibitory
effects of the SNS on GI motility[47,48],  while the M2 and M3 receptors serve as the
predominant subtypes in the excitatory effects of the PNS on GI motility[49,50].  The
effect of acupuncture on GI motility could also be reduced by the corresponding
antagonist[51-54] and deletion of the gene encoding the β1&2 receptor or M2&3 receptor[55-57].
In  addition  to  the  excitement  effect,  lower  extremity  acupoints  also  suggest  an
inhibitory effect on GI movement, and the inhibitory rate of ST37/LI11 on gastric
movement  fluctuates  between 6.67%–1.33%[58,59].  Moreover,  the effect  of  ST36 on
gastric movement is reversed to inhibition after gene knockout of M2 and M3 receptor
subtypes[45], suggesting the involvement of other receptors. This might be caused by
activation of the other vagus pathway, the inhibitory non-adrenergic, noncholinergic
(NANC) pathway, whose transmitter is nitric oxide (NO) or vasoactive intestinal
polypeptide (VIP), to cause smooth muscle relaxation[60]. Zhu and his team explained
this type of region-specific effect using the spinal segmental innervation theory[46].
Stimulation  at  homotopic  acupoints  (with  the  same  spinal  segment  from  the
innervated visceral  organs) decreases GI pressure via  the sympathetic pathways,
while stimulation at heterotopic acupoints (with different spinal segments from the
innervated  visceral  organs)  facilitates  GI  motility  via  the  parasympathetic
pathways[41,56]. This effect applied not only to normal conditions, but also to rats with
diarrhea and constipation. It should be noted that this region- specific effect seems to
apply  only  to  the  regulation  of  GI  movements.  When  it  comes  to  the  effects  of
acupuncture on modulating the cardiovascular system, stimulations of the limbs,
chest,  and abdomen all  produce a similar effect  in terms of heart  rate and blood
pressure, yet whether the effect is excited or suppressed depends on the intensity of
the stimulus (or what type of fiber is  activated) and the tissue structure (skin or
muscle)[61-64].

The response time of acupoints at different sites might be another feature of the
regional specificity of the somatoautonomic reflex; however, this feature is rarely
noticed. According to a previous study[65], the abdominal acupoints for gastric motility
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Figure 1

Figure 1  Regional-specific effect of acupuncture on gastrointestinal motility and its autonomic nervous system mechanism. Stimulating the abdominal
acupoints inhibits gastric/duodenal/jejunal motility by increasing sympathetic efferent fiber activity; and stimulating acupoints in the limb facilitates motility by exciting
vagal efferent fiber activity. The effect of abdominal acupoints on gastrointestinal motility could be attenuated by sympathectomy or deletion of the gene encoding the
β1&2 receptor. The effect of limbic acupoints on gastrointestinal motility could be attenuated by vagotomy or M2&3 receptor gene knock out.

could be effective within 30 s with a shorter response time, while the acupoint of the
hindlimb was  effective  after  30  s  with  a  longer  response  time.  ST36  showed an
excitatory effect in a fast onset manner in sympathectomy rats and β1&2 knockout mice,
suggesting that sympathetic inhibition might be one of the key factors for the delayed
onset of ST36 and β1 and β2 receptors may underlie its receptor mechanisms[44,45].
Undoubtedly, the sympathetic pathway is activated by acupoints in the lower limbs;
evidence shows that  EA at  ST36/ST37 increased sympathetic  activity in healthy
volunteers using a heart rate variability analysis or microneurography evaluation of
the  left  peroneal  nerve[66,67].  This  mechanism  is  fully  elucidated  in  terms  of  the
cardiovascular  system  and  anti-inflammatory  effects[68,69];  however,  it  is  rarely
mentioned in the regulation of GI function. Therefore, the role of sympathetic nerve
pathways in regulating GI function by limbic acupoints is greatly underestimated and
further evidence is required.

