Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Jun 16;76(Pt 7):1087–1091. doi: 10.1107/S2056989020007859

Crystal structure of {μ2-1,2-bis­[(4-methyl­phenyl­sulfan­yl]-3-oxoprop-1-ene-1,3-di­yl-1:2κ2 C 3:C 1}dicarbon­yl-1κ2 C-[μ2-methyl­enebis(di­phenyl­phos­phane)-1:2κ2 P:P′](tri­phenyl­phosphane-2κP)iron­platinum(FePt), [(OC)2Fe(μ-dppm){μ-C(=O)C(4-MeC6H4SCH2)=CCH2SC6H4Me-4}Pt(PPh3)]

Ahmed Said Mohamed a,b, Isabelle Jourdain b, Michael Knorr b, Lukas Brieger c, Carsten Strohmann c,*
PMCID: PMC7336804  PMID: 32695457

The title compound represents the first example of a diphosphane-bridged heterobimetallic Fe—Pt dimetalla­cyclo­pentenone complex resulting from a bimetallic activation of metal-coordinated carbonyl ligand with an inter­nal alkyne, namely 1,4-bis­(p-tolyl­thio)­but-2-yne. The bridging μ2-C(= O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4 unit (stemming from a carbon–carbon coupling reaction between CO and the triple bond of the alkyne di­thio­ether) forms a five-membered dimetalla­cyclo­pentenone ring, in which the C=C bond is π-coordinated to the Fe center.

Keywords: crystal structure, inter­nal alkyne, iron, platinum, heterobimetallic, metal–metal bond, dimetallcyclo­pentenone, bis­(di­phenyl­phosphino)methane, thio­ether, hydrogen bonding

Abstract

The title compound, [FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2], 1, [(OC)2Fe(μ-dppm)(μ-C(=O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4)Pt(PPh3)], represents the first example of a diphosphane-bridged heterobimetallic Fe—Pt dimetalla­cyclo­pentenone complex resulting from a bimetallic activation of metal-coordinated carbonyl ligand with an inter­nal alkyne, namely 1,4-bis­(p-tolyl­thio)­but-2-yne. The bridging μ2-C(=O)C(CH2SC6H4Me-4)=CCH2SC6H4Me-4 unit (stemming from a carbon–carbon coupling reaction between CO and the triple bond of the alkyne di­thio­ether) forms a five-membered dimetalla­cyclo­pentenone ring, in which the C=C bond is π-coordinated to the Fe center. The latter is connected to the Pt center through a short metal–metal bond of 2.5697 (6) Å.

Chemical context  

Acetyl­enic di­thio­ether ligands of type RSCH2C≡CCH2SR (R = aryl, alk­yl) have in recent years not only attracted attention as reactive building blocks for further organic transformations (Pourcelot & Cadiot, 1966; Everhardus & Brandsma; 1978; Levanova et al., 2015) but also as promising ligands for coordination chemistry because of their dytopic character, allowing both coordination to soft metal centers through dative M←S bonding and π-bonding via the acetyl­enic triple bond. In this context, we have explored in a series of several papers the coordination of this ligand family to CuX salts in a self-assembly process to discrete mol­ecular compounds, mono- and bidimensional coordination polymers and three-dimensional MOFs. For example, treatment of CuI with PhSCH2C≡CCH2SPh afforded a three-dimensional network incorporating Cu63-I) hexa­gonal prisms as connection nodes (Knorr et al., 2009; Bai et al., 2018). In contrast, reaction of BzSCH2C≡CCH2SBz (Bz = benz­yl) with both CuI and CuBr provided simple isostructural dinuclear zero-dimensional complexes [{Cu(μ2-X)2Cu}(μ-BzSCH2C≡CCH2SBz)2] (X = I, Br). A far more original material resulted from coordination to CuCl, yielding a luminescent 2D material [{Cu22-Cl)(μ3-Cl)}(μ-BzSCH2C≡CCH2SBz)]n, in which the layers are assembled both by dative Cu—S thio­ether bonds and organometallic Cu-π–acetyl­enic inter­actions via the triple bond of the ligand. Furthermore, the CuI centers are inter­connected through μ2- and μ3-bound chloro ligands. Treatment of CuI with the isomeric p-TolSCH2C≡CCH2STol-p (Tol = C6H4-p-Me) ligand led to the formation of a 2D network [{Cu43-I)4}(μ-TolSCH2C≡CCH2STol)2]n with closed cubane-type clusters as SBUs (Secondary Building Units), whilst with CuBr the 1D [{Cu(μ2-Br)2Cu}(μ-TolSCH2C≡CCH2STol)2]n coordination polymer was generated (Aly et al., 2014; Bonnot et al., 2015). An alternative approach to combining a metallic scaffold with RSCH2C≡CCH2SR-type ligands has been developed by Went and coworkers, who post-functionalized dicobalta­tetra­hedrane complexes [Co2(μ-HOCH2C≡CCH2OH)(CO)6] in the presence of HBF4·OEt2 and various thiols RSH to obtain [Co2(μ-RSCH2C≡CCH2SR)(CO)6] and [Co2(μ-RSCH2C≡CCH2SR)(μ-dppm)(CO)4] [dppm = bis­(di­phenyl­phosphino)methane], respectively. Similar treatment of [Mo2(μ-HOCH2C≡CCH2OH)(CO)4Cp2] with EtSH yielded [Mo2(μ-EtSCH2C≡CCH2SEt)(CO)4Cp2]. These former Co–Co thio­ether complexes were then employed as metalloligands to coordinate further metal fragments such as [Cu(MeCN)4]PF6, AgBF4 and [Mo(CO)4(norbornadiene)] (Bennett, et al., 1992; Gelling et al., 1993). Related dicationic salts such as [(Co2(CO)6)2-μ,η22-(Me2S—CH2C≡CCH2SMe2)][BF4]2 have also been described (Amouri et al., 2000). We and Shaw’s group have demonstrated that upon treatment of the μ-carbonyl complex [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with ArC≡CH (Ar = Ph, p-Tol, 2,4,5-tri­methyl­phenyl, p-C6H4F, 2,4-C6H3F2, p-C6H4CF3), dimetalla­cyclo­pentone complexes are formed, stemming from carbon–carbon coupling reactions between CO and the terminal alkyne (Fontaine et al., 1988; Jourdain et al., 2013; Knorr & Jourdain, 2017; Brieger et al., 2019). The first step involves the formation of a kinetic isomer [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(Ar)}Pt(PPh3)], which then evolves to the thermodynamic one [(OC)2Fe(μ-dppm){μ-C(=O)C(Ar)=C(H)}Pt(PPh3)]. We were now intrigued as to whether this route may be extended to inter­nal alkynes RC≡CR, which are in general less reactive than terminal ones. We therefore probed the possibility of coupling [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with p-TolSCH2C≡CCH2STol-p in hot toluene as solvent and succeeded in isolating the targeted dimetalla­cyclo­pentone [(OC)2Fe(μ-dppm)(μ-C(=O)C(4-MeC6H4SCH2)=CCH2SC6H4Me-4)Pt(PPh3)] (1) as a stable crystalline product according to the reaction scheme shown in Fig. 1. With this title compound 1 in hand, we now have the possibility of coordinating other metal fragments in upcoming studies, for example [Mo(CO)4(norbornadiene)] or ReBr(CO)5 in a chelating manner using the two adjacent thio­ether arms or of constructing coordination networks incorporating complex 1 as an organometallic building block by coordination of CuX or AgI salts on the S-donor sites (see above).graphic file with name e-76-01087-scheme1.jpg

