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Background.  Enterovirus A71 (EV-A71) has been noted for its tendency to lead to neurological manifestations in young children 
and infants. Although the alimentary tract has been identified as the primary replication site of this virus, how EV-A71 replicates in 
the gut and is transmitted to other organs remains unclear. 

Methods.  By using differentiated C2BBe1 cells as a model, we observed that intestinal epithelial cells (IECs) were permissive to 
EV-A71 infection, and viral particles were released in a nonlytic manner. 

Results.  The coexistence of active caspase 3 and EV-A71 protein was observed in the infected undifferentiated C2BBe1 and RD 
cells but not in the infected differentiated C2BBe1 cells. Furthermore, EV-A71 infection caused differentiated C2BBe1 and intes-
tinal organoids to secrete exosomes containing viral components and have the ability to establish active infection. Inhibition of the 
exosome pathway decreased EV-A71 replication and release in IECs and increased the survival rates of infected animals. 

Conclusions.  Our findings showed that EV-A71 is able to be actively replicated in enterocytes, and that the exosome pathway is 
involved in the nonlytic release of viral particles, which may be useful for developing antiviral strategies.

Keywords.   EV-A71; exosome; infection; intestinal epithelial cells; nonlytic.

Enterovirus A71 (EV-A71) is a nonenveloped, positive-sense, 
single-stranded ribonucleic acid (RNA) virus belonging to the 
family Picornaviridae. Enterovirus A71 is a highly infectious 
pathogen associated with various diseases, including hand-
foot-and-mouth disease and herpangina, and it may cause 
neurological complications in young children that have been 
shown to correlate with virus-induced mortality [1]. Outbreaks 
of EV-A71 occur periodically in the Asia-Pacific region [2], al-
though little is known regarding its pathogenesis, and there is 
still no effective treatment for infections caused by this virus.

Enterovirus A71, like several other picornaviruses, are trans-
mitted through the oral-fecal route, where the viral particles can 
be released in the feces and infect others through ingestion. It is 
believed that enteroviruses are replicate in the alimentary tract 
and then disseminate to other organs [3]. The gastrointestinal 

tract is covered by epithelium comprising various cell types, in-
cluding absorptive columnar epithelial cells, goblet cells, Paneth 
cells, and Tuft cells [4]. Differentiated intestinal epithelial cells 
(IECs) have been demonstrated to serve as target cells for some 
picornaviruses [5, 6]. Previous studies have demonstrated that 
colorectal cancer-derived HT-29 epithelial cells are permis-
sive to EV-A71 infection, indicating that IECs may be suscep-
tible to EV-A71 infection [7, 8]. However, it is not clear how 
EV-A71 replicates in the gastrointestinal tract and disseminate 
to other organs.

Current evidence suggests that EV-A71 use exosomes to facil-
itate viral spread in cultured neural NSC-34 and RD cells [9, 10].  
Exosomes are small, lipid bilayer-enclosed vesicles released by 
various cell types [11] that are able to transfer proteins, pep-
tides, and nucleotides to other cells and have been demon-
strated to play essential roles in intracellular communication 
[12]. Exosomes derived from infected cells can carry viral com-
ponents, such as viral proteins and genomes or even the whole 
viral particles to uninfected cells and establish viral replication. 
Hepatitis A virus (HAV), a member of the Picronaviridae family, 
is released in cell-derived membranes, and these exosome-like 
enveloped viruses are fully infectious [13]. Exosomes isolated 
from hepatitis C virus (HCV)-infected cells have been shown 
to contain viral RNA, viral protein, and particles and are able 
to transmit infection to naive cells [14]. Furthermore, the lipid 
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layer of exosomes may provide protection for the enclosed com-
ponents. For example, hepatic exosomes aid the transmission 
of HCV through their ability to resist the neutralization anti-
bodies [14, 15]. Hepatitis E virus (HEV) infected cell-derived 
exosomal fractions have been shown to contain virus RNA-
encapsulated vesicles that are resist to anti-HEV antibodies 
[16]. These observations suggest that the extracellular vesicles 
released from host cells during viral infections may play roles in 
facilitating viral replication. In addition to HAV, other picorna-
viruses such as CVB3 and cricket paralysis virus are capable of 
utilizing cell-derived vesicles to escape host cells and facilitate 
viral dissemination [17, 18]. Nevertheless, whether EV-A71 
subvert exosome machinery to leave infected IECs and infect 
other cells is not clear.