When it comes to colonic motility, the situation is a bit more complicated, because
the effects of acupoints located in different areas on the proximal and distal colon are
inconsistent.  Acupuncture  at  the  acupoints  of  the  forelimb  (LI1–LI6  and  LI11),
abdomen (ST25), and back (BL25) had no significant effects on the proximal colonic
motility;  and  acupoints  of  the  hind  paw  (ST37)  increased  proximal  colonic
pressure[70-72]. Stimulation of the limbs (LI11, ST37, and ST36), abdomen (ST25), and
back (ST37) all produced an augmented effect on distal colonic motility regardless of
normal, constipated, or diarrheic state[73]. The mechanism underlies the cholinergic
pathway[74]. Apart from the segmental innervation theory, the regional neuro-feature
between  the  proximal  and distal  colon  might  offer  a  partial  explanation.  Vagal
innervation to the colon varies among species. In humans, the vagal efferent to the
large  intestine  ends  at  the  splenic  flexure,  and  the  remaining  part  receives
parasympathetic  input  from the  pelvic  nerves[75-77].  However,  studies  in  rodents
suggest that the efferent fibers of the vagus distribute throughout the entire colon[78,79],
which  is  supported  by  evidence  from  a  retrograde  neuronal  tracing  study[80].
Moreover, the distal colon is innervated via dual parasympathetic nerves, because the
pelvic nerve projects from the rectum through the mid colon. In addition, there are
regional differences in the innervation of the vagus nerve between the proximal and
distal colon[81-84], i.e., the fiber density and distribution of neurotransmitters, such as
acetylcholine, within the ganglions is different from each other. It is possible that the
regional difference underlies the inconsistency of EA in regulating the motility of the
proximal and distal colons. Besides, the regional complexity in the enteric neuron[85]

and pelvic ganglion (contain both postganglionic sympathetic and parasympathetic
neurons) innervated colon might also add to the complexity of acupuncture-mediated
modulation of GI motility[86-88].

ENS MECHANISM OF ACUPUNCTURE
In contrast to the innervation of other peripheral organs, the GI tract has an extensive
intrinsic nervous system (the ENS), which modulates its functions, including motility,
secretion, blood flow, immunity, and maintenance of the integrity of the epithelial
barrier. The major components of the ENS are myenteric plexuses and submucosal
plexuses, which contain numerous enteric neurons and glial cells.  The myenteric
plexuses distribute from the upper esophagus to the internal anal sphincter, forming a
continuous  network to  control  GI  motility.  The  submucosal  plexuses  are  closer,
allowing them to sense the lumen environment and regulate GI blood flow, as well as
controlling epithelial cell functions and secretion[89]. Basically, enteric neurons can be
classified into three types according to their  function:  Motor neurons (including
inhibitory  neurons  and excitatory  neurons),  sensory neurons,  and interneurons.
Different neurons in the ENS neural network regulate GI movement by releasing
different  transmitters.  These  transmitters  include  excitatory  transmitters,  like
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acetylcholine, opioid peptides, and 5-HT; and inhibitory transmitters such as VIP and
NO.

Enteric motor neurons
The importance of the ENS in the neuropathy of GI dysmotility is highlighted by a
wide range of diseases that are grouped as congenital, acquired (such as slow transit
constipation), and secondary disorders (such as diabetic gastroparesis)[32]. Wedel et
al[90] found that the number of nerve cells decreased significantly within the myenteric
plexus  and  external  submucous  plexus  in  patients  with  idiopathic  slow-transit
constipation by observing the neuronal marker Protein Gene Product 9.5 (PGP9.5),
confirming the role of ENS in GI motility. PGP9.5-positive cells were also markedly
decreased in the jejunum, ileum, and proximal colon myenteric plexus of mice with
constipation[91]. EA has shown a benign regulatory effect in STC; however, much less
is known about its mechanism with reference to the ENS, and a series of studies
suggested that EA could restore GI motility by controlling excitatory and inhibitory
neurons. ST37, an acupoint in the limb, improved the carbon propulsion rates and
defecation time and increased the total PGP9.5 expression in the jejunum, ileum, and
proximal colonic myenteric plexus[92].  Further results indicated the restoration of
enteric neuron function by downregulating the level of nitric oxide synthase (nNOS,
secreted by inhibitory neurons to induce relaxation) and upregulating the expression
of  choline  acetyltransferase  (ChAT,  secreted  by  excitatory  neurons  to  induce
contraction).  While  ST25,  located in  the  abdomen,  could only  downregulate  the
expression of nNOS; therefore, the regulatory effect of EA on enteric neurons seems to
act in a region-specific manner[72] (Figure 2).

Loss of enteric neurons is one the most important neuropathies that contribute to
GI  dysmotility  in  diabetic  rats,  and this  change may be  mediated,  in  part,  via  a
reduction of glial cell derived neurotrophic factor (GDNF) and its main downstream
signaling pathway phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein
kinase  B (AKT),  which is  a  survival  signal  for  enteric  neurons[93,94].  Decreases  in
PGP9.5, nNOS, and ChAT neurons in the colon of diabetic rats led to disordered
gastric emptying and intestinal transit[95,96]. After long-term intervention, EA at ST36
induced regeneration of lost enteric neurons[97]. Meanwhile, the mRNA and protein
level of GDNF, an important neurotrophic factor of enteric neurons, and p-AKT in the
colon were upregulated,  suggesting the role  of  GDNF and the PI3K-AKT signal
pathway in the mechanism of EA-induced regeneration of impaired enteric neurons.