Figure 1.

Figure 1

The reaction scheme for the synthesis of 1.

Structural commentary  

The heterobimetallic compound 1 crystallizes in the monoclinic crystal system, space group P21/c. The mol­ecular structure is depicted in Fig. 2 and selected bond lengths and angles are given in Table 1.

Figure 2.

Figure 2

The mol­ecular structure of the title complex 1, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Selected geometric parameters (Å, °).

Pt1—Fe1 2.5697 (6) Fe1—C2 2.119 (4)
Pt1—P2 2.2850 (10) Fe1—C3 1.932 (5)
Pt1—P3 2.2714 (12) Fe1—C20 1.777 (5)
Pt1—C1 2.045 (4) Fe1—C21 1.789 (5)
Fe1—P1 2.1966 (12) O3—C3 1.216 (5)
Fe1—C1 2.162 (4) C1—C2 1.407 (6)
       
P2—Pt1—Fe1 97.26 (3) C1—Fe1—C2 38.35 (16)
P3—Pt1—Fe1 161.46 (3) C20—Fe1—P1 95.66 (14)
P3—Pt1—P2 100.53 (4) C21—Fe1—P1 102.63 (13)
C1—Pt1—Fe1 54.44 (12) C3—Fe1—P1 88.88 (13)
C1—Pt1—P2 151.36 (12) C1—Fe1—P1 141.85 (12)
C1—Pt1—P3 107.33 (12) C2—Fe1—P1 130.91 (13)
Pt1—C1—Fe1 75.25 (13) C20—Fe1—Pt1 168.78 (14)
C20—Fe1—C3 101.5 (2) C21—Fe1—Pt1 87.76 (14)
C20—Fe1—C21 96.5 (2) C2—Fe1—Pt1 73.72 (12)
C21—Fe1—C3 157.6 (2) C1—Fe1—Pt1 50.30 (11)
C20—Fe1—C1 119.19 (18) C3—Fe1—Pt1 72.18 (13)
C21—Fe1—C1 89.16 (18) P1—Fe1—Pt1 93.50 (4)
C3—Fe1—C1 70.43 (18) C2—C1—Pt1 109.1 (3)
C20—Fe1—C2 95.33 (18) C2—C1—Fe1 69.2 (2)

The Fe—Pt bond [2.5697 (6) Å] is spanned by a dppm ligand and bridged by the C(=O)C(R)=C(R) (R = 4-MeC6H4SCH2) unit resulting from the carbon–carbon coupling reaction between CO and the alkyne. This value, which is less than 2.6 Å, is in the usual range for FePt(dppm)–dimetalla­cyclo­pentenone complexes. Note that extreme Fe—Pt distances are reported for the μ-carbene [(OC)3Fe{μ-C(Et)OSi(OMe)3}(μ-dppm)Pt(PPh3)] [d(Fe—Pt) = 2.5062 (9) Å; YOTCIT; Braunstein et al., 1995] and [Fe(η5-C5H4S)2Pt(PPh3)] [d(Fe—Pt = 2.935 (2) Å; FENCUW; Akabori et al., 1987]. Coupling of an inter­nal alkyne does not affect the structural features of the [FeC(=O)C(R)=C(R)Pt] motif significantly with respect to carbon–carbon coupling with a terminal alkyne. The relevant bond lengths and angles are very similar to those of other Fe—Pt structures published by Fontaine et al. (1988) and our group (see above). The presence of a bulky substituent on the C1 atom bound to platinum implies a significant reduction of the P3—Pt—P2 angle [100.53 (4)°] concomitant with an increasing value of the angle P3—Pt—C1 of 107.33 (12)°. In related compounds described previously in the literature, these P3—Pt—P2 angles usually lie in the range 103.93 (8) to 106.63 (3)°, as exemplified by [(OC)2Fe(μ-dppm){μ-C(=O)C{(CH2)3CCH}=C(H)}Pt(PPh3)] (REDNEU) and [(OC)2Fe(μ-dppm){μ-C(=O)C(p-C6H4CF3)=C(H)}Pt(PPh3)] (PIXLAL), and 98.8 (3) to 104.95 (10)° for P3—Pt—C1 in [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(H)}Pt(PPh3)] (FEYBAM) and [(OC)2Fe(μ-dppm){μ-C(=O)C(o,p-C6H3F2)=C(H)}Pt(PPh3)] (PIX­KUE) (Fontaine et al., 1988; Jourdain et al., 2006, 2013). The crystal structure of the di­thio­ether p-TolSCH2C≡CCH2STol-p (MULHUZ) was reported by Aly et al. (2014). After complexation and a coupling reaction with a CO ligand, the C1—C2 bond is considerably longer [1.407 (6) vs 1.266 (5) Å] as a result of the conversion to an olefinic moiety, σ-bound to Pt and η2-coordinated to Fe. The alkyne bending angles are disparate [C1—C2—C4 = 126.2 (4), C2—C1—C12 = 119.6 (4)°] as well as the C1—C12 and C2—C4 distances [d(C1—C12) = 1.483 (6), d(C2—C4) = 1.511 (5) Å]. Compared to 1,4-bis­(p-tolyl­thio)­but-2-yne, the C—S bonds are also considerably elongated [d(C4—S1 = 1.830 (4), d(C12—S2) = 1.808 (4), d(C5—S1) = 1.782 (5), d(C13—S2) = 1.771 (4) vs 1.685 (2) and 1.714 (2) Å] but they fit well with those encountered in the dimetalla­tetra­hedrane [Co2{μ-C2(CH2SMe)2Mo(CO)4}(μ-dppm)(CO)4] [d(C—S = 1.827 (4), 1.833 (4),1.790 (5) and 1.819 (5) Å; JIHMUI10; Gelling et al., 1993].