In this study, we showed that differentiated IECs support 
the active replication of EV-A71. Furthermore, EV-A71 viral 
particles are released in a nonlytic manner accompanied by an 
enhanced release of exosomes that contain viral components 
and are able to establish a productive infection. Furthermore, 
exosome inhibitors not only showed anti-EV-A71 activities 
in differentiated IECs, they also increased the survival rates 
of infected animals. Therefore, the exosome pathway plays 
essential roles that allow EV-A71 to replicate and exit differ-
entiated IECs, providing a potential strategy to treat EV-A71 
infections.

METHODS

Differentiation of C2BBe1 Cells

C2BBe1 cells were seeded in culture plates at a density of 
5 × 105 cells/cm2 and cultivated in medium containing half in-
testinal epithelium differentiation medium (Corning, Corning, 
NY) and half C2BBe1 culture medium. After 24 hours, the me-
dium was changed to intestinal epithelium differentiation me-
dium consisting of 100× diluted ITS-A supplement (Invitrogen, 
Carlsbad, CA) and incubated for 48 hours.

Animals

Transgenic mice expressing hSCARB-2 (hSCARB2-TG) were 
maintained in an animal room under a 12:12 dark/light cycle 
and provided standard chow and water ad libitum.

Animal Experiment

The animal protocols used in this study were approved by the 
Institutional Animal Care and Use Committee of Chang Gung 
University. The hSCARB2-TG mice were used in this study. 
Twenty-one-day-old mice were intragastrically administered 
GW4869 (3 mM in 50 μL) 2 hours before being orally infected 
EV71 strain MP4 (2  ×  106 plaque-forming units per mouse). 
Subsequently, GW4869 was orally administered at 24 and 48 
hours postinfection (p.i.), with phosphate-buffered saline used 
as a control, and the survival rates of infected animals were 
recorded.

Statistics Analysis

All experiments involving triplicate data are expressed as the 
means ± standard deviation. Statistical analyses were performed 
using Student’s t test, and differences were considered signifi-
cant at *, P <  .05, **, P <  .01, and ***, P <  .001. Supplemental 
experimental procedures are included in the Supplemental 
Information.

RESULTS

Differentiated Intestinal Epithelial Cells Are Susceptible to Enterovirus 

A71 Infection

After treatment with differentiation medium, the IEC line 
C2BBe1 could be converted into cells that expressed the 
markers for mature polarized enterocytes [19]. The expression 
levels of E-cadherin, CDX-2, and occludin were enhanced in 
differentiated C2BBe1 cells based on the FACS analysis results 
(Figure 1A). In addition, apical microvilli could be detected in 
differentiated cells, which resembled differentiated enterocytes 
(Figure  1B). To test whether the differentiated C2BBe1 cells 
were permissive to EV-A71, the presence of double-stranded 
(ds)RNA, the intermediate RNA species present during viral 
replication, was examined by immunofluorescence staining. 
The dsRNA could be easily detected in these cells after infec-
tion (Figure 1C). To avoid the possibility that the results were 
attributable to small numbers of infected cells, flow cytometry 
was performed to assess the percentage of infected cells. As 
shown in Figure 1D, approximately one third of differentiated 
C2BBe1 cells were infected. Western blot results revealed that 
expression of viral protein 3D was detected at 12 hours p.i. 
and gradually increased (Figure 1E). Furthermore, the rate of 
viral replication in differentiated C2BBe1 cells was examined 
by quantitative reverse-transcription polymerase chain reaction 
(RT-qPCR), the results of which showed that viral RNA expres-
sion could be detected at 3 hours p.i. and gradually increased 
(Figure 1F). The growth curves of EV-A71 were examined by 
plaque-forming assay, with the results showing that the number 
of infectious viral particles increased in a time-dependent 
manner (Figure 1G). Our observations demonstrate that differ-
entiated C2BBe1 cells are permissive to EV-A71 and support 
viral replication.

