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Abstract
The	COVID-19	pandemic	caused	by	the	novel	SARS-CoV-2	is	more	contagious	than	other

coronaviruses	and	has	higher	rates	of	mortality	than	influenza.	As	no	vaccine	or	drugs	are	currently

approved	to	specifically	treat	COVID-19,	identification	of	effective	therapeutics	is	crucial	to	treat	the

afflicted	and	limit	disease	spread.	We	deployed	a	bioinformatics	workflow	to	identify	candidate	drugs

for	the	treatment	of	COVID-19.	Using	an	“omics”	repository,	the	Library	of	Integrated	Network-Based

Cellular	Signatures	(LINCS),	we	simultaneously	probed	transcriptomic	signatures	of	putative	COVID-19

drugs	and	signatures	of	coronavirus-infected	cell	lines	to	identify	therapeutics	with	concordant

signatures	and	discordant	signatures,	respectively.	Our	findings	include	three	FDA	approved	drugs

that	have	established	antiviral	activity,	including	protein	kinase	inhibitors,	providing	a	promising	new

category	of	candidates	for	COVID-19	interventions.

Introduction
Severe	acute	respiratory	syndrome	coronavirus	2	(SARS-CoV-2)	is	responsible	for	the	first	global

pandemic	in	a	decade,	coronavirus	disease	2019	(COVID-19)1.	Initial	reports	of	a	novel	SARS-like

acute	respiratory	syndrome	emerged	in	late	2019	from	Wuhan,	China2.	Since	then,	COVID-19	has

spread	to	over	150	countries	and	all	continents	except	Antarctica3,4.	At	the	time	of	writing,	over	one

million	people	have	been	infected,	over	60,000	deaths	have	been	attributed	to	this	outbreak4,	and

millions	of	additional	infections	are	projected	to	occur	globally	in	upcoming	months3,4.

COVID-19	is	less	infectious	than	SARS-CoV1	but	more	lethal	than	the	common	flu1	with	an	estimated

mortality	rate	of	3.4%2.	The	incubation	period,	on	average,	is	5.2	days;	in	severe	cases,	the	median

time	course	from	disease	onset	to	death	is	14	days5.	While	fever,	cough,	fatigue,	and	myalgias6-10

are	common,	mild	presentations	of	COVID-19,	the	disease	can	fatally	evolve	into	a	severe	pneumonia,

complicated	by	acute	respiratory	distress	syndrome,	hypoxemic	respiratory	failure,	and	cytokine

storm	secondary	to	prolonged	infection8.	In	addition	to	the	significant	medical	burden	imposed	by

this	outbreak,	it	is	estimated	that	the	global	economic	cost	of	COVID-19	will	be	over	$1	trillion	in

202011.	The	emotional	toll	on	individuals	will	be	incalculable,	with	prolonged	quarantine	policies

restricting	personal	freedom	and	social	contacts.
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Current	treatment	is	supportive	and	is	focused	on	managing	disease	complications	and	secondary

symptoms12-14.	Drugs	indicated	for	other	infectious	diseases,	such	as	antiviral	and	antiparasitic

therapies,	have	been	used	for	COVID-19	patients,	but	there	is	a	paucity	of	evidence	supporting	their

efficacy15.

There	is	now	an	immediate	need	to	identify	therapeutic	compounds	that	can	be	rapidly	repurposed

for	COVID-19	treatment.	Recent	efforts	to	address	this	pressing	public	health	concern	include	a

comprehensive	network-based	approach	to	identify	16	candidate	drugs	(and	drug	combinations)	that

may	be	repurposed	for	the	treatment	of	this	disease16.	To	further	expand	this	area	of	novel	research,

in	the	present	study	we	employ	a	bioinformatics	approach	with	the	goal	of	datamining	an	extensive

drug	signature	resource	to	distill	a	list	of	drug	therapies	that	may	prove	fruitful	in	the	search	for

COVID-19	therapies.

To	accomplish	this,	we	apply	a	signature-based	connectivity	analysis17-19	utilizing	the	extensive

chemical	perturbagen	“omics”	datasets	deposited	in	the	Library	of	Integrated	Network-based

Signatures	(LINCS)	database17,20,21.	LINCS	is	a	repository	for	systematically	generated	gene

signatures	based	on	the	L1000	assay22.	These	gene	signatures	reflect	cellular	perturbations	in

response	to	pharmacological	treatments;	LINCS	contains	datasets	for	over	40,000	small	molecules

(drugs)	in	various	cell	lines.	Different	small	molecules	that	produce	signatures	composed	of	highly

similar	patterns	of	gene	expression	changes,	or	“concordant”	signatures,	reflect	shared	connections

between	small	molecules.

Here,	we	apply	a	two-pronged	approach	to	identify	novel	compounds	for	the	treatment	of	COVID-19.

First,	we	identify	pharmacologic	therapies	that	are	effective	in	the	treatment	of	pathogens	in	the

coronavirus	family,	like	SARS	and	Middle	East	Respiratory	Syndrome	(MERS),	as	well	as	other	viral

illnesses23-27.	We	then	generate	gene	signatures	for	these	targets	in	iLINCS	(http://ilincs.com)	and

highlight	connected	small	molecule	signatures	to	identify	which	of	these	candidate	drugs	are	highly

concordant	with	current	therapies.	Simultaneously,	we	generate	gene	signatures	from	coronavirus

infected	human	cell	line	transcriptomic	datasets.	We	analyze	these	data	in	iLINCS	to	directly	match

disease	signatures	with	discordant	small	molecule	signatures,	thereby	identifying	drugs	that

http://ilincs.com/
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“reverse”	the	disease	signature.	Finally,	we	compile	a	list	of	drugs	from	these	two	approaches	to

identify	high-yield	candidate	drugs	that	may	have	therapeutic	utility	in	the	treatment	of	COVID-19.

Results
Applying	the	workflow	outlined	in	Figure	1,	we	identified	nine	drugs,	with	known	efficacy	in	treating

coronavirus	family	pathogens,	for	which	there	are	gene	signatures	in	iLINCS	(Table	1	and	extended

information	in	Table	S1).	These	drugs	were	clustered	into	five	groupings	according	to	their

mechanism	of	action,	Anatomical	Therapeutic	Chemical	(ATC)	classification	and/or	structural	similarity

(Table	1).