Enteric sensory neurons
Purinergic  P2X  receptors  contribute  to  neurotransmission  in  subsets  of  enteric
neurons  of  the  GI  tract  and  P2X3  receptor  immunoreactivity  was  found  in  the
myenteric  neurons of  the esophagus,  stomach,  and small  and large intestines  of
rodents, of which the major types of neurons are excitatory, inhibitory muscle motor
neurons, and interneurons[98,99]. However, the evidence for P2X3 receptor involvement
in GI motility is limited. Studies have reported that P2X3 gene knockout mice exhibit
a  feature  of  impaired  gut  peristalsis[100,101].  P2X3  subunits  are  localized  to  after
hyperpolarizing  neurons[102],  which  are  likely  to  be  intrinsic  intestinal  sensory
neurons.  The  impairment  of  peristalsis  caused  by  P2X3  gene  deletion  was
independent of the changes in the muscarinic receptor or nicotinic receptor function
in the longitudinal muscle layer, suggesting that the P2X3 receptor underlies the
sensory mechanisms in the myenteric plexus that mediate peristalsis, and plays an
important role in mechanosensitivity and hypersensitivity[103]. The therapeutic effect of
EA on IBS has been confirmed by a substantial body of literature from clinical data,
and the mechanism involves alleviating mechanosensitivity and hypersensitivity[104],
where P2X receptors might serve as novel targets[105]. Electroacupuncture has been
suggested  to  regulate  the  P2X3  receptor  located  in  the  neurons  of  the  colonic
myenteric plexus of IBS rats[106]. Whether this has a crucial role in the other parts of the
GI tract has not yet been reported, and the results of this study[104] provide clues for
further research.

Enteric glia cells
The ENS contains a large amount of enteric glial cells (EGCs) surrounding neurons to
regulate  neuronal  activity  and  protect  the  gut  in  different  ways,  including
maintaining the intestinal  barrier  function and the inflammatory process,  which
facilitate the control of GI motility[107]. Animals with genetic elimination of enteric glia
develop jejuno-ileitis inflammation[108] and intestinal dysmotility in a sex-dependent
manner[109], confirming the pivotal role of EGCs in GI motility disorders[110].

Hemorrhagic shock is frequently accompanied by bowel stasis following intestinal
ischemia and reperfusion injury. The initiated inflammatory response, including the
production  of  cytokines  and  recruitment  of  leukocytes  within  the  intestinal
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Figure 2

Figure 2  The enteric nervous system mechanism of acupuncture. Stimulation at ST37 and ST25 had different effects on colonic motility in terms of the effects on
excitatory and inhibitory neurons in the enteric nervous system. A: Sympathetic pathway; B: Parasympathetic pathway; 1: Inhibitory neurons; 2: Excitatory neurons; 3:
Myenteric intrinsic primary afferent neurons; 4: Submucosal intrinsic primary afferent neurons; 5: Secretomotor/vasodilator neurons; LM: Longitudinal muscle; MP:
Myenteric plexus; CM: Circular muscle; (+): Effective, (−): Ineffective[72]; ENS: Enteric nervous system.

muscularis,  contributes  to  impaired  muscle  contractility  and  mucosal  barrier
function[111]. In addition to promoting gastric emptying, EA at ST36 was also reported
to decrease intestinal injury and alleviate inflammation to prevent intra-abdominal
adhesion, which serves as one of the main causes of intestinal obstruction[112,113]. This
protective  effect  provided  by  EA  acts  partly  via  activation  of  EGCs  to  secrete
substances  that  regulate  the  gut  function  via  activation  of  the  cholinergic  anti-
inflammatory pathway[114,115],  because both blockage of  the cholinergic α7nAChR
subunit by α-bungarotoxin and vagotomy could weaken or eliminate the effects of EA
at ST36.

Apart  from the above-mentioned function,  enteric  glia  are  emerging as  novel
regulators of enteric reflex circuits that contribute to the regulation of GI motility[116].
Delvalle et al[117] provided the first evidence that EGCs have effects on gut motility
through modulation of excitatory reflexes involved in GI motility, and activation of
glial  M3  and  M5  subtypes  of  muscarinic  receptors  contributes  to  this  kind  of
physiological regulation. Genetic ablation of M2 and M3 receptors diminished the
enhancement of  GI motility by EA at  ST37[53];  however,  whether the subtypes of
muscarinic receptors of EGCs are involved requires more evidence.