Enterovirus A71 Is Released From Differentiated C2BBe1 Cells Via a 

Nonlytic Pathway

Differentiated and undifferentiated C2BBe1 cells were seeded 
in culture plates and infected with EV-A71 at a multiplicity of 
infection of 10, and the morphologies of mock- and EV-A71-
infected cells were examined at 24 and 48 hours p.i. by light 
microscopy (Figure 2A). Our results showed that EV-A71 in-
fection was not able to cause cytopathic effect in differentiated 
C2BBe1 cells, whereas cell rounding was observed in undiffer-
entiated C2BBe1 cells. The effects of EV-A71 toward RD cells 
were also evaluated, and significant cell loss were detected 
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Figure 1.  Enterovirus A71 (EV-A71) actively replicates in differentiated C2BBe1 cells. (A) Flow cytometry results showing the percentage and mean fluorescence intensity 
of E-cadherin-, CDX-2-, and occludin-positive cells in undifferentiated and differentiated cells. (B) Transmission electron microscopy of undifferentiated and differentiated 
C2BBe1 cells to examine the presence of microvilli (scale bar for C2BBe1 cells, 1 μm; scale bar for differentiated C2BBe1 cells, 0.5 μm). (C) Differentiated C2BBe1 cells 
were infected with EV-A71 at a multiplicity of infection (MOI) of 10 for 12 hours. Immunofluorescence staining was performed to detect double-stranded ribonucleic acid 
(dsRNA). 4’,6-Diamidino-2-phenylindole (DAPI) staining was performed as internal control (scale bar, 50 μm/10 μm). (D) Flow cytometry results showing the percentage of 
EV-A71 3D-positive cells in differentiated cells infected with EV-A71. (E) Total protein was extracted from differentiated C2BBe1 cells infected with EV-A71 and analyzed by 
Western blotting with an antibody specific for EV-A71 3D protein. The expression of β-actin was used as an internal control. (F) Total RNA was isolated from differentiated 
C2BBe1 cells infected with EV-A71, and the expression levels of viral RNA segments were determined by quantitative reverse-transcription polymerase chain reaction. (G) 
Differentiated C2BBe1 cells were infected with EV-A71 at MOI values of 2 and 10. Total cell lysates (cells plus supernatants) were harvested, and the viral titers were quan-
tified by plaque-forming assays. h p.i., hours postinfection; PFU, plaque-forming units; vRNA, viral RNA segments.
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(Figure  2A). Moreover, the cell viability of differentiated 
C2BBe1, undifferentiated C2BBe1, and RD cells infected with 
EV-A71 were examined by MTT assay. The results revealed that 
viral infection did not trigger drastic cell death within 48 hours 
of infection in differentiated C2BBe1 cells. It is interesting to 
note that cell loss was also observed in undifferentiated C2BBe1 
cells upon EV-A71 infection (Figure 2B).

Total cell lysates (supernatant + attached cells) and super-
natants were harvested at different time points from EV-A71-
infected cells. The plaque-forming assay results showed that 
viral titers increased in a time-dependent manner. It is inter-
esting to note that infectious viral particles were detected in 
the supernatants collected from differentiated C2BBe1 cells, 
indicating that the EV-A71 viral particles can even be released 
in the absence of cell lysis (Figure 2C). However, the amounts 
of viral particles contained in the supernatants of EV-A71-
infected RD cells drastically increased when significant cell loss 
was observed (Figure 2C).

Enterovirus A71 Infection in Differentiated C2BBe1 Cells Does Not Activate 

Caspase 3 and Is Not Affected by Inhibition of Apoptosis

The lack of cytopathic effects observed in differentiated 
C2BBe1 cells infected with EV-A71 prompted us to examine 
the induction of apoptosis, because this process is frequently 
initiated in EV-A71-infected cells [20]. Immunoblot analysis 
was performed to examine the expression of active caspase 3 
in differentiated C2BBe1 cells infected with EV-A71, and our 
results showed that the levels of cleaved caspase 3 expression 
did not notably increase upon viral infection. This result con-
trasted with that observed in RD cells (Figure 3A). We noted 
that expression of cleaved caspase 3 was weakly increased in dif-
ferentiated C2BBe1 cells. However, the upregulation of active 
caspase 3 was not correlated with the amounts of viral protein. 
Furthermore, activation of caspase 3 has been demonstrated is 
known to occur in villus IEC of the normal intestinal epithe-
lium [21]. Thus, the exhibition of caspase 3 activation in differ-
entiated C2BBe1 may represent the property of mature IECs. 
Double immunofluorescence staining was then performed to 
examine whether active caspase 3 could be detected in EV-A71-
infected cells, with the results showing that activated caspase 
3 did not colocalize with an EV-A71 antigen in differentiated 
C2BBe1 cells infected with this virus (Figure 3B). In contrast, 
the coexistence of viral antigen and activated caspase 3 was ob-
served in most infected RD and undifferentiated C2BBe1 cells 
(Figure 3B). Therefore, these results may explain why apparent 
cytopathic effects are absent in differentiated C2BBe1 cells 
upon EV-A71 infection.