Simultaneously,	we	extracted	differential	gene	expression	data	on	the	978	genes	that	comprise	the

L1000	from	a	publically	available	SARS	(GSE56192)	transcriptomic	dataset.	Gene	signatures

composed	of	genes	changed	LFC	≥	0.5	and	≤	-0.5	were	generated	for	the	disease	signature	(Table

S2).	In	iLINCS,	we	conducted	connectivity	analysis	to	identify	chemical	perturbagens	that	are	highly

concordant	to	the	drug	target	groupings	(≥	0.321)	or	highly	discordant	to	the	disease	signatures	(≤

-0.321),	established	minimum	iLINCS	concordance	score	cutoffs	22,28.	This	resulted	in	identification
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of	112	chemical	perturbagens	common	to	two	cell	lines,	MCF7	and	HA1E	(Figure	2).	Fourteen

chemical	perturbagens	were	identified	at	concordance	scores	≥	0.8	in	both	cell	lines	and	were

considered	“candidate”	drugs	for	the	treatment	of	COVID-19	(Table	2).	The	Tanimoto	scores	for	the

candidate	drugs	and	the	original	9	drug	targets	were	generated,	showing	structural	similarity

between	drugs	currently	in	use	for	the	treatment	of	coronavirus	family	pathogens	and	our	newly

identified	candidate	drugs	(Figure	S1).

Table	2.	Candidate	repurposable	drugs	for	the	treatment	of	COVID-19.

Drug DrugBank	I
.D.

MCF7
Concordance

HA1E
Concordance MOA ATC	Drug

Class
Indication

Drugs	with	reported	antiviral	activity.
	
Alvocidib

	
DB03496

	
0.92

	
0.96

	
CDK	inhibitor

	
Unclassified

	
Antineoplastic

	

Genistein

	

DB01645

	

0.91

	

0.93
Tyrosine	kinase

and		
	topoisomerase-

II	inhibitor

	

Unclassified

	
Antineoplastic;A
nthelmintic

	
Ivermectin

	
DB00602

	
0.90

	
0.83

	
Chloride

channel	agonist

	
Anthelmintic

	
Anthelmintic

Drugs	with	no	reported	antiviral	activity.

Clinically	Relevant	Drugs
	

Idebenone

	

DB09081

	

0.88

	

0.81
Electron	donor
to	mitochondrial

electron
transport	chain

	

Psychoanaleptic
Leber’s

Hereditary
Optic

Neuropathy

	
	
Penicillin	V

	
	
DB01053

	
	

0.97

	
	

0.80

Binds	penicillin
binding
proteins,

inhibits	bacterial
cell

wall	synt
hesis

	
Antibacterials
for	Systemic

Use

	
	

Antibiotic
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Idelalisib

	
DB09054

	
0.88

	
0.84

Phosphoinositid
e	3-kinase	inhibitor

Antineoplastic
Agent

	
GSK-1059615

	
DB11962

	
0.83

	
0.84

Phosphoinositid	e	3-
kinase,	mTOR	inhibitor

46
	

Unclassified

AT-9283 DB05169 0.89 0.82 kinase	inhibitor Unclassified

Experimental	Drugs

	
GSK-3	Inhibitor	IX

	
--

	
0.87

	
0.85

Inhibitor	of	glycogen
synthase

kinase-3a/b	47

	
Unclassified

	
AC1MJ3VH

	
--

	
0.89

	
0.82

RNA	synthesis	and
topoisomerase
inhibitor	48

	
Unclassified

	
COT-10B

	
--

	
0.95

	
0.90

#Kinase	binding,
protein	kinase	binding

	
Unclassified

	
CHEMBL2136735

	
--

	
0.80

	
0.96

#Oxidoreductas
e	activity,
cadherin
binding

	
Unclassified

	
Broad-Sai-595

	
--

	
0.82

	
0.92

#NAPH	binding,
cadherin	binding

	
Unclassified

	
	
BRD-K54343811

	
	

--

	
	

0.98

	
	

0.87
#Protein

tyrosine	kinase
binding,

phosphotyrosin	e
residue
binding

	
	

Unclassified

Table	2	Candidate	drugs	are	separated	into	two	cohorts:	drugs	with	reported	antiviral	activity	and

those	with	no	reported	antiviral	activity.	These	drugs	are	then	subcategorized	as	clinically	relevant

(used	in	human	subjects)	or	experimental	(used	in	research	but	not	yet	approved	for	humans).

Concordance	scores	in	the	MCF7	and	HA1E	cell	lines	represent	the	average	concordance	scores

between	the	identified	candidate	drug	and	at	least	2	of	the	drug	target	clusters	in	that	cell	line.	All	14

candidate	drugs	have	an	average	concordance	≥	0.80	in	both	cell	lines.	DrugBank	I.D.	and

Mechanism	of	Action	(MOA)	is	referenced	from	Drug	Bank	(https://www.drugbank.ca/).	Drug	Class	is

referenced	from	the	second	level	of	the	Anatomical	Therapeutic	Chemical	(ATC)	classification

https://www.drugbank.ca/
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(https://www.whocc.no/atc_ddd_index/).	For	“Experimental	drugs”,	the	MOA	was	cited	from	iLINCS,	or

alternatively,	the	perturbagens	top	two	significant	Gene	Ontology	(GO)	Molecular	Functions	are	listed

under	MOA	and	denoted	with	the	superscript	“#”.	“^”	Indicated	and	approved	for	use	only	by	the

European	Medicines	Agency.	HSV,	Herpes	Simplex	Virus;	HIV,	Human	Immunodeficiency	Virus;	LV,

Lassa	Virus;	ASFV,	African	Swine	Fever	Virus;	YF,	Yellow	Fever;	DF,	Dengue	Fever;	CV,	Chikungunya

virus;	SARS,	Severe	Acute	Respiratory	Syndrome	virus;	MERS,	Middle	East	Respiratory	Syndrome

virus.

	

Unsupervised	clustering	of	L1000	disease	gene	signatures	demonstrates	significant	differences	in

patterns	of	gene	expression	induced	by	SARS,	MERS	and	influenza	(Figure	S2).	Influenza	is	utilized	as

a	control	dataset	as	it	represents	a	non-coronavirus	pathogen	that	also	causes	respiratory	illness.	As

expected,	unsupervised	clustering	of	L1000	gene	signatures	shows	discordance	between	disease

signatures	and	drug	target	grouping	signatures,	which	are	comprised	of	drugs	utilized	to	treat	SARS

and	to	a	lesser	extent,	MERS	(Figure	S3-4).