CNS MECHANISM OF ACUPUNCTURE
As described previously, the extrinsic neural pathway participates in the modulation
of  GI  functions.  The  CNS,  as  another  important  factor  of  extrinsic  innervation,
provides its extrinsic neural inputs to control GI motility in a more widespread and
integrated  manner,  which  involves  the  spinal  cord,  medulla,  midbrain,  and
mesencephalon. The regulatory effect of acupuncture on GI movement also requires
the participation of the CNS at multiple levels by changing the activities of the nuclei
related to GI movement, including the dorsal motor nucleus (DMV), the solitary tract
nucleus  (NTS),  the  raphe  nuclei,  the  lateral  hypothalamic  area  (LHA),  and  the
paraventricular nucleus of the hypothalamus (PVN), which have been confirmed by
neuroanatomical tracing following the injection of a neuronal tracer into the stomach
and ST36, respectively[118,119].  The role of acupuncture on the nuclei of the CNS is
summarized in Table 1.

Brain stem
The dorsal vagal complex: A large volume of sensory information of the GI tract, both
mechanical and chemical,  is transmitted mainly to the NTS via  the vagal afferent
fibers. This information is integrated by NTS neurons and then conveyed to the motor
DMV, using γ-aminobutyric acid (GABA), glutamate (Glu), and norepinephrine as the
main  neurotransmitters  to  modulate  vagal  efferent  innervation  and GI  motility
through the vagal ACh or NANC pathways[120-122]. The NTS and DMN constitute the
dorsal  vagal  complex  (DVC),  the  main  neuroanatomical  structure  of  vagovagal
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Table 1  The role of acupuncture on the nuclei of the central nervous system

The nuclei Acupoint Function Ref.

Brain stem

DVC ST36, ST37 Activate neurons discharge
[123]

DVC RN12, BL21 Increase fos expression
[126]

DVC RN12, BL21 Motilin and gastrin
[190]

DVC ST36 Inhibited the release of SP
[133]

DVC ST36 Increased the expression of astrocytic and microglial
[138]

DMV PC6 Modulate vagovagal neurocircuits
[44]

DMV ST36 Modulate vagovagal neurocircuits
[45]

NTS and DMV ST36, T25 Increased the number of c-Fos immunopositive cells
[150]

The cerebellum

FN ST36, LI11, BL21, and CV12 Elevate the spontaneous discharge
[159]

MV ST36, LI11, and BL21 Modulated the activity of GD neurons
[176]

The hypothalamus

PVN BL23, BL18, LR14, GB25, GB24, LR13, DU14 Activate CRH-like neurons; modulate the expression of CRH and the GR
[182]

PVN ST36 and PC6 Decreased the numbers of double-labeled OT neurons and c-fos neurons
[187]

LHA ST36 Abolished the inhibitory reaction induced by GD
[170,199]

LHA ST36, ST25 Modulate the levels of NA, serotonin (5-HT), and the activity of ATPases
[200]

LHA ST36 and ST25 Alter the activity of the glucose-sensitive neurons
[201]

ARC ST36, SP6 Increased α-MSH and POMC
[218]

ARC SP6, ST36 Regulates the expression of neuropeptide Y and POMC neurons
[220]

DVC: Dorsal vagal complex; DMV: Dorsal motor nucleus; NTS: Solitary tract nucleus; SP: Substance P; FN: Fastigial nucleus; MV: Medial vestibular
nucleus; GD: Gastric distention; PVN: Paraventricular nucleus of the hypothalamus; LHA: Lateral hypothalamic area; ARC: Arcuate nucleus; CRH:
Corticotrophin-releasing hormone; OT: Oxytocin; GR: Glucocorticoid receptor; NA: Noradrenaline; α-MSH: The melanocyte-stimulating hormone receptor;
POMC: Precursor proopiomelanocortin.

reflexes.  The  role  of  DVC in  acupuncture-mediated regulation of  GI  function is
supported  by  multiple  pieces  of  evidence  from  morphological,  neuroele-
ctrophysiological, and neurochemical studies. While regulating the electro activity of
the stomach, EA at ST36 and ST37 could modulate the firing of the neurons in the
NTS and DMV, and increase their Fos expression[46,123-126]. Moreover, with the help of a
lesion-making  device,  the  DVC  was  damaged,  which  resulted  in  GI  tract
dysfunction[127], and EA lost its regulatory effect on gastric motility, confirming the
important role of DVC in EA-mediated regulation of GI function[123,128].