We next wondered whether apoptosis can affect viral release 
from differentiated enterocyte-like cells. Therefore, the effects of 
the apoptosis inhibitor Z-VAD-FMK on viral replication and re-
lease were examined. Our results showed that the titers of virus 
released in the supernatant were unaffected by the inhibition of 

apoptosis of differentiated C2BBe1 cells. However, the titers of 
viral particles released from Z-VAD-FMK-treated RD and un-
differentiated C2BBe1 cells were significantly decreased in the 
culture supernatants (Figure 3C). Furthermore, the addition of 
Z-VAD-FMK inhibited viral replication in RD and untreated 
C2BBe1 cells but not in differentiated C2BBe1 cells (Figure 3C). 
Therefore, our results suggest that the involvement of apoptosis 
in EV-A71 life cycle is cell type-dependent.

Exosome Release Is Increased in Differentiated C2BBe1 Cells and Human 

Intestinal Organoids Infected With Enterovirus A71 

To investigate whether exosomes are used by EV-A71 to es-
cape differentiated C2BBe1 cells, cell supernatants were col-
lected for exosome purification. Western blotting results of 
exosome preparations showed the presence of the exosomal 
markers TSG101 and CD63 [22]. The absence of calnexin, an 
endoplasmic reticulum protein, was used to exclude the possi-
bility of contamination of endoplasmic vesicles. The presence 
of viral protein was used to confirm infection (Figure  4A). 
Subsequently, flow cytometry analysis was performed using an 
anti-CD63 monoclonal antibody, and the results showed that 
infected cells released more CD63-positive vesicles than un-
infected cells (Figure 4B). A FluoroCet Exosome quantitation 
kit was applied to quantify the amounts of released exosomes. 
Significantly increased amounts of exosomes were secreted 
by EV-A71-infected differentiated C2BBe1 cells (Figure  4C). 
Furthermore, cryoelectron microscopy was performed, and the 
results showed that most vesicles were spherical (Figure  4D). 
To confirm the activity of EV-A71 in triggering exosome re-
lease from differentiated IECs, human intestinal organoids were 
generated from human embryonic stem cells based on methods 
that were previously described by McCracken et al [23]. The in-
testinal organoids were counted and infected with 2 × 104 viral 
particles per organoid. Immunofluorescence staining results 
showed that dsRNA could be detected in infected organoids at 
48 hours p.i. (Figure 4E). The results of plaque-forming assays 
performed on total cell lysates collected from infected intestinal 
organoids showed that viral titers increased in a time-dependent 
manner (Figure 4F). The FluoroCet results for exosome samples 
collected from EV-A71-infected intestinal organoids revealed 
that exosome release was significantly increased (Figure  4G). 
Thus, the release of exosomes is upregulated by EV-A71 infec-
tion in both differentiated C2BBe1 cells and human intestinal 
organoids.

Exosomes Released From Enterovirus A71-Infected Cells Contain Viral 

Protein and Ribonucleic Acid

To characterize the contents of exosomes harvested from differen-
tiated C2BBe1 cells and intestinal organoids infected with EV-A71, 
total protein was isolated and analyzed by immunoblot. Our re-
sults revealed that viral protein could be detected in exosomes 
derived from infected cells (Figure 5A). Exosomes secreted from 
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virus-infected cells are known to be able to transport viral nucleic 
acids [14, 15, 18]. Therefore, to examine whether viral RNA was 
present in exosomes, RT-qPCR was performed, and the results con-
firmed the presence of EV-A71 RNA (Figure  5B). Furthermore, 
the isolated exosomes were assessed by transmission electron mi-
croscopy and exhibited a cup shape, where virus-like particles 
could be observed that were enclosed by membranous structures 
(Figure 5C).