Supra­molecular features  

In the crystal, the individual mol­ecules are linked by weak inter­molecular inter­actions; for example a contact between O3′′⋯H39 [d = 2.49 Å and C3′′—O3′′⋯H39 = 138°; symmetry code: (′′) −x + 1, −y + 1, −z + 1] occurs (Fig. 3, Table 2. A second, yet still weaker inter­molecular inter­action of 2.67 Å is observed between the O1′⋯H15 [symmetry code: (′) x, –y + Inline graphic, z − Inline graphic] atoms of two adjacent mol­ecules. In addition there is an intra­molecular contact between O3⋯H34A (d = 2.62 Å and C3—O3⋯H34A = 125°). Furthermore, there are also several loose inter­molecular C—H⋯π inter­actions present; for example a contact between C43—H43 and the midpoint of the C13=C14 double bond [d(H43⋯midpoint) = 2.73 Å and C—H⋯midpoint = 157°] of a tolyl ring attached to S2, as well as between C62—H62 and the C23—C24—C25 atoms of a phenyl ring [d(H62⋯centroid) = 2.64 Å and C—H⋯centroid = 148°] attached at P1. However, since all hydrogen atoms were not refined freely, a more accurate discussion of the bond lengths and angle is not appropriate.

Figure 3.

Figure 3

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds (Table 2) are shown as dashed lines.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.67 3.316 (6) 128
C34—H34A⋯O3 0.97 2.62 3.271 (5) 125
C39—H39⋯O3ii 0.93 2.49 3.239 (6) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

Other examples of crystallographically characterized dimetalla­cyclo­pentenone complexes are Fe2Cp2(CO)(μ-CO){μ-CH=C(Ph)C(=O)} (DAHTAJ; Boni et al., 2011), Fe2Cp*2(CO)(μ-CO){μ-C(C≡CH)=CHC(=O)] (JUZHIV; Akita et al., 1993), Fe2(CO)5(μ-dppm){μ-C(=O)CH=CH} (GACWIQ10; Knox et al., 1995), Fe2(CO)5(μ-dppm){μ-C(=O)C(Ph)=CH} (PIHMOI; Hitchcock et al., 1993), Fe2Cp2(CO)(μ-CO){μ-C(COR)=C(Me)C(=O)} (R = Ph, Bu) (SIZNUK, SIZPAS; Wong et al., 1991), Fe2{(η-C5H4)2SiMe2}(CO)2(μ-CO){μ-C(Ph)=C(H)C(=O)} (ZUZGIK; McKee et al., 1994), Ru2(CO)4(μ-dppm)2{μ-C(=O)C(CO2Me)=C(CO2Me)} (JITZAN; Johnson & Gladfelter, 1991), Ru2(CO)4(μ-dppm)2{μ-CH=CHC(=O)} (LIFYUU; Mirza et al., 1994), Ru2(η-C5HMe4)2(CO)(μ-CO){μ-C(=O)C(R)=C(R)} (R = Et, Me) (NEMVOS, NEMVUY; Horiuchi et al., 2012), Rh2Cp2(CO)4{μ-C(CF3)=C(CF3)C(=O)} (TFPNRH; Dickson et al., 1981), Re2Cp*2(CO)2{μ-CH=C{C(=CH2)CH3}C(=O)} (WEZKIV; Casey et al., 1994). A rare example of a heterodinuclear combination is CpFe{μ-C(=O)C(CMe2OH)=CH}(μ-CO)Ru(CO)Cp* (FEHGOP; Dennett et al., 2005). We are also aware of OsRu(CO)8{μ-HC=CHC(=O)} (Kiel et al., 2000), but for the latter compound no structural data are available.

Synthesis and crystallization  

[(OC)3Fe(μ-CO)(μ-dppm)Pt(PPh3)] (200 mg, 0.2 mmol) was treated with an excess of 1,4-bis­(p-tolyl­thio)­but-2-yne (100 mg, 0.4 mmol) in toluene (5 mL). The solution was stirred at 363 K for 6h. The reaction mixture was filtered, and all volatiles removed under reduced pressure. The brown residue was redissolved in a minimum of toluene. Orange–yellow crystals were isolated by layering with heptane (152 mg, 76% yield).

Calculated for C64H55FeO3P3PtS2 (1279.18 g mol−1): C, 60.05; H, 4.36. Found: C, 59.80; H, 4.21. 1H NMR: δ 2.21 (s, 3H, CH3), 2.28 (s, 3H, CH3), 3.67 (br, 2H, CH2), 3.97(br, 2H, CH2), 4.53 (br, 2H, PCH2P, 2 J PtH = 41), 6.45–7.85 (m, 43H, Ph). 31P{1H} NMR: δ 6.8 (d, Pdppm Pt, 2 J PP = 57, 2 + 3 J PP = 5, 1 J PtP = 2543), 32.7 (d, PPPh3 Pt, 3 J PP = 32, 2 + 3 J PP = 5, 1 J PtP = 3506), 63.4 (dd, Pdppm Fe, 2 J PP = 57, 3 J PP = 32, 1 J PtP = 135). IR(toluene): 1966, 1918s ν(CO), 1696m ν(C=O).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All of the hydrogen atoms were placed in geometrically calculated positions and each was assigned a fixed isotropic displacement parameter based on a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2]
M r 1280.05
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.0071 (6), 36.1737 (15), 13.6980 (6)
β (°) 111.970 (5)
V3) 5517.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.01
Crystal size (mm) 0.23 × 0.15 × 0.05
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.837, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47863, 10566, 8245
R int 0.071
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.076, 1.03
No. of reflections 10566
No. of parameters 669
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.64