Brain-gut peptides play an important role in GI function. There is a long list of GI
peptides that are capable of regulating GI motility. They are secreted by endocrine
cells of the gut as neurotransmitters and neuromodulators, and distribute to the CNS
to regulate GI functions[129-131]. A fewer years later, another study demonstrated that
EA at RN12 and BL21 enhanced the production of GI hormones, such as motilin and
gastrin, in the DVC[126]. In addition, acupuncture stimulation at ST36 could modulate
the concentration of VIP, motilin, ghrelin, and gastrin in serum[132]. Microinjection of
substance P (SP), another candidate brain-gut peptide, into the DVC inhibited gastric
motility via  the NK-1 receptor, whereas EA at ST36 enhanced gastric myoelectric
activity and simultaneously inhibited the release of SP in the DVC, suggesting that SP
in the DVC is involved in the effect of EA on gastric myoelectric activity[133]. These
data implied the role of neurons in the DVC in the effect of EA on GI movement. The
activities of brain-gut peptides are complicated, and their mechanisms differ from
each other.  In  the  detection  of  the  same brain-gut  peptide  in  patients,  different
scholars  may  have  drawn  different  conclusions,  and  have  not  mentioned  their
complex  interconnections.  An  in-depth  study  of  brain-gut  peptides  and  their
relationship with acupuncture would be conducive to a better understanding of the
mechanism of acupuncture in GI motility.

Glia constitute almost half of the cells in the CNS. Given the emerging evidence,
glial cells have been highlighted in many aspects of CNS function, rather than acting
as static bystanders as was long believed. Continued elucidation of glial cell biology,
and the dynamic interactions of neurons and glia, will enrich our understanding of
nervous system health and diseases[134]. Research on acupuncture-mediated regulation
of glial cells is increasing year by year, in such fields as analgesic processes, anti-
inflammation, and GI function[135-137]. Studies suggest that EA at ST36 significantly
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increased the expression of astrocytic (glial fibrillary acidic protein) and microglial
(OX-42) marker cells in the DVC and regulated gastric activity. Propentofylline (PPF,
a blocker of both microglial cells and astrocytes) attenuated the activation by EA of
gastric activity, suggesting that EA regulation of gastric activity might be related to
the glia in the DVC[138]. Although the function of DVC glia in the effect of EA on GI
motility has been suggested, the data remains very limited, and the hypothesis must
be verified via further studies.

Vagovagal neurocircuits comprise specific nuclei, including the NTS and DMV.
NTS neurons receive and converge the somatic and visceral sensory information[139-141],
whereas the DMV is the origin of vagal efferent fibers, modulating gastric motility as
well as other visceral functions (e.g., vagal neurocircuitry and its influence on gastric
motility). GABA is the main neurotransmitter that transmits information from the
NTS to the DMV. Injection of L-Glu into the DMV might lead to a change in gastric
activity[142-144], and whether the effect is excited or suppressed depends on the injection
site (rostrum or posterior)[145]. Microinjection of GABA into the DMV decreased gastric
motility, whereas microinjection of bicuculline, a GABA antagonist, increased gastric
motility[146,147].  EA at  PC6 showed no marked change after  the injection of  L-Glu;
however, gastric movement and the parasympathetic nerve firing after injection of
GABA were enhanced, indicating that GABA transmission of the DMV underlies the
facilitation of EA at PC6 on gastric motility[44]. EA at ST36[45] is capable of modulating
gastric motility after the injection of L-Glu and GABA, suggesting that both Glu and
the GABA receptor in the DMV participate in promoting the gastric motility effect of
EA at ST36, i.e.,  EA at ST36 and PC6 modulate gastric motility via  the vagovagal
reflex.

The rostral ventrolateral medulla:  The rostral ventrolateral medulla (RVLM), the
final area for the integration of sympathetic nerve activity (SNA)[148], processes a large
volume of pre-sympathetic (sympathoexcitatory) neurons that project directly into the
intermediolateral (IML) column of the spinal cord, and modulates the sympathetic
control of visceral functions[149]. Takahashi et al[150] reported that acupuncture at ST-36,
but not at ST25, increased the number of c-Fos immunopositive cells at the NTS and
DMV, while acupuncture at ST25 specifically increased the number of cells at the NTS
and RVLM. This suggested that somatic afferents activated by acupuncture at ST36
are conveyed to the NTS and then stimulate the DMV neurons. In contrast, somatic
afferents activated by acupuncture at ST25 are conveyed to the NTS and stimulate
RVLM neurons. This deduction was supported by anatomical and functional evidence
that demonstrated a robust excitatory input from NTS neurons to neurons within the
RVLM[151].  In  spinal  functional  magnetic  resonance  imaging  research,  multiple
activations of grey matter (including the spinal dorsal horn and IML) in T8 and T9
vertebrae showed a response to stimulation on ST25[152]. Another study found that
ST25,  ST37,  and LI11 could all  change the firing rate  of  the IML; however,  ST25
showed  the  strongest  effect.  It  could  be  concluded  that  the  NTS–RVLM–IML-
sympathetic and NTS–DMV–parasympathetic pathways, respectively, underlie the
neural  anatomical  evidence of regional specific  effects of  acupuncture on gastric
motor function in rats. However, RN12, BL 21, and ST25 are located in the abdomen
and back, and share similar segment innervation, yet c-fos expression in the NTS and
DMV was statistically increased by EA stimulation at RN12 and BL21; therefore, this
anatomical  evidence  of  a  regional  specific  effect  requires  further  research  for
verification.