Biological	pathways	analysis	demonstrated	a	range	of	perturbations,	including	those	in	similar

biological	pathways	(immune	system	pathways	and	cell	cycle	processes)	induced	by	both	drug	target

groupings	and	disease	signatures	(Figure	S5-6).	Unsupervised	clustering	of	L1000	gene	signatures

also	shows	discordance	between	SARS	(and	MERS)	disease	signatures	and	the	identified	candidate

drug	signatures	(Figure	S7-10),	including	those	with	antiviral	properties.

Biological	pathway	analysis	indicates	that	the	identified	candidate	drugs	also	induce	changes

including	in	similar	biological	pathways	as	disease	signatures	(immune	system	and	cell	cycle	related

pathways)	(Figure	S11-12).

Thus,	we	distilled	a	list	of	drugs,	derived	from	pharmacological	and	disease	perturbation	signatures

that	may	have	therapeutic	utility	in	the	treatment	of	COVID-19.	The	candidate	drugs	identified	are:

Tyrosine	Kinase	Inhibitors.	Tyrosine	kinases	are	essential	for	viral	RNA	synthesis,	viral

ribonucleoprotein	nuclear	export,	and	virion	release.	Inhibitors	that	target	this	protein	class	may,

therefore,	demonstrate	activity	against	viruses49.

https://www.whocc.no/atc_ddd_index/
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Genistein	is	an	isoflavonoid	derived	from	soy-products	that	has	been	implicated	as	an	antiparasitic50

and	antineoplastic	agent51	in	humans.	Several	clinical	trials	of	Genistein	are	ongoing	to	treat

prostate,	breast,	and	bladder	cancers52,53.	Genistein	also	has	potent	antiviral	activity	in	a	number	of

in	vitro	models.	It	has	efficacy	against	RNA	viruses	from	different	families,	such	as	filoviridae	(Ebola

virus),	feoviridae	(rotavirus),	and	arenaviridae	(Lassavirus,	Pichindé	virus)34,35,38,39;	retroviruses

like	HIV-136,37	and	DNA	viruses.	Both	in	vivo	and	in	vitro	studies	of	Genistein	demonstrated	activity

against	African	swine	fever	viruses40	and	Epstein-	Barr	virus54.	While	the	pre-clinical	evidence	is

promising,	Genistein	has	yet	to	be	explored	as	an	antiviral	therapy	in	humans.

AT9283	is	a	broad	protein	kinase	inhibitor55,56.	Canonically,	it	acts	as	a	receptor	and	nonreceptor

tyrosine	kinase	inhibitor	but	also	effectively	inhibits	serine/threonine	kinases,	Aurora	A/B	kinases,

Janus	kinases	(JAK)	2/3,	and	ABL	kinases57.	In	a	clinical	setting,	AT9283	has	been	predominantly

studied	as	an	antineoplastic	for	hematologic	malignances	and	several	trials	are	underway58-60.

AT9283	has	not	been	explored	directly	as	an	antiviral,	although	the	ABL	kinase	inhibitor,	Imatinib,	is

efficacious	in	preventing	coronavirus	(SARS-CoV	and	MERS-CoV)	viral	fusion	with	endosomes,

effectively	halting	viral	activity61.	Given	its	role	as	a	broad-spectrum	kinase	inhibitor,	researching	the

antiviral	properties	of	AT9283	may	prove	fruitful.

Serine	Threonine	Kinase	Inhibitors.	Alvocidib	(also	known	as	flavopiridol)	is	a	pan-specific	cyclin-

dependent	kinases	(CDK)	inhibitor	that	inhibits	CDK1,	CDK2,	CDK4,	CDK5,	CDK6,	CDK7,	and	CDK962.

Alvocidib	is	under	clinical	investigation	as	an	antineoplastic	for	both	solid	tumors	and	hematologic

malignancies63.	Like	other	CDK	kinase	inhibitors,	Alvocidib	has	been	implicated	as	a	broad	antiviral

against	several	DNA	virus	families64.	Alvocidib	has	been	studied	as	an	inhibitor	of	transcriptional

activation	and	elongation	in	the	infectious	lifecycle	of	DNA	viruses	(HSV-1,	HSV-2)	and	retroviruses

(HIV)29-32	and	also	suppresses	replication	of	Influenza	A33.	This	suggests	that	Alvocidib	is	a	strong

candidate	drug	for	repurposing.

The	antiviral	activity	of	the	following	serine/threonine	kinase	candidate	drugs	have	yet	to	be	studied

directly	and	further	research	is	required	to	determine	their	potential	as	repurposable	antiviral

therapies.	However,	these	candidates	are	members	of	drug	families	with	demonstrated	antiviral	or
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antimicrobial	properties	that	could	be	exploited	for	the	treatment	of	COVID-19.

GSK-1059615	is	a	reversible,	ATP-competitive,	thiazolidinedione	inhibitor	of	phosphoinositide	3-kinase

(PI3K)	and	has	been	studied	as	an	antineoplastic	for	solid	tumors65.	Though	the	antiviral	activity	of

GSK-1059615	has	yet	to	be	determined,	the	thiazolidinedione	drug	family	has	a	broad	range	of

antibacterial	and	antiparasitic	activity66-68.	Idelalisib	is	a	phosphoinositol	3-kinase	(PI3K)/protein

kinase	B	(AKT)	signaling	inhibitor69-71.	In	vitro	experiments	show	that	the	downstream	target

pathways	of	kinase	inhibitors	like	Idelalisib,	extracellular	signal-regulated	kinase	(ERK)/mitogen-

activated	protein	kinase	(MAPK)	and	PI3K/AKT/mammalian	target	of	rapamycin	(mTOR)	signaling

responses,	are	specifically	modulated	during	infection	with	coronavirus	pathogen	MERS72.	Thus,

inhibiting	this	virulent	signaling	pathway	using	kinase	inhibitors	is	potentially	an	efficacious

therapeutic	strategy.

Antioxidants	and	Antimicrobials.	Ivermectin	is	a	promising	drug	candidate	for	COVID-19.	It	is	a

well-characterized	anthelmintic	for	Onchocerca	volvulus,	the	causative	parasitic	roundworm	of	“river

blindness”	or	the	“black	sight”73-75.	Canonically,	Ivermectin	works	as	a	chloride-channel	agonist76.

Ivermectin	has	a	well-established	safety	profile	in	humans	and	has	been	under	investigation	for

repurposing	in	various	parasitic	diseases,	cancers,	neurological	disorders,	and	viral	infections75-77.