Exosomes Can Establish Productive Infection in Other Cells

Exosomes are known to be able to transmit infection to un-
infected cells [14, 15, 18]. To examine whether the exosomes 
were infectious, exosomes purified from intestinal organoids 
that were mock or EV-A71 infected were labeled with DiD 
and then added to uninfected RD cells. The presence of DiD 
was observed in the treated cells, suggesting the exosomes 
could be uptaken by recipient cells (Figure 6A). Subsequently, 
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immunofluorescence staining was performed to assess the ex-
pression of viral protein in cells treated with exosomes. Cells 
infected with laboratory viral stocks were used as a positive con-
trol, whereas the exosomes isolated from mock-infected cells 
were used as a negative control. Our results showed that some 
cells containing the labeled exosomes were also positive for 
viral protein expression, suggesting that these exosomes may 
mediate viral protein expression in treated cells (Figure  6A). 
Plaque-forming assays were performed to detect the viral titers 
in cells treated with exosomes derived from differentiated 
C2BBe1 cells or intestinal organoids infected with EV-A71. As 
shown in Figure 6B, the exosomes containing EV-A71 compo-
nents could establish active replication in naive cells.

Exosome Inhibitors Have Anti-Enterovirus A71 Activity in Cell Culture and 

In Vivo

To examine the effects of blocking the exosome pathway on 
viral release, GW4869 and ketotifen, known inhibitors of 
exosome formation, were used to treat differentiated C2BBe1 
cells [24, 25]. After being pretreated with GW4869 or ketotifen 
for 2 hours, the cells were infected with EV-A71. Our results 
revealed that the exosome inhibitors suppressed viral replica-
tion in differentiated C2BBe1 cells (Figure 7A) and drastically 
decreased the amount of released viral particles (Figure  7B). 
These results were in contrast to those observed for RD cells, 
in which GW4869 and ketotifen had no effect on viral replica-
tion and exit (Figure 7C and D). To further examine the effect 
of exosome inhibition in infected animals, hSCARB2-TG mice 
were used in animal studies. The 21-day-old mice were orally 
administered GW4869 and then intragastrically inoculated 
with EV71 MP4 2 hours later, with a GW4869 solution admin-
istered again at 24 and 48 hours p.i. Our data showed that oral 
administration of the exosome inhibitor GW4869 could signif-
icantly increase the survival rate of EV-A71-infected animals 
(Figure 7E).

DISCUSSION

Intestinal epithelial cells are columnar epithelial cells that form 
a barrier in the gastrointestinal epithelium. These polarized 
cells possess specific structures such as microvilli on their apical 
surface and play important roles in nutrient absorption and in 
protecting against infection by microbial pathogens [26]. Viral 
pathogens such as rotavirus and norovirus are known to cause 
gastroenteritis. Although the results of previous studies noted 
that epithelial cell lines such as Caco-2 and HT-29 are not per-
missive to norovirus [27], recent reports suggest that differen-
tiated IECs that possess microvilli can support viral replication 
[19, 28]. These results indicate that the differentiation levels of 
host cells may play important roles in viral infection and rep-
lication. Although EV-A71 has been demonstrated to infect 
the human IEC lines HT29 and Caco-2, it remained unclear 
whether EV-A71 could infect differentiated IECs [8, 29]. Using 

differentiated C2BBe1 cells and intestinal organoids as in vitro 
models, our results showed that EV-A71 is able to infect and 
replicate in differentiated IECs. The progeny viruses may shed 
into the gut lumen, explaining why EV-A71 can be detected in 
the feces of EV-A71 patients [30].