The cerebellum
The fastigial nucleus: The cerebellum is traditionally viewed as a subcortical motor
center; however, behavioral, anatomical, and neuroelectrophysiological studies have
shown that  the  cerebellum also  has  an important  regulatory role  in  the  visceral
activities  of  the  body[153].  The  fastigial  nucleus  (FN)  is  the  oldest  nucleus  in  the
cerebellum and inhabits a key position in the regulation of nonsomatic functions,
including the GI movement and feeding, among the nuclei of the cerebellum[154,155].
Electrical stimulation of the cerebellum can affect GI movement through the vagal and
sympathetic  nerve  pathways[156-158]:  Activation  of  adrenergic  fibers  to  release
catecholamines,  and activation of cholinergic fibers to inhibit  or facilitate gastric
movement. In addition, studies have shown that electrical stimulation of the FN has a
protective effect  on the gastric  mucosa by reducing gastric  ischemia-reperfusion
injury and apoptosis of gastric mucosal cells in rats. Needling at ST36, LI11, BL21, and
CV12 could elevate the spontaneous discharge frequency of cerebellar FN neurons;
however, CV12 seems to have an advantageous role in regulating the cerebellar FN,
partly confirming the role of the FN in the central pathway of acupuncture-mediated
regulation of GI function[159].

The direct bidirectional pathways between the cerebellum and the hypothalamus
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have been demonstrated in a series of neuroanatomical investigations, forming a part
of the circuits underlying cerebellar autonomic modulation[160,161]. The FN is one of the
originating nuclei of the cerebellar-hypothalamic projection, and is the main structure
that modulates GI activities in the cerebellum. Recently, the FN-LHA loop has been
investigated[162], and is likely to serve as the neural basis for regulating GI functions[163].
Gastric vagal and cerebellar fastigial nuclear signals converge on glycemia-sensitive
neurons of the LHA in rats[164].  Electrical and chemical stimulation of the FN had
neuroprotective  effects  on  gastric  mucosal  stress  injury  and  gastric  ischemia-
reperfusion damage in rats, and pre-damage of the FN or LHA could eliminate the
protective effect of the FN[165-169]. Extracellular recording results suggested that the
signal of gastric distention (GD) and acupuncture at ST36 converged in the LHA and
FN, and acupuncture could modulate the activities of different types of GD-sensitive
neurons in the LHA and FN, indicating that the LHA-FN circuit might participate in
the central integration mechanism of acupuncture’s effects on gastric function[170].
However, whether the LHA-FN circuit, which underlies the effect of acupuncture on
GI function, acts through the sympathetic nerve or parasympathetic nerve requires
further research.

The vestibular nucleus: The vestibular nucleus (VN) is the initial structure of the
central processing of vestibular orientation information and receives projections from
the vestibular nerve, playing a special role in regulating GI function. The work of
Gagliuso  et  al[171]  and  Ruggiero  et  al[172]  demonstrated  the  neuroanatomy  of  the
vestibulo-solitary pathway, providing an anatomical explanation for the autonomic
changes observed, including GI responses, after peripheral vestibular activation[171,172].
The medial  vestibular nucleus (MV) is  the area with the largest  volume and cell
number in the vestibular nucleus. Direct fiber projection also exists in the MV and
dorsal  vagus  nucleus[173,174].  The  technique  of  retrograde  axonal  transport  of
horseradish peroxidase in the MV identified a group of neurons sending axons to the
"stomach" region of a single tract nucleus, and local irritation of the neurons initiated
relaxation of the stomach wall[175]. GD and acupuncture at different acupoints (ST36,
LI11, and BL21) modulated the activity of the neurons within the MVN, suggesting
that the MVN is partly involved in the central integration mechanism underlying
acupuncture-mediated regulation of gastric functions[176].

The hypothalamus
The hypothalamus is located on the ventral thalamus and contains distinct groups of
nuclei and bundles that regulate a variety of autonomic functions by interconnecting
with  other  parts  of  the  CNS.  Among them,  the  PVN,  the  LHA,  and the  arcuate
nucleus (ARC) are particularly important in the regulation of GI functions.