The	efficacy	of	Ivermectin	in	the	treatment	of	RNA	virus	families,	such	as	flaviviridae41,43,78,79	and

togaviridae43	has	been	demonstrated	in	vitro.	Of	note,	Ivermectin	has	been	used	as	an	adjunct

therapy	in	patients	with	HIV	and	concomitant	parasitic	infections80,81.

In	vitro,	Ivermectin	has	shown	efficacy	in	targeting	HIV41	alone;	by	inhibiting	HIV-1	integrase

Ivermectin	potentially	prevents	the	viral	genetic	material	from	entering	the	host	genome42.	Efficacy

for	Ivermectin	as	an	antiviral	in	humans	warrants	further	investigation,	especially	as	the	global

COVID-19	pandemic	ensues.

Idebenone	is	a	synthetic	derivative	of	ubiquinone,	also	known	as	Coenzyme	Q1082,83.	This	drug	acts

to	increase	the	production	of	ATP	by	enhancing	oxidative	phosphorylation.	As	a	general	antioxidant,

Idebenone	may	prevent	lipid	peroxidation,	reduce	membrane	oxidative	stress,	and	scavenge	free

radicals84.	Idebenone	has	been	used	for	a	number	of	human	neurodegenerative	disorders,	and	its
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safety	has	been	validated85,86.	Antioxidants	such	as	Idebenone	have	been	hypothesized	to	mitigate

the	deleterious	effects	of	a	“reactive-oxygen	species	burst”45	from	viruses	with	a	pulmonary	and

respiratory	predilections	(Influenza	and	SARS)44.	However,	further	work	is	required	to	determine	the

utility	of	antioxidants	like	Idebenone	as	adjunct	treatments	for	COVID-19.

Penicillin	V	is	a	beta-lactam	antibiotic	and	is	indicated	primarily	for	treating	gram-positive	bacterial

infections	like	Treponema	pallidum,	the	causative	organism	of	syphilis87.	Penicillin	binds	to	a	family

of	bacterial	transpeptidases,	termed	penicillin	binding	proteins,	which	effectively	inhibit	cross-linking

of	peptidoglycan	in	the	bacterial	cell	wall87.	To	the	best	of	our	knowledge,	penicillin	V	does	not	have

an	experimental	or	clinical	indication	in	the	treatment	of	viruses.	In	addition,	antibiotics	such	as

penicillin	should	be	employed	judiciously,	given	their	well-characterized	ability	to	induce

hypersensitivity	reactions88,89.	However,	like	azithromycin,	utilizing	penicillin	as	an	adjunct	therapy

may	be	advantageous	to	empirically	cover	bacterial	infections	co-morbid	with	viral	infections.

Candidate	Drugs	with	Unknown	Utility.	Finally,	five	drugs	(AC1MJ3VH,	Broad-Sai-595,

CHEMBL2136735,	COT-10B	and	GSK	Inhibitor	IX)	with	limited	or	no	known	biological	function	were

identified.	These	drugs	do	not	have	identifiers	in	Drug	Bank.	They	were	not	considered	to	be	of	utility

as	candidate	drugs	to	repurpose	for	treatment	of	COVID-19.

Discussion
The	COVID-19	outbreak	is	an	escalating	public	health	concern	that	requires	a	swift	and

comprehensive	response.	Research	is	progressing	rapidly.	There	are	currently	over	200	clinical	trials

exploring	a	range	of	pharmacological	and	non-pharmacological	options	for	the	treatment	of	COVID-

19,	but	as	of	yet,	there	are	no	vaccines	or	therapies	approved	specifically	for	this	disease.	In	recent

months,	a	number	of	in	silico	studies	addressing	this	gap	in	our	knowledge	have	identified	putative

repurposable	drugs	for	treating	COVID-1916,90-93.	Many	of	these	studies	exploit	the	recent	finding

that	SARS-CoV-2	may	enter	the	cell	by	binding	to	angiotensin	converting	enzyme	2	(ACE2)94	and

utilize	a	combination	of	structural	and	biomedical	data	to	identify	drug	candidates.	One	such	study

used	artificial	intelligence	algorithms	(BenevolentAI)	to	identify	the	JAK	inhibitor	Baricitinib90.

Baricitinib	may	reduce	the	ability	of	the	virus	to	enter	cells	and	is	currently	in	clinical	use	as	a
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treatment	for	rheumatoid	arthritis.	To	advance	therapeutic	discovery	and	the	identification	of

candidate	drugs	for	COVID-19,	we	employ	an	alternative,	signature-based	bioinformatic	approach.

In	this	study,	we	data	mine	the	extensive	LINCS	database,	which	acts	as	a	repository	of	“L1000”	gene

signatures	generated	by	treating	various	cell	lines	with	over	20,000	small	molecules.	The	L1000

genes	are	a	reduced	representation	of	the	transcriptome,	a	method	by	which	a	select	group	of	genes

account	for	~82%	of	the	information	content	of	the	transcriptome95.	The	approach	involved	feature

selection/reduction	techniques	applied	to	12,063	gene	expression	samples	profiled	on	microarrays

from	GEO96.	Benchmarking	of	the	L1000	assay	versus	RNAseq	yielded	a	cross-platform	correlation	of

0.8495,	suggesting	the	L1000	assay	represents	an	efficient	alternative	to	RNA-Seq.

Utilizing	this	resource,	our	two-pronged	connectivity	analysis	approach	identified	candidate	drugs	that

are	1)	highly	concordant	to	current	drugs	employed	to	treat	coronavirus	family	pathogens	and	2)

highly	discordant	to	SARS	disease	gene	signatures.	As	there	are	currently	no	publically	available

datasets	for	human	(or	other)	tissues	infected	with	SARS-CoV-2	virus,	we	generated	a	disease

signature	from	an	RNAseq	dataset	of	human	lung	cells	infected	with	SARS;	SARS	and	SARS-CoV-2	are

highly	homologous,	sharing	envelope	and	nucleocapsid	protein	sequence	identities	of	96%	and

89.6%,	respectively16.

The	main	class	of	drugs	identified	from	our	analyses	are	kinase	inhibitors.	Kinase	inhibitors	are	high-

yield	targets,	with	new	small	molecule	kinase	inhibitors	being	developed	every	year	and	over	two

dozen	small	molecule	kinase	inhibitors	already	approved	for	human	use97.	Their	potential	as	antiviral

treatments	has	also	been	explored	in	recent	years91,98-100.	Viruses	depend	on	host	cell	protein

kinases	for	every	step	of	their	life	cycle,	including	viral	entry	into	the	cell,	cell	cycle	processes	and

cellular	stress	response101.	Thus,	targeting	these	protein	kinases	using	kinase	inhibitors	will	disrupt

the	virus’s	ability	to	hijack	cellular	processes.	As	many	host	protein	kinases	are	broadly	required	by

different	viruses,	kinase	inhibitors	are	excellent	candidates	for	broad-spectrum	antiviral	therapies99.