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020007859/pk2630sup1.cif

e-76-01087-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007859/pk2630Isup3.hkl

e-76-01087-Isup3.hkl (838.3KB, hkl)

CCDC reference: 1996804

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[FePt(C19H18OS2)(C18H15P)(C25H22P2)(CO)2] F(000) = 2576
Mr = 1280.05 Dx = 1.541 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.0071 (6) Å Cell parameters from 9511 reflections
b = 36.1737 (15) Å θ = 2.7–28.7°
c = 13.6980 (6) Å µ = 3.01 mm1
β = 111.970 (5)° T = 293 K
V = 5517.5 (5) Å3 Plate, yellow
Z = 4 0.23 × 0.15 × 0.05 mm

Data collection

Agilent Technologies Xcalibur, Sapphire3 diffractometer 10566 independent reflections
Radiation source: Enhance (Mo) X-ray Source 8245 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.071
Detector resolution: 16.0560 pixels mm-1 θmax = 25.8°, θmin = 2.2°
ω scans h = −11→14
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) k = −44→41
Tmin = 0.837, Tmax = 1.000 l = −16→16
47863 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.5475P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.005
10566 reflections Δρmax = 1.12 e Å3
669 parameters Δρmin = −0.64 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Crystal structure determination of compound 1 was accomplished on an Oxford diffraction Xcalibur S Diffractometer. Suitable crystals of 1 were covered with an inert oil (perfluoropolyalkylether and used for X-ray crystal structure determination. Graphite monochromated Mo-Kα radiation (λ = 0.71073?Å) was used. The processing and finalization of the crystal structure was done with the program Olex2 (Dolomanov, 2009). The crystal structures were solved by intrinsic phasing (SHELXT; Sheldrick, 2015a) and refined against F2 with the full-matrix least-squares method (SHELXL; Sheldrick, 2015b). A multi-scan absorption correction using the CrysAlis RED program (Oxford Diffraction, 2010) was employed. The non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.33424 (2) 0.62472 (2) 0.31155 (2) 0.01386 (6)
Fe1 0.52875 (5) 0.66228 (2) 0.35654 (4) 0.01541 (14)
S1 0.51458 (12) 0.61606 (4) 0.02018 (9) 0.0335 (3)
S2 0.19884 (11) 0.69548 (4) 0.12684 (8) 0.0242 (3)
P1 0.60180 (10) 0.64353 (3) 0.52099 (8) 0.0160 (3)
P2 0.36370 (10) 0.60649 (3) 0.47912 (8) 0.0136 (2)
P3 0.16428 (10) 0.59290 (3) 0.21914 (8) 0.0166 (3)
O1 0.3898 (3) 0.72834 (9) 0.3663 (2) 0.0305 (8)
O2 0.7452 (3) 0.70095 (9) 0.3644 (3) 0.0331 (8)
O3 0.6059 (3) 0.58365 (9) 0.3412 (2) 0.0226 (7)
C1 0.3927 (4) 0.64918 (12) 0.2048 (3) 0.0167 (10)
C2 0.5040 (4) 0.63378 (12) 0.2148 (3) 0.0184 (10)
C3 0.5576 (4) 0.61346 (14) 0.3138 (3) 0.0199 (11)
C4 0.5728 (4) 0.64158 (13) 0.1445 (3) 0.0214 (10)
H4A 0.656425 0.635059 0.181663 0.026*
H4B 0.569106 0.667854 0.129478 0.026*
C5 0.5750 (4) 0.57103 (14) 0.0594 (3) 0.0284 (12)
C6 0.5322 (5) 0.54791 (15) 0.1179 (4) 0.0356 (13)
H6 0.469522 0.555719 0.137208 0.043*
C7 0.5815 (5) 0.51369 (15) 0.1475 (4) 0.0413 (15)
H7 0.552057 0.498782 0.187748 0.050*
C8 0.6741 (5) 0.50038 (15) 0.1194 (4) 0.0398 (14)
C9 0.7145 (5) 0.52324 (16) 0.0597 (4) 0.0436 (15)
H9 0.775600 0.514984 0.038988 0.052*
C10 0.6673 (5) 0.55811 (16) 0.0295 (4) 0.0364 (14)