The paraventricular nucleus of the hypothalamus:  The PVN is located near the
periventricular zone of the medial hypothalamus, and emerges as one of the most
important autonomic control centers via its secretion of a variety of peptides[177,178].
Among  them,  corticotrophin-releasing  hormone  (CRH)  and  oxytocin  (OT),
synthesized by magnocellular and parvocellular neurons within the PVN for release
into  the  hypophysial  portal  system  or  projection  to  other  central  nuclei,  are
particularly important in the regulation of GI functions, especially stress-induced
alterations of GI motility[179,180]. Studies have shown that corticotropin-releasing factor
(CRF) activates DMV neurons and decreases gastric motility via activation of the vagal
NANC  pathway[181].  Few  data  are  available  focusing  on  acupuncture-mediated
regulation of CRH function, and these data suggest that acupuncture could activate
CRH-like  neurons  and modulate  the  expression  of  CRH and the  glucocorticoid
receptor (GR) in the PVN[182]. Rinaman et al[183] showed that the PVN is the sole source
of OT-immunopositive fibers and terminals in the DVC. Microinjection of OT into the
DMV or  PVN resulted in  inhibition of  gastric  motility;  however,  this  effect  was
ameliorated by vagotomy or microinjection of an OT receptor antagonist into the
PVN[184]. Llewellyn’ s work provided the anatomical basis for the functional pathways
in GI motility regulation by OT: As a neurotransmitter, OT is transmitted from the
PVN to the DVC, where it activates motor neurons of the brainstem vagus nerve via
the NANC pathway, thereby inhibiting GI movement[185,186]. EA at the limbic acupoints
ST36 and PC6 increased the intragastric  pressure and decreased the numbers of
double-labeled OT neurons and c-fos neurons within the PVN[187]. However, the effect
of acupuncture was significantly decreased after dorsolateral funiculus or spinal cord
transection, suggesting that the dorsolateral funiculus is the main conduction bundle
responsible for acupuncture signal transduction into the PVN[188]. Knockout of the OT
gene accelerated gastric emptying, and influenced the effect of acupuncture, further
confirming  the  paraventricular  nucleus  OT  neurons  as  the  initiating  device  of
autonomic nervous pathways, which might participate in EA-mediated regulation of
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gastric  motility,  in  the  form  of  neural  and  neuroendocrine  stimuli[189].  Thus,
acupuncture signals gather in the DVC and PVN. PVN lesions cause a decrease in
gastric motility, and EA is unable to restore it, demonstrating that the PVN is another
central target of acupuncture’s regulation of gastric motility[190]. Taken together, these
data suggest that the acupuncture signal is transmitted to the solitary nucleus through
the spinal cord, and after initial integration by the solitary nucleus, the ascending
projection activates the PVN. The descending projection is performed by the PVN-
DVC-vagal nerve pathway, through the nerve system and neuroendocrine system to
regulate GI function.

The  lateral  hypothalamic  area:  The  LHA  is  linked  to  celiac  sympathetic  and
parasympathetic  nerves,  and  regulates  metabolic,  behavioral,  and  autonomic
functions, and serves as the feeding center[191]. Its influence on GI function and feeding
behavior might be mediated by the DVC. As early as the 1980s,  with the help of
tracing techniques, an anatomical connection was found between the LHA and the
dorsal DVC[192,193]. Moreover, this pathway involves multiple neurotransmitters and
neuropeptides, including the projection of ghrelin neurons[194-196]. Ghrelin has central
and peripheral actions in gut motility, and its receptors are regarded as targets for
novel motility drugs[197,198]. Ghrelin fibers originating in the LHA project into the DVC.
The electrical stimulation of the LHA promotes gastric motility and GD neurons in the
DVC, and this excitatory effect is partially blocked by pretreatment with a ghrelin
receptor antagonist and is diminished by an electrical lesion of the DVC. Cisplatin-
treatment could weaken this excitatory effect of electrical stimulation in the LHA.

Somatic input from ST36 abolished the inhibitory reaction of the LHA induced by
gastric distention[170,199].  Acupuncture could modulate the levels of noradrenaline,
serotonin (5-HT), and the activity of ATPases in the LHA[200]. However, ST36 and ST25
are able to alter the activity of the glucose-sensitive neurons within the LHA, which is
also the candidate target of ghrelin[201-203]. Increasing numbers of investigations have
focused on the role of acupuncture in the peripheral actions of ghrelin in gut motility
in the clinic[204,205]. The level of plasma ghrelin was measured in patients with GI cancer
and obesity[206,207] and in mice. The results suggested that acupuncture has a benign
effect on the modulation of ghrelin secretion. However, the literature on the central
role  of  acupuncture  on  ghrelin  secretion  is  limited.  It  has  been  confirmed  that
acupuncture can activate the TRPV1 receptor[21,23,30,31], which can also be activated by
capsaicin  during  GI  motility,  i.e.,  acupuncture  has  a  similar  effect  to  capsaicin.
Capsaicin regulates the central action of ghrelin[194-196]; therefore, we speculated that
acupuncture also has a central regulatory effect on ghrelin, which requires further
data to prove this.