Our	study	identified	two	kinase	inhibitors,	Genistein	and	Alvocidib.	These	drugs	have	demonstrated,

extensive,	antiviral	properties	in	vitro30,40	and	both	are	approved	for	use	in	humans,	making	them

strong	candidate	therapies	for	the	treatment	of	COVID-19.
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Kinase	inhibitors	AT9283,	GSK1059615	and	Idelalisib	were	identified	by	our	analyses	and	are

approved	for	use	in	humans,	but	their	antiviral	properties	have	yet	to	be	tested	directly.	These	drugs

inhibit	a	range	of	different	protein	kinases	including	PI3K/mTOR,	GSK3β	and	ABL	kinases.	In	vitro	work

demonstrates	that	inhibitors	targeting	these	kinases	are	highly	effective	at	treating	coronavirus

pathogens	SARS	and/or	MERS61,72,102,103,	in	addition	to	other	viral	pathogens104-108.	However,

further	work	is	required	to	determine	the	specific	antiviral	profiles	of	these	candidate	drugs,	before

they	can	be	considered	for	repurposing.

Interestingly,	we,	and	another	group,	identified	Ruxolitinib,	a	JAK	kinase	inhibitor	that	is	utilized	as	an

antineoplastic91.	Although	Ruxolitinib	was	not	identified	above	the	same	stringent	threshold	as	our

top	candidate	drugs,	its	discovery	by	two	different	in	silico	approaches	suggests	that	this	kinase

inhibitor	may	have	utility	as	a	candidate	drug	for	treating	COVID-19.	Importantly,	kinase	inhibitor

Barcitinib	is	now	undergoing	clinical	trial	in	response	to	the	COVID-	19	pandemic	(NCT04320277).

Thus,	kinase	inhibitors	represent	an	expanding,	if	underexplored,	avenue	of	research	for	the

treatment	of	viral	illnesses,	including	coronaviruses.	Repurposing	kinase	inhibitors,	many	of	which	are

already	approved	for	use	in	humans,	is	a	time-and	cost-	effective	method	to	identify	new	therapeutics

in	a	rapidly	evolving	situation	such	as	the	one	posed	by	the	current	outbreak	of	COVID-19.

Another	strong	candidate	drug	finding	from	our	analyses	is	the	antimicrobial	Ivermectin.	Best	known

for	its	efficacy	in	treating	“river	blindness,”	Ivermectin	is	already	in	widespread	use	as	an

anthelmintic	and	was	recently	shown	to	have	potent	antiviral	characteristics	in	vitro,	in	experiments

targeting	flaviviruses	and	RNA	viruses76.	Indeed,	Ivermectin	is	used	as	an	adjuvant	therapy	in

patients	with	HIV	and	a	concomitant	parasitic	infections80,81.	In	phase	II/III	clinical	trial,	Ivermectin

safely	and	significantly	reduced	Dengue	viral	NS1	protein	serum	levels	109,110.

Although	no	clinical	benefit	was	seen,	the	dosing	regimen	may	yet	be	optimized	based	on

pharmacokinetic	and	pharmacodynamic	data109.	In	addition,	Ivermectin	shows	potent	antiviral

activity	for	SARS-CoV-2,	reducing	viral	RNA	approximately	5000-fold	in	infected	cells	at	48	hours,	in	a

recent	in	vitro	study111.	Taken	together,	Ivermectin’s	established	safety	profile	and	efficacy	in

reducing	SARS-CoV-2	viral	material	in	vitro	suggest	this	drug	is	worthy	of	further	consideration	as	a
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treatment	for	COVID-19.

A	number	of	our	other	candidate	drug	findings	may	also	prove	useful	as	adjuvant	treatments	for	the

secondary	effects	associated	with	viral	infection,	including	the	antioxidant	Idebenone,	and	the

antibiotic	Penicillin112.	During	the	2009	H1N1	influenza	pandemic,	bacterial	infection	was	a

suspected,	underreported	contributor	to	patient	hospitalization	and	death113.

Interestingly,	the	antibiotic	quinacrine	was	also	identified	in	a	recent	network-based	COVID-19	drug

screen16	and	another	β-lactam	antibody	ceftriaxone,	is	in	clinical	trial	for	(adjunct)	treatment	of

COVID-19	(NCT02735707).	The	immunosuppressant	Sirolimus	was	identified	in	our	study,	albeit	at	a

less	stringent	threshold,	as	well	as	in	another	in	silico	drug	screen16,	as	a	candidate	repurposable

drug	for	treating	COVID19.	Immunosuppressants	may	address	the	symptoms	resulting	from

overactivation	of	the	immune	system	(“cytokine	storm”)	in	response	to	COVID-19	infection114,	and

this	class	of	drug	is	also	in	clinical	trial	as	adjunct	treatments	(e.g.	Thalidomide	NCT04273529).

Limitations

The	antimicrobial	drugs	that	comprise	our	drug	target	groupings	are	limited	to	those	that	have	gene

signatures	in	iLINCS.	We	analyze	gene	signatures	generated	in	two	cell	lines,	MCF7	and	HA1E,	as	data

was	available	for	all	of	our	drug	targets	in	these	cell	lines	only.	Our	drug	target	clusters	may	induce

different	patterns	of	gene	expression	changes	in	other	cell	lines,	resulting	in	different	gene

signatures,	and	potentially,	the	identification	of	different	chemical	perturbagens.	We	utilize	a	single,

representative	SARS	transcriptomic	disease	signature	to	identify	discordant	chemical	perturbagens,

as	no	transcriptomic	SARS-CoV-2	datasets	are	available	at	the	time	of	writing.	Although	the	two	viral

genomes	are	highly	similar	(envelope	and	nucleocapsid	protein	share	sequence	identities	of	96%	and