H10 0.696839 0.572966 −0.010742 0.044*
C11 0.7276 (6) 0.46250 (16) 0.1544 (5) 0.065 (2)
H11A 0.743383 0.459346 0.227930 0.097*
H11B 0.801292 0.460237 0.142632 0.097*
H11C 0.672116 0.443892 0.114692 0.097*
C12 0.3296 (4) 0.67416 (13) 0.1153 (3) 0.0208 (11)
H12A 0.305131 0.660195 0.050210 0.025*
H12B 0.384620 0.693322 0.112025 0.025*
C13 0.1237 (4) 0.71380 (13) −0.0009 (3) 0.0213 (11)
C14 0.1814 (4) 0.72895 (13) −0.0630 (3) 0.0256 (11)
H14 0.264781 0.728200 −0.039538 0.031*
C15 0.1159 (4) 0.74513 (14) −0.1592 (3) 0.0299 (12)
H15 0.156559 0.755564 −0.198448 0.036*
C16 −0.0078 (4) 0.74615 (13) −0.1983 (3) 0.0264 (11)
C17 −0.0649 (4) 0.73051 (14) −0.1363 (3) 0.0286 (12)
H17 −0.148331 0.730799 −0.160551 0.034*
C18 −0.0010 (4) 0.71470 (13) −0.0406 (3) 0.0252 (11)
H18 −0.041978 0.704399 −0.001440 0.030*
C19 −0.0794 (5) 0.76391 (16) −0.3034 (4) 0.0428 (15)
H19A −0.047412 0.787999 −0.306543 0.064*
H19B −0.161883 0.766129 −0.310870 0.064*
H19C −0.074281 0.748835 −0.359219 0.064*
C20 0.6604 (4) 0.68613 (13) 0.3621 (3) 0.0230 (11)
C21 0.4445 (4) 0.70239 (13) 0.3626 (3) 0.0199 (10)
C22 0.7607 (4) 0.62972 (13) 0.5705 (3) 0.0176 (10)
C23 0.8454 (4) 0.65829 (14) 0.5896 (3) 0.0246 (11)
H23 0.820210 0.682797 0.581983 0.030*
C24 0.9660 (4) 0.65016 (16) 0.6197 (3) 0.0326 (13)
H24 1.021532 0.669251 0.632344 0.039*
C25 1.0048 (4) 0.61401 (16) 0.6313 (3) 0.0324 (14)
H25 1.085863 0.608652 0.649885 0.039*
C26 0.9219 (4) 0.58565 (15) 0.6149 (3) 0.0315 (13)
H26 0.947659 0.561191 0.624560 0.038*
C27 0.8012 (4) 0.59378 (13) 0.5841 (3) 0.0234 (11)
H27 0.746189 0.574587 0.572385 0.028*
C28 0.6025 (4) 0.67405 (13) 0.6288 (3) 0.0198 (10)
C29 0.5891 (5) 0.71186 (14) 0.6141 (4) 0.0324 (13)
H29 0.581547 0.721995 0.549531 0.039*
C30 0.5869 (5) 0.73480 (15) 0.6941 (4) 0.0423 (15)
H30 0.577689 0.760181 0.683252 0.051*
C31 0.5983 (5) 0.71993 (16) 0.7901 (4) 0.0358 (13)
H31 0.595101 0.735182 0.843640 0.043*
C32 0.6144 (5) 0.68300 (15) 0.8061 (4) 0.0344 (13)
H32 0.623800 0.673087 0.871411 0.041*
C33 0.6168 (4) 0.65998 (13) 0.7268 (3) 0.0250 (11)
H33 0.628129 0.634720 0.739143 0.030*
C34 0.5268 (4) 0.60132 (12) 0.5404 (3) 0.0150 (10)
H34A 0.552067 0.580369 0.509554 0.018*
H34B 0.549824 0.596640 0.615122 0.018*
C35 0.3097 (4) 0.56202 (12) 0.5064 (3) 0.0160 (10)
C36 0.1925 (4) 0.55998 (13) 0.5041 (3) 0.0218 (11)
H36 0.144301 0.580982 0.488889 0.026*
C37 0.1481 (5) 0.52697 (14) 0.5244 (3) 0.0289 (12)
H37 0.069837 0.525755 0.522178 0.035*
C38 0.2195 (5) 0.49550 (14) 0.5482 (4) 0.0326 (13)
H38 0.189317 0.473274 0.561975 0.039*
C39 0.3353 (5) 0.49742 (13) 0.5512 (3) 0.0283 (12)
H39 0.383817 0.476506 0.567991 0.034*
C40 0.3792 (4) 0.53025 (13) 0.5296 (3) 0.0216 (11)
H40 0.457018 0.531125 0.530449 0.026*
C41 0.3264 (4) 0.63622 (12) 0.5696 (3) 0.0173 (10)
C42 0.2880 (4) 0.67210 (13) 0.5430 (3) 0.0237 (11)
H42 0.276531 0.680940 0.476120 0.028*
C43 0.2662 (5) 0.69537 (14) 0.6159 (4) 0.0348 (13)
H43 0.240436 0.719544 0.597655 0.042*
C44 0.2831 (4) 0.68214 (15) 0.7138 (4) 0.0334 (13)
H44 0.269937 0.697685 0.762477 0.040*
C45 0.3193 (4) 0.64629 (15) 0.7419 (3) 0.0295 (12)
H45 0.328276 0.637497 0.808180 0.035*
C46 0.3421 (4) 0.62350 (13) 0.6706 (3) 0.0203 (10)
H46 0.368134 0.599408 0.689833 0.024*