Enteroviruses can exploit lytic or nonlytic strategies to exit 
their host cells [31]. Although cell rupture has been observed 
in most enterovirus-infected cells, recent studies have shown 
that viral-induced cell lysis functions in a cell-type dependent 
manner and only plays a limited role in mediating viral egress 
[32, 33]. For instance, poliovirus (PV) and HAV can replicate 
in and be released from polarized IECs in the absence of signif-
icant cell lysis [32, 34]. It is interesting to note that our results 
also showed EV-A71 virions were released from differentiated 
enterocytes in a nonlytic manner. Therefore, these observations 
suggest that several nonenveloped enteroviruses can utilize the 
nonlytic pathway to exit the polarized IECs. The cytopathic ef-
fect caused by viral infection has been shown to correlate with 
the induction of apoptosis, which is implicated with viral repli-
cation and egress [35, 36]. Thus, it is reasonable to predict that 
EV-A71 infection is unable to induce the activation of caspase 
3 in differentiated C2BBe1 cells, which do not exhibit EV-A71-
induced cytopathic effects. Furthermore, V-ZAD-FMK, an 
antiapoptosis reagent, exerts anti-EV-A71 activity toward un-
differentiated C2BBe1 and RD cells but not differentiated 
C2BBe1 cells. Therefore, the effects of apoptosis on EV-A71 
replication are cell-type dependent.

Accumulating evidence suggests that IECs can secrete var-
ious extracellular vesicles for cell-cell communication through 
the transportation of various nucleotides, proteins, and lipids 
[37]. These extracellular vesicles have been shown to play roles 
in intestinal injury and antigen presentation. For example, IEC-
derived exosomes exhibit activities in promoting wound healing 
through the contained annexin A1 [38]. In addition, major his-
tocompatibility complex II- and A33-containing exosomes se-
creted by IECs have been shown to be able to induce a humoral 
response [39]. It is interesting to note that infection by patho-
gens such as parasites was previously demonstrated to increase 
the release of exosomes [40]. Our data provide evidence that 
EV-A71 infection enhances exosome secretion from IECs, al-
though whether other enteroviruses possess the same ability 
remains unclear.

Extracellular vesicles released by virus-infected host cells 
may contain viral parts and possess the ability to establish active 
replication in other cells [41]. The results of recent studies have 
revealed that some picornaviruses such as PV and CVB are able 
to be encapsulated in lipid vesicles to exit infected cells without 
causing the cell rupture [17, 42]. The resulting extracellular 
vesicles may play roles in facilitating viral spread, because lipid 
structures may have roles in protecting against neutralizing 
antibodies, enable high multiplicity, and promote trafficking to 
other cells [42, 43]. Furthermore, recent studies demonstrated 
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that EV-A71 is also able to use extracellular vesicles to exit host 
cells in a nonlytic manner [9]. Although the types of vesicles 
used by EV-A71 are different, all of these vacuoles have been 
shown to establish active replication in other cells [9, 10, 44]. 
By using differentiated C2BBe1 and human intestinal organoids 
containing differentiated IECs as our model systems, we showed 
that EV-A71 viral RNA and protein are enclosed in released 
exosomes during infection. Furthermore, these IEC-derived 
exomes showed the ability to transmit viral components and es-
tablish active replication. Therefore, exosomes may play roles in 
facilitating EV-A71 transmission.

The results of our study also revealed that the exosome in-
hibitors GW4869 and ketotifen not only decrease EV-A71 
replication, they also suppress viral release from differenti-
ated C2BBe1 cells [24, 25]. These data suggest that exosome 
pathway may play essential roles in the EV-A71 life cycle. 
A recent study also demonstrated that GW4869 has the ability 
to decrease replication of the Zika virus [45], which has re-
cently been shown to exploit exosomes for viral transmission 
[46]. Furthermore, our data suggest that oral administration 
of GW4869 enhanced the survival rate of animals that were 
infected by EV-A71 through the oral route. To the best of our 
knowledge, this is the first study describing that an exosome 
inhibitor can exert antiviral activities in vivo. Thus, exosome 
inhibitors may affect EV-A71 pathogenesis by suppressing viral 
replication and transmission.

CONCLUSIONS

In summary, in this study, we provided evidence that human 
IECs are permissive to EV-A71 by using differentiated C2BBe1 
and intestinal organoids as in vitro models. The EV-A71 ac-
tively replicates in IECs and exploits exosomes to facilitate 
viral release and transmission. Furthermore, exosome inhibi-
tors not only reduce viral release from differentiated IECs but 
also enhances the survival rates of infected animals. Our results 
demonstrate the importance of exosomes in the transmission 
of EV-A71 from the gut epithelium, which may aid in the devel-
opment of novel antiviral therapies.
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