89.6%,	respectively),	we	cannot	exclude	that	chemical	perturbagens	that	are	discordant	to	SARS	may

not	have	the	same	level	of	discordance	to	SARS-CoV-2.	Finally,	as	with	other	in	silico	screening

approaches,	the	candidate	drugs	identified	here	are	not	necessarily	ready	for	human	use.	Several	of

the	candidate	drugs	are	used	in	the	treatment	of	human	disease,	but	not	viral	infections	or	COVID-19

specifically,	and	require	further	investigation	for	dosage,	efficacy	etc.	A	subset	of	the	drugs	were

explored	in	experimental,	but	not	clinical	settings,	and	are	not	currently	approved	for	use	in	humans.
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In	summary,	our	approach	has	identified	candidate	repurposable	drugs,	from	the	>20,000	small

molecules	in	the	LINCS	repository,	that	may	be	utilized	to	combat	COVID-19.	Several	of	the	candidate

drugs	are	1)	currently	approved	for	use	in	humans,	2)	have	demonstrated	antiviral	efficacy	in	vitro

and	3)	a	number	were	also	identified	in	other	in	silico	analyses.	Our	findings	contribute	to	the

relatively	novel	literature	addressing	the	purported	broad-spectrum	antiviral	efficacy	of	kinase

inhibitors	and	may	offer	a	novel	avenue	for	investigation	in	the	search	for	COVID-19	therapies.	While

there	is	evolving	evidence	for	kinase	inhibitors	as	antivirals,	other	antimicrobials	could	be	repurposed

as	well.	Finally,	our	bioinformatic	workflow	identified	an	antioxidant	and	two	known	antimicrobial

drugs,	which	are	concordant	with	current	therapies	being	explored	to	combat	SARS-CoV-2.

Methods
Selecting	and	grouping	antimicrobials	with	known	efficacy	in	treating	coronavirus	family

pathogens

The	workflow	for	this	study	is	outlined	in	Figure	1.	We	conducted	a	PubMed	search	using	search	terms

“coronavirus”	or	“COVID-19”	and	“antiviral”	or	“drug”	or	“therapy”	and	generated	a	list	of	compounds

utilized	to	treat	coronavirus	family	pathogens	or	identified	as	putative	COVID-	19	therapeutics.	We

identified	seventeen	drugs	for	potential	analysis	(Table	S1).	L1000	gene	signature	datasets	were

available	for	nine	of	the	seventeen	drugs	(Table	1)	using	the	integrative	web	platform	iLINCS

(http://ilincs.com).	The	iLINCS	L1000	hub	gene	assay	assesses	genome-wide	transcriptional	changes

following	perturbation	by	one	of	more	than	20,000	small	molecules95.	Eight	drugs	without	signatures

were	excluded	from	further	analysis.	Gene	signatures	were	generated	for	all	remaining	drugs.	To

standardize	our	analysis,	we	used	the	two	cell	lines	that	appeared	most	frequently	in	the	signatures:

MCF7	and	HA1E.	Hydroxychloroquine	has	an	MCF7	signature	only.	For	further	standardization,	where

possible,	signatures	for	a	24-hour	time	point	and	10	uM	concentration	conditions	were	used.

Next,	we	grouped	the	nine	drug	targets	based	on	canonical	mechanism	of	action,	the	Anatomical

Therapeutic	Chemical	(ATC)	classification,	and	structural	similarity.	Drugs	were	grouped	together	if

they	were	categorized	by	at	least	two	of	the	three	methods.	The	database	DrugBank

(https://www.drugbank.ca/)	was	used	to	group	the	drugs	by	their	canonical	mechanisms	of	actions.

http://ilincs.com/
https://www.drugbank.ca/
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Drug	identification	was	only	referenced	from	Drug	Bank	I.D.	If	no	Drug	Bank	I.D.	was	available,	this	is

indicated	in	Table	1	and	Table	S1.	If	there	was	no	listed	MOA	from	Drug	Bank,	then	the	MOA	was

appropriately	cited,	referenced	from	iLINCS,	or	was	referenced	from	Gene	Ontology	(GO)	Molecular

Function	2018	accessed	via	Enrichr	(http://amp.pharm.mssm.edu/Enrichr/enrich).	Next,	drugs	were

classified	based	on	the	ATC	classification	system	(https://www.whocc.no/atc_ddd_index/).	If	a

particular	drug	did	not	have	an	ATC	classification,	it	was	marked	as	“unclassified.”	From	DrugBank,

we	also	collected	the	clinical	indications,	gene	targets,	and	trade	names.	In	addition,	we	probed	the

ATC	Index	(https://www.whocc.no/atc_ddd_index/)	to	identify	the	first-	and	second-level	of	drug

classifications.	The	first-level	classification	was	used	to	confirm	drug	grouping.	Finally,	to	group	drugs

based	on	structural	similarity,	the	structural	data	files	(sdf)	for	the	nine	drugs	under	investigation

were	downloaded	from	DrugBank.	The	package	ChemmineR	was	used	to	generate	1024-bit	binary

fingerprints	for	each	compound.	The	Tanimoto	coefficient	between	all	pairs	of	fingerprints	were	then

computed	also	using	the	R	package	“ChemmineR”.	The	Tanimoto	coefficient,	also	known	as	the

Jaccard	similarity,	represents	the	most	popular	measure	for	chemical	similarity115	and	is	the	ratio	of

the	intersection	of	the	two	fingerprints	divided	by	the	union	of	the	two	fingerprints.	The	data	were

visualized	using	the	“Corrplot”	package.	With	a	final	list	of	drug	clusters,	the	individual	drug

signatures	within	each	grouping	were	collected	and	averaged	across	the	L1000.

Generating	iLINCS	gene	signatures

Using	the	iLINCS	portal,	we	acquired	the	LINCS	chemical	perturbagen	signatures	(978	genes	that

comprise	the	L1000)	for	each	drug	candidate.	Genes	with	a	log	fold	change	(LFC)	value	of	≥	0.85	or	≤

-0.85,	indicating	differential	gene	expression	induced	by	the	drug	target	compared	to	a	corresponding

control	cell	line,	were	exported	to	Microsoft	Excel.	Gene	lists	were	pooled	and	averaged	such	that	a

master	list	of	differentially	expressed	genes	was	generated	for	each	drug	candidate	family.	For

example,	genes	with	a	LFC	≥	0.85	or	≤	-0.85	that	appeared	in	both	the	hydroxychloroquine	gene

signature	and	the	chloroquine	gene	signature	were	averaged	to	calculate	mean	values	for	each

differentially	expressed	gene	in	drug	target	grouping	1.