C47 0.1854 (4) 0.54327 (12) 0.2099 (3) 0.0190 (10)
C48 0.0931 (4) 0.52009 (13) 0.1484 (3) 0.0258 (11)
H48 0.018084 0.530064 0.109826 0.031*
C49 0.1112 (5) 0.48275 (14) 0.1440 (4) 0.0328 (13)
H49 0.047654 0.467587 0.104805 0.039*
C50 0.2232 (5) 0.46751 (15) 0.1974 (4) 0.0367 (14)
H50 0.234927 0.442181 0.194608 0.044*
C51 0.3172 (5) 0.49003 (15) 0.2546 (4) 0.0359 (13)
H51 0.393402 0.480116 0.288828 0.043*
C52 0.2979 (4) 0.52767 (13) 0.2611 (3) 0.0227 (11)
H52 0.361714 0.542713 0.300490 0.027*
C53 0.0484 (4) 0.60009 (13) 0.2734 (3) 0.0186 (10)
C54 0.0450 (4) 0.63486 (13) 0.3149 (3) 0.0231 (11)
H54 0.102310 0.652383 0.316344 0.028*
C55 −0.0423 (4) 0.64388 (14) 0.3541 (3) 0.0281 (12)
H55 −0.043485 0.667238 0.382068 0.034*
C56 −0.1277 (4) 0.61781 (14) 0.3515 (3) 0.0294 (12)
H56 −0.185895 0.623613 0.378580 0.035*
C57 −0.1272 (4) 0.58350 (14) 0.3091 (3) 0.0256 (12)
H57 −0.186297 0.566375 0.305649 0.031*
C58 −0.0381 (4) 0.57431 (14) 0.2713 (3) 0.0235 (11)
H58 −0.036596 0.550782 0.244489 0.028*
C59 0.0822 (4) 0.60429 (12) 0.0805 (3) 0.0188 (10)
C60 −0.0369 (4) 0.61515 (12) 0.0426 (3) 0.0223 (11)
H60 −0.077921 0.616660 0.088156 0.027*
C61 −0.0950 (4) 0.62378 (14) −0.0626 (3) 0.0298 (12)
H61 −0.175186 0.630961 −0.087322 0.036*
C62 −0.0358 (5) 0.62189 (14) −0.1314 (3) 0.0312 (12)
H62 −0.074977 0.628004 −0.201958 0.037*
C63 0.0821 (5) 0.61082 (14) −0.0938 (3) 0.0299 (12)
H63 0.122595 0.609225 −0.139794 0.036*
C64 0.1415 (4) 0.60201 (13) 0.0108 (3) 0.0244 (11)
H64 0.221358 0.594538 0.034901 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.01128 (9) 0.01589 (10) 0.01397 (8) −0.00082 (8) 0.00420 (7) 0.00141 (7)
Fe1 0.0129 (3) 0.0159 (4) 0.0171 (3) −0.0014 (3) 0.0053 (3) 0.0025 (3)
S1 0.0380 (8) 0.0434 (9) 0.0191 (6) 0.0099 (7) 0.0109 (6) 0.0031 (6)
S2 0.0228 (7) 0.0292 (7) 0.0210 (6) 0.0072 (6) 0.0087 (5) 0.0055 (5)
P1 0.0125 (6) 0.0177 (7) 0.0162 (5) −0.0015 (5) 0.0035 (5) 0.0004 (5)
P2 0.0119 (6) 0.0134 (6) 0.0149 (5) 0.0001 (5) 0.0043 (5) 0.0015 (5)
P3 0.0129 (6) 0.0200 (7) 0.0159 (5) −0.0013 (5) 0.0043 (5) −0.0010 (5)
O1 0.026 (2) 0.026 (2) 0.038 (2) 0.0081 (17) 0.0105 (17) −0.0009 (16)
O2 0.017 (2) 0.032 (2) 0.051 (2) −0.0051 (17) 0.0128 (17) 0.0101 (17)
O3 0.0226 (19) 0.0190 (19) 0.0261 (17) 0.0048 (15) 0.0091 (15) 0.0030 (14)
C1 0.018 (3) 0.015 (3) 0.016 (2) −0.004 (2) 0.0038 (19) 0.0017 (18)
C2 0.021 (3) 0.017 (3) 0.018 (2) −0.003 (2) 0.009 (2) −0.0023 (19)
C3 0.012 (2) 0.027 (3) 0.022 (2) −0.003 (2) 0.008 (2) −0.003 (2)
C4 0.023 (3) 0.019 (3) 0.022 (2) −0.001 (2) 0.008 (2) 0.000 (2)
C5 0.028 (3) 0.036 (3) 0.018 (2) −0.001 (2) 0.006 (2) −0.009 (2)
C6 0.036 (3) 0.046 (4) 0.029 (3) −0.002 (3) 0.016 (3) −0.005 (3)
C7 0.063 (4) 0.029 (3) 0.030 (3) −0.006 (3) 0.016 (3) −0.002 (2)
C8 0.045 (4) 0.032 (4) 0.032 (3) 0.002 (3) 0.002 (3) −0.010 (3)
C9 0.036 (4) 0.045 (4) 0.050 (3) 0.006 (3) 0.016 (3) −0.013 (3)
C10 0.034 (3) 0.044 (4) 0.034 (3) −0.007 (3) 0.017 (3) −0.009 (3)
C11 0.082 (5) 0.040 (4) 0.062 (4) 0.020 (4) 0.015 (4) −0.003 (3)
C12 0.014 (3) 0.026 (3) 0.023 (2) −0.002 (2) 0.008 (2) 0.003 (2)
C13 0.019 (3) 0.024 (3) 0.019 (2) 0.001 (2) 0.004 (2) 0.002 (2)
C14 0.016 (3) 0.036 (3) 0.023 (2) 0.004 (2) 0.005 (2) 0.007 (2)
C15 0.026 (3) 0.042 (3) 0.023 (3) 0.001 (3) 0.011 (2) 0.005 (2)