Hypothalamic arcuate nucleus: The ARC is located at the base of the hypothalamus
and adjacent to the third ventricle. It receives extensive afferent inputs and processes
efferent fibers projecting to other central regions, underlying its role in the regulation
of autonomic functions, including GI functions[208-210]. Stimulation of neurons in the
ARC has been demonstrated to increase colonic motility[211] and inhibit gastric phasic
contractions[212] as well as gastric acid secretion via vagal pathways[213]. Its effect on the
colon could be blocked by microinjection of CRF antagonists into the PVN, suggesting
that an Arc-PVN neurocircuit might be involved in the regulation of GI functions via
vagal efferent fibers.

The  role  of  ARC  in  the  modulation  of  acupuncture  has  been  demonstrated;
however, most research has been confined to the area of analgesia[214]. Applying the
tracing technique, the afferent pathways of CV4 were explored. After the injection of
Pseudorabies virus (PRV) into the acupoint of CV4, nuclei such as ARC and PVN
showed PRV-immunoreactive neurons in normal rats[215].  Other results from Fos-
CreER-based genetic mapping indicated that acupuncture at PC6 activates a series of
regions, including the ARC and PVN[216]. These studies confirmed that ARC could
receive the somatic fibers of acupuncture and modulate its activity. Following ligation
of  the ARC, the effect  of  acupuncture on the electrogastrography of  rabbits  was
attenuated[217],  providing anatomical and physiological evidence for the ability of
acupuncture to regulate GI motility via the ARC. EA treatment increased the peptide
levels of the melanocyte-stimulating hormone receptor (α-MSH) and the mRNA levels
of its precursor proopiomelanocortin (POMC) in the ARC of hypothalamic neurons of
rats  with  diet-induced  obesity[218].  In  addition,  acupuncture  also  regulates  the
expression  of  neuropeptide  Y,  a  cocaine  and amphetamine-regulated  transcript
peptide[219,220], together with POMC neurons in the ARC, playing an important role in
feeding  and gastric  emptying,  which  is  potentially  in  a  pathological  state[221,222];
therefore, feeding-related peptides in the ARC might underlie another mechanism by
which acupuncture regulates GI motility.

WJG https://www.wjgnet.com June 21, 2020 Volume 26 Issue 23

Yu Z. Acupuncture in GI motility

3191



CONCLUSION
Although  marked  progress  has  been  made  in  revealing  the  neural  mechanism
underlying acupuncture’s effects on the GI tract, there is still a lot of work to be done
to unravel the complex interaction between the peripheral and CNSs, as well as the
distinct CNS areas related to the integration of GI homeostatic functions. Acupuncture
is a physical stimulus. When the needle penetrates the body, the mechanical force
generated directly or indirectly acts on the acupoint area. The mechanical stimulation
translates into neurochemical signals, inducing a somatic afferent signal; however,
only when the intensity of the stimulus is over the threshold of the Aδ and/or C-
fibers can acupuncture obviously modulate GI motility, whose receptor mechanism
mainly relies on TRPV1. In the process of acupuncture, a regional-specific effect is
exhibited in the modulation of GI motility, the neurological basis of which is now
considered to be the somatoautonomic reflex, and the spinal segmental innervation
hypothesis could be borrowed to explain it: Stimulation at homotopic acupoints (with
the  same spinal  segments  from the  innervated  visceral  organs)  decrease  the  GI
pressure via the sympathetic pathways (mainly involving β1 and β2 receptors), while
stimulation  at  heterotopic  acupoints  (with  different  spinal  segments  from  the
innervated visceral organs) induces GI facilitation via  parasympathetic pathways
(both cholinergic and NANC vagal efferents are involved). Other than that, the ENS,
including enteric neurons and glia cells, also adds to the effect of acupuncture on the
modulation of GI motility. The CNS provides its extrinsic neural inputs to control GI
motility  in  a  more  widespread and integrated  manner.  The  regulatory  effect  of
acupuncture on GI movements also requires the participation of the CNS at multiple
levels.  In  this  review,  only  some  nuclei  of  the  brain  stem,  cerebellum,  and
hypothalamus are discussed, because of the complexity of the CNS and the blurred
relationship between distinct nuclei in the CNS and acupuncture. Those connections
among the  nuclei  constitute  the  anatomical  and  functional  basis  controlling  GI
motility.  The  acupuncture  signals  over  GI  functions  were  also  analyzed  and
integrated  through  this  connection.  Applying  modern  and  constantly  updated
technology is  conducive to  gaining a  better  understanding of  the  mechanism of
acupuncture’s effects on GI motility.
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