Next,	the	upregulated	genes	(LFC	≥	0.85)	were	clustered	and	the	downregulated	genes	(≤	-0.85)

http://amp.pharm.mssm.edu/Enrichr/enrich
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
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were	clustered.	These	clusters	were	uploaded	as	user	generated	signatures	into	iLINCS.	Next,	we

identified	connected	chemical	perturbagens,	utilizing	a	concordance	threshold	score	of	≥	0.321,	an

established	minimum	concordance	score	cutoff	22,28,	to	identify	chemical	perturbagen	signatures

that	are	considered	highly	correlated	with	our	drug	target	grouping	signatures.

Gene	signatures	coronavirus-family	induced	disease	datasets

At	the	time	of	writing,	there	are	no	publically	availably	Severe	Acute	Respiratory	Syndrome

Coronavirus	2	(SARS-CoV-2;	COVID-19)	transcriptomic	datasets	available.	Thus,	SARS	(GSE56192)	and

Middle	East	Respiratory	Syndrome	(MERS;	GSE56192)	RNAseq	datasets	were	identified	in	the	Gene

Expression	Omnibus	(GEO:	https://www.ncbi.nlm.nih.gov/geo/).	SARS	and	MERS	are	coronavirus	family

members	that	cause	severe	respiratory	illnesses116.	We	selected	these	datasets	based	on	the	viral

type,	transcriptomic	platform,	and	infected	tissue	type.	The	SARS	genome	in	particular	is	highly

homologous	to	SARS-CoV-2,	the	virus	responsible	for	COVID-19117.	The	envelope	and	nucleocapsid

proteins	of	SARS-CoV-2	are	two	evolutionarily	conserved	regions,	with	sequence	identities	of	96%	and

89.6%,	respectively,	to	SARS16.	The	selected	datasets	focused	on	evaluating	transcriptomic	changes

post-infection	in	lung	cell	lines,	the	primary	tissue	affected	by	the	viral	infection	in	humans.	Each

selected	dataset	represents	a	single	time	point	from	each	study.	We	selected	the	most	representative

time	points	based	on	the	top	50	differentially	expressed	genes	from	each	dataset.	The	time	point

selected	for	these	datasets	is	24h.

We	conducted	differential	gene	expression	analysis	of	these	datasets	comparing	virus	infected

samples	to	corresponding	control	samples.	RNAseq	raw	count	data	were	analyzed	using	edgeR	R

package	v.3.28.1	for	differential	gene	expression118.	As	a	quality	control	step,	we	require	that	a	gene

have	a	count	of	at	least	10	in	at	least	some	libraries	before	it	is	considered	to	be	expressed.

Normalization	was	performed	using	the	default	method,	trimmed	mean	of	M-	values	(TMM).	This	step

is	performed	by	using	the	calcNormFactor	function,	which	returns	the	DGEList	argument	with	a	set	of

calculated	normalization	factors,	one	for	each	sample,	to	eliminate	composition	biases	between

libraries.	org.Hs.eg.db	R	package	v.3.10.0	was	used	to	complement	the	gene	annotation.

Following	analysis	of	the	disease	transcriptomic	datasets,	the	subset	of	genes	that	comprise	the

https://www.ncbi.nlm.nih.gov/geo/
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LINCS	L1000	were	extracted	from	the	differentially	expressed	gene	list	for	each	dataset.	When	the

L1000	genes	were	extracted	from	the	SARS	and	MERS	RNAseq	datasets,	944	and	947	overlapping

genes,	respectively,	were	extracted.	We	used	the	existing	gene	raw	counts	from	GEO	and	did	not

remap	the	genes.	Thus,	if	some	of	the	L1000	genes	were	not	mapped	we	were	unable	to	access	their

expression.	In	addition,	we	applied	a	gene	raw	count	cutoff	of	10	as	a	quality	control	step,	which	also

reduced	the	number	of	L1000	genes	found	in	the	final	differential	expression	gene	lists.

The	extracted	L1000	genes	were	uploaded	into	iLINCS.	Genes	with	LFC	in	expression	within	three

thresholds,	0.26	LFC,	0.5	LFC	and	all	L1000	genes,	were	identified	with	a	custom	R	script	for	further

processing.	As	described	above,	upregulated	and	down	regulated	disease	gene	signatures	were

generated	for	each	disease	dataset	(within	each	threshold)	and	uploaded	into	iLINCS	to	identify

connected	perturbagens.	For	disease	gene	signatures,	chemical	perturbagen	signatures	that	are

highly	discordant	(discordance	score	≤	-0.321),	indicating	these	perturbagens	may	“reverse”	the

disease	signature,	were	identified.	Genes	at	LFC	≥	0.5	and	≤	-	0.5	threshold	were	then	carried

forward	for	further	analysis.	Utilizing	this	gene	threshold	generated	optimal	SARS	disease	signatures

to	identify	a	large	number	of	discordant	chemical	perturbagens.

In	addition,	we	identified	a	microarray	dataset	of	human	airway	epithelium	cells	infected	with

influenza	A	of	the	H1N1	serotype	(GSE47963,	36h	time	point).	The	microarray	data	were	extracted

using	GEOquery	R	package	v.2.54.1	119.	Specifically,	SOFT	format	files	from	GEO	containing	all	of	the

information	in	the	GEO	records	were	parsed.	The	normalized	gene	expression	values	associated	with

SOFT	files	for	selected	samples	filewere	then	analyzed	using	limma	R	package	v.3.42.2,	linear	model

for	microarray120.	As	described	above,	the	L1000	genes	were	extracted.	Since	this	dataset	was

performed	on	the	microarray	platform,	which	limits	the	gene	detection	to	the	probes	available	in	the

arrays,	we	extracted	968	L1000	genes.

In	addition	to	the	MERS	dataset,	which	represents	a	pathogenic	coronavirus	like	SARS,	the	influenza

dataset	was	used	as	a	comparison	dataset	in	unsupervised	clustering	and	biological	pathway	analyses

(described	below).	Influenza	A	represents	a	non-corona	family	virus	that	also	causes	respiratory

disease121.	A	total	of	906	overlapping	L1000	genes	were	used	in	clustering	analysis	and	heat	map
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generation.

Identification	of	candidate	chemical	perturbagens	(drugs)	to	treat	COVID-19.