C16 0.026 (3) 0.027 (3) 0.025 (3) 0.002 (2) 0.007 (2) 0.000 (2)
C17 0.015 (3) 0.033 (3) 0.032 (3) 0.003 (2) 0.004 (2) 0.001 (2)
C18 0.019 (3) 0.031 (3) 0.026 (3) 0.002 (2) 0.010 (2) 0.004 (2)
C19 0.035 (3) 0.054 (4) 0.034 (3) 0.004 (3) 0.006 (3) 0.011 (3)
C20 0.020 (3) 0.022 (3) 0.026 (2) 0.005 (2) 0.007 (2) 0.004 (2)
C21 0.016 (3) 0.021 (3) 0.021 (2) −0.003 (2) 0.006 (2) 0.003 (2)
C22 0.009 (2) 0.027 (3) 0.015 (2) 0.002 (2) 0.0027 (18) 0.0000 (19)
C23 0.020 (3) 0.033 (3) 0.020 (2) −0.001 (2) 0.006 (2) 0.000 (2)
C24 0.017 (3) 0.056 (4) 0.022 (3) −0.014 (3) 0.006 (2) −0.002 (3)
C25 0.010 (3) 0.066 (4) 0.021 (2) 0.002 (3) 0.005 (2) −0.006 (3)
C26 0.020 (3) 0.040 (3) 0.030 (3) 0.011 (3) 0.005 (2) −0.011 (2)
C27 0.021 (3) 0.028 (3) 0.019 (2) 0.005 (2) 0.005 (2) −0.003 (2)
C28 0.013 (2) 0.019 (3) 0.023 (2) 0.000 (2) 0.002 (2) −0.004 (2)
C29 0.035 (3) 0.024 (3) 0.026 (3) −0.001 (2) −0.003 (2) −0.006 (2)
C30 0.041 (4) 0.025 (3) 0.046 (3) 0.006 (3) 0.001 (3) −0.011 (3)
C31 0.027 (3) 0.042 (4) 0.038 (3) 0.000 (3) 0.012 (2) −0.021 (3)
C32 0.032 (3) 0.043 (4) 0.031 (3) −0.011 (3) 0.016 (2) −0.010 (3)
C33 0.030 (3) 0.018 (3) 0.028 (3) −0.001 (2) 0.011 (2) −0.003 (2)
C34 0.015 (2) 0.016 (3) 0.012 (2) 0.002 (2) 0.0037 (18) 0.0012 (18)
C35 0.019 (3) 0.017 (3) 0.010 (2) −0.002 (2) 0.0045 (19) 0.0010 (18)
C36 0.021 (3) 0.021 (3) 0.020 (2) −0.002 (2) 0.004 (2) 0.000 (2)
C37 0.028 (3) 0.032 (3) 0.029 (3) −0.013 (3) 0.013 (2) −0.006 (2)
C38 0.048 (4) 0.019 (3) 0.034 (3) −0.017 (3) 0.018 (3) −0.001 (2)
C39 0.038 (3) 0.016 (3) 0.029 (3) 0.005 (2) 0.010 (2) 0.000 (2)
C40 0.021 (3) 0.022 (3) 0.022 (2) 0.000 (2) 0.008 (2) 0.003 (2)
C41 0.011 (2) 0.018 (3) 0.023 (2) −0.005 (2) 0.0069 (19) −0.0025 (19)
C42 0.027 (3) 0.021 (3) 0.027 (2) 0.000 (2) 0.015 (2) −0.001 (2)
C43 0.039 (3) 0.020 (3) 0.052 (3) 0.003 (3) 0.025 (3) −0.006 (3)
C44 0.026 (3) 0.044 (4) 0.036 (3) −0.009 (3) 0.017 (2) −0.022 (3)
C45 0.025 (3) 0.044 (4) 0.021 (2) −0.003 (3) 0.010 (2) −0.004 (2)
C46 0.015 (2) 0.022 (3) 0.023 (2) −0.004 (2) 0.0062 (19) −0.001 (2)
C47 0.022 (3) 0.019 (3) 0.019 (2) 0.000 (2) 0.010 (2) 0.0020 (19)
C48 0.021 (3) 0.027 (3) 0.027 (3) −0.004 (2) 0.006 (2) −0.004 (2)
C49 0.037 (3) 0.027 (3) 0.030 (3) −0.012 (3) 0.008 (3) −0.007 (2)
C50 0.057 (4) 0.021 (3) 0.031 (3) 0.001 (3) 0.016 (3) 0.000 (2)
C51 0.035 (3) 0.033 (3) 0.035 (3) 0.008 (3) 0.008 (3) 0.004 (3)
C52 0.026 (3) 0.017 (3) 0.022 (2) −0.004 (2) 0.005 (2) −0.005 (2)
C53 0.013 (3) 0.027 (3) 0.014 (2) −0.002 (2) 0.0023 (19) 0.0020 (19)
C54 0.016 (3) 0.028 (3) 0.023 (2) 0.001 (2) 0.005 (2) 0.003 (2)
C55 0.026 (3) 0.032 (3) 0.029 (3) 0.009 (3) 0.014 (2) 0.001 (2)
C56 0.020 (3) 0.046 (4) 0.025 (2) 0.006 (3) 0.011 (2) 0.005 (2)
C57 0.014 (3) 0.036 (3) 0.025 (2) 0.000 (2) 0.006 (2) 0.010 (2)
C58 0.017 (3) 0.033 (3) 0.020 (2) −0.004 (2) 0.005 (2) 0.002 (2)
C59 0.016 (3) 0.019 (3) 0.018 (2) −0.003 (2) 0.0011 (19) −0.0021 (19)
C60 0.018 (3) 0.027 (3) 0.022 (2) 0.006 (2) 0.008 (2) 0.007 (2)
C61 0.020 (3) 0.036 (3) 0.024 (2) 0.007 (2) −0.002 (2) −0.001 (2)
C62 0.034 (3) 0.037 (3) 0.015 (2) 0.001 (3) 0.001 (2) 0.001 (2)
C63 0.036 (3) 0.040 (3) 0.017 (2) 0.001 (3) 0.014 (2) −0.001 (2)
C64 0.016 (3) 0.034 (3) 0.022 (2) 0.001 (2) 0.005 (2) −0.002 (2)