Candidate	drugs	were	identified	from	the	chemical	perturbagen	connectivity	analysis	using	a	custom

script	in	R.	The	script	downloaded	the	data	from	the	iLINCS	API	and	used	the	following	criteria:

Chemical	perturbagens	had	a	concordance	score	≥	0.321	compared	to	drug	target	grouping

signatures	or	a	discordance	score	≤	-0.321	compared	to	disease	signatures	in	cell	lines	MCF7

(6373/14355)	or	HA1E	(4179/8141).	If	the	same	chemical	perturbagen	is	identified	multiple	times,

from	different	experimental	conditions,	replicate	findings	are	removed	so	that	only	the	highest

concordance	score	(or	lowest	discordance	score)	for	each	chemical	perturbagen	remains.	Chemical

perturbagens	were	identified	in	the	SARS	disease	signature	analysis	AND	at	least	2/5	drug	target

grouping	signature	analyses.	This	resulted	in	506	chemical	perturbagens	from	cell	line	MCF7	and	411

chemical	perturbagens	from	cell	line	HA1E.

In	total,	112	chemical	perturbagens	were	common	to	both	cell	lines.	Chemical	perturbagens	with

concordance	scores	≥	0.8	in	the	MCF7	AND	HA1E	cell	lines	are	considered	“candidate	drugs,”

resulting	in	a	final	list	of	14	candidate	drugs.	Heat	maps	of	the	L1000	gene	data	for	each	of	the	drug

target	groupings,	candidate	drugs	and	disease	(SARS	and	MERS)	datasets	were	generated	as

described	above.	In	addition,	the	L1000	gene	data	for	Furosemide	(FUR),	a	drug	which	is	not	used	to

treat	viral	pathogens	or	related	illnesses,	and	influenza,	a	non-coronavirus	family	pathogen

associated	with	respiratory	illness,	were	included	in	the	heat	maps.	These	datasets	acts	as	controls,

suggesting	that	the	drug	target	groupings	and	candidate	drugs,	but	not	unrelated	drugs,	are

discordant	with	coronavirus	disease	signatures	specifically.

The	sdf	for	the	9	drugs	that	comprise	the	drug	target	groupings	were	downloaded	from	DrugBank.

The	sdf	files	for	the	14	candidate	drugs	were	downloaded	from	PubChem	and	Chembl.	ChemmineR

was	used	to	convert	the	sdf	files	to	binary	chemical	fingerprints.	The	Tanimoto	coefficients	of	the

chemical	fingerprints	between	the	9	drugs	that	comprise	the	drug	target	groupings	and	the	14

candidate	drugs	for	all	pairs	were	computed	using	the	ChemmineR	library.	The	Tanimoto	coefficient,

also	known	as	the	Jaccard	similarity,	represents	the	established	measure	for	chemical	similarity.	The
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data	were	then	visualized	as	a	heat	map	using	the	“gplots”	package.

GitHub	repository	access

R	scripts	utilized	in	data	processing	can	be	accessed	at	https://github.com/AliSajid/Covid19.

Comparing	disease	and	drug	target	group	signatures

Unsupervised	clustering	analysis	was	performed	on	log	fold	change	values	of	disease	and	drug	target

signatures	and	heat	map	was	generated	using	“pheatmap”	package122	in	R	programming	language.

Biological	Pathway	analysis

To	generate	biological	pathways	associated	with	the	drug	targets	and	disease	datasets,	the	gene	list

was	searched	in	Reactome	v70	(https://reactome.org/).	For	drug	target	groupings	1-3,	the	gene

signatures	(LFC	≥	0.85	and	≤	-0.85)	were	searched	and	pathways	with	a	minimum	of	10	entities

(genes),	p-value	<	0.05,	were	generated.	For	drug	target	groupings	4	and	5,	the	gene	signatures	(LFC

≥	0.85	and	≤	-0.85)	were	searched	and	pathways	with	a	minimum	of	3	entities	(genes),	p-value	<

0.05,	were	generated,	as	fewer	genes	were	input	into	pathway	analysis	at	this	threshold.	For	disease

data,	the	gene	signatures	(LFC	≥	0.5	and	≤	-	0.5)	were	searched	and	pathways	with	a	minimum	of	6

entities	(genes),	p-value	<	0.05,	were	generated.

Pathways	are	organized	under	their	top-level	hierarchical	identifier.	Pathways	are	then	identified	at

multiple	sub-levels.	To	reduce	the	number	of	redundant	pathways	whilst	still	allowing	for	meaningful

interpretation	of	biological	pathways,	some	sub-level	pathways	are	contracted.
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Figure	1

Overview	of	the	workflow	to	identify	candidate	repurposable	drugs	to	combat	COVID-19.	A)
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Drugs	that	are	currently	in	use	to	treat	coronavirus	and	putative	COVID-	19	treatments	were

clustered	based	on	mechanism	of	action,	ATC	class	and	structural	similarity.	B)	Gene

expression	data	of	the	978	genes	that	comprise	the	Library	of	Integrated	Network-Based

Cellular	Signature	(iLINCS)	L1000	genes	were	extracted	from	severe	acute	respiratory

syndrome	(SARS)	and	Middle	East	respiratory	syndrome-	related	coronavirus	(MERS)

(GSE56192)	transcriptomic	datasets.	C)	Consensus	iLINCS	gene	signatures	were	generated

for	drug	groupings	and	disease.	D)	Connectivity	analysis	was	conducted	and	a	list	of

chemical	perturbagens	that	are	concordant	(≥	0.321	concordance)	to	the	drug	target

grouping	signatures	or	discordant	(≤	-	0.321	discordance)	to	the	disease	signatures	was

generated.	Chemical	perturbagens	are	curated	to	identify	top	candidate	drugs.	E)	Biological

pathways	of	drug	target	groupings,	disease	signatures	and	candidate	drugs	was	conducted.

F)	Fourteen	perturbagens	with	concordance	scores	≥	0.8	in	MCF7	and	HA1E	cell	lines	were

shortlisted	as	repurposable	candidate	drugs.



35

Figure	2

Scatter	Plot	of	average	reported	concordance	scores	for	candidate	drugs	in	the	MCF7	cell

line	and	HA1E	cell	line.	A	total	of	112	drugs	with	concordance	scores	>	0.321	were	common

between	both	cell	lines	(open	circles).	Fourteen	drugs	were	identified	with	concordance

scores	≥	0.8	in	both	cell	lines	(closed	circles).	Drugs	above	this	threshold	are	considered

“candidate”	drugs.	Top	candidate	drugs,	those	approved	for	use	in	humans	and	with

demonstrated	antiviral	activity	in	vitro,	are	also	identified	(triangles).	Drugs	identified	by

other	in	silico	drug	screening	studies	that	were	also	found	in	our	analysis	are	identified

(squares).
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