Geometric parameters (Å, º)

Pt1—Fe1 2.5697 (6) C26—C27 1.382 (6)
Pt1—P2 2.2850 (10) C27—H27 0.9300
Pt1—P3 2.2714 (12) C28—C29 1.383 (6)
Pt1—C1 2.045 (4) C28—C33 1.385 (6)
Fe1—P1 2.1966 (12) C29—H29 0.9300
Fe1—C1 2.162 (4) C29—C30 1.383 (6)
Fe1—C2 2.119 (4) C30—H30 0.9300
Fe1—C3 1.932 (5) C30—C31 1.379 (7)
Fe1—C20 1.777 (5) C31—H31 0.9300
Fe1—C21 1.789 (5) C31—C32 1.356 (7)
S1—C4 1.830 (4) C32—H32 0.9300
S1—C5 1.782 (5) C32—C33 1.378 (6)
S2—C12 1.808 (4) C33—H33 0.9300
S2—C13 1.771 (4) C34—H34A 0.9700
P1—C22 1.839 (4) C34—H34B 0.9700
P1—C28 1.841 (4) C35—C36 1.399 (6)
P1—C34 1.842 (4) C35—C40 1.385 (6)
P2—C34 1.829 (4) C36—H36 0.9300
P2—C35 1.824 (4) C36—C37 1.378 (6)
P2—C41 1.819 (4) C37—H37 0.9300
P3—C47 1.824 (5) C37—C38 1.388 (7)
P3—C53 1.824 (4) C38—H38 0.9300
P3—C59 1.830 (4) C38—C39 1.376 (7)
O1—C21 1.157 (5) C39—H39 0.9300
O2—C20 1.141 (5) C39—C40 1.377 (6)
O3—C3 1.216 (5) C40—H40 0.9300
C1—C2 1.407 (6) C41—C42 1.380 (6)
C1—C12 1.483 (6) C41—C46 1.402 (6)
C2—C3 1.464 (6) C42—H42 0.9300
C2—C4 1.511 (5) C42—C43 1.404 (6)
C4—H4A 0.9700 C43—H43 0.9300
C4—H4B 0.9700 C43—C44 1.366 (6)
C5—C6 1.384 (6) C44—H44 0.9300
C5—C10 1.397 (6) C44—C45 1.376 (7)
C6—H6 0.9300 C45—H45 0.9300
C6—C7 1.367 (7) C45—C46 1.381 (6)
C7—H7 0.9300 C46—H46 0.9300
C7—C8 1.392 (7) C47—C48 1.394 (6)
C8—C9 1.373 (7) C47—C52 1.388 (6)
C8—C11 1.513 (7) C48—H48 0.9300
C9—H9 0.9300 C48—C49 1.373 (7)
C9—C10 1.381 (7) C49—H49 0.9300
C10—H10 0.9300 C49—C50 1.382 (7)
C11—H11A 0.9600 C50—H50 0.9300
C11—H11B 0.9600 C50—C51 1.374 (7)
C11—H11C 0.9600 C51—H51 0.9300
C12—H12A 0.9700 C51—C52 1.389 (6)
C12—H12B 0.9700 C52—H52 0.9300
C13—C14 1.394 (6) C53—C54 1.387 (6)
C13—C18 1.390 (6) C53—C58 1.389 (6)
C14—H14 0.9300 C54—H54 0.9300
C14—C15 1.387 (6) C54—C55 1.384 (6)
C15—H15 0.9300 C55—H55 0.9300
C15—C16 1.378 (6) C55—C56 1.383 (7)
C16—C17 1.395 (6) C56—H56 0.9300
C16—C19 1.516 (6) C56—C57 1.371 (7)
C17—H17 0.9300 C57—H57 0.9300
C17—C18 1.373 (6) C57—C58 1.391 (6)
C18—H18 0.9300 C58—H58 0.9300
C19—H19A 0.9600 C59—C60 1.383 (6)
C19—H19B 0.9600 C59—C64 1.390 (6)
C19—H19C 0.9600 C60—H60 0.9300
C22—C23 1.404 (6) C60—C61 1.382 (6)
C22—C27 1.376 (6) C61—H61 0.9300
C23—H23 0.9300 C61—C62 1.378 (6)
C23—C24 1.381 (6) C62—H62 0.9300
C24—H24 0.9300 C62—C63 1.372 (7)
C24—C25 1.377 (7) C63—H63 0.9300
C25—H25 0.9300 C63—C64 1.379 (6)
C25—C26 1.388 (7) C64—H64 0.9300
C26—H26 0.9300
P2—Pt1—Fe1 97.26 (3) C24—C23—C22 120.3 (5)
P3—Pt1—Fe1 161.46 (3) C24—C23—H23 119.9
P3—Pt1—P2 100.53 (4) C23—C24—H24 119.7
C1—Pt1—Fe1 54.44 (12) C25—C24—C23 120.5 (5)
C1—Pt1—P2 151.36 (12) C25—C24—H24 119.7
C1—Pt1—P3 107.33 (12) C24—C25—H25 120.2
P1—Fe1—Pt1 93.50 (4) C24—C25—C26 119.5 (5)
C1—Fe1—Pt1 50.30 (11) C26—C25—H25 120.2
C1—Fe1—P1 141.85 (12) C25—C26—H26 120.0
C2—Fe1—Pt1 73.72 (12) C27—C26—C25 119.9 (5)
C2—Fe1—P1 130.91 (13) C27—C26—H26 120.0
C2—Fe1—C1 38.35 (16) C22—C27—C26 121.3 (5)
C3—Fe1—Pt1 72.18 (13) C22—C27—H27 119.3
C3—Fe1—P1 88.88 (13) C26—C27—H27 119.3
C3—Fe1—C1 70.43 (18) C29—C28—P1 120.7 (3)
C3—Fe1—C2 42.03 (17) C29—C28—C33 118.0 (4)
C20—Fe1—Pt1 168.78 (14) C33—C28—P1 121.2 (4)
C20—Fe1—P1 95.66 (14) C28—C29—H29 119.5
C20—Fe1—C1 119.19 (18) C28—C29—C30 120.9 (5)
C20—Fe1—C2 95.33 (18) C30—C29—H29 119.5
C20—Fe1—C3 101.5 (2) C29—C30—H30 120.1
C20—Fe1—C21 96.5 (2) C31—C30—C29 119.8 (5)
C21—Fe1—Pt1 87.76 (14) C31—C30—H30 120.1
C21—Fe1—P1 102.63 (13) C30—C31—H31 120.1
C21—Fe1—C1 89.16 (18) C32—C31—C30 119.8 (5)
C21—Fe1—C2 123.33 (18) C32—C31—H31 120.1
C21—Fe1—C3 157.6 (2) C31—C32—H32 119.6
C5—S1—C4 102.1 (2) C31—C32—C33 120.7 (5)
C13—S2—C12 102.2 (2) C33—C32—H32 119.6
C22—P1—Fe1 115.03 (13) C28—C33—H33 119.6
C22—P1—C28 100.05 (19) C32—C33—C28 120.7 (5)
C22—P1—C34 102.6 (2) C32—C33—H33 119.6
C28—P1—Fe1 121.17 (15) P1—C34—H34A 109.6
C28—P1—C34 103.71 (19) P1—C34—H34B 109.6
C34—P1—Fe1 112.02 (13) P2—C34—P1 110.3 (2)
C34—P2—Pt1 103.14 (13) P2—C34—H34A 109.6
C35—P2—Pt1 121.79 (13) P2—C34—H34B 109.6
C35—P2—C34 102.5 (2) H34A—C34—H34B 108.1
C41—P2—Pt1 121.93 (15) C36—C35—P2 118.3 (3)
C41—P2—C34 103.99 (19) C40—C35—P2 123.3 (3)
C41—P2—C35 100.66 (19) C40—C35—C36 118.5 (4)
C47—P3—Pt1 114.72 (15) C35—C36—H36 119.9
C47—P3—C53 108.4 (2) C37—C36—C35 120.2 (5)
C47—P3—C59 100.6 (2) C37—C36—H36 119.9
C53—P3—Pt1 111.32 (15) C36—C37—H37 119.8
C53—P3—C59 101.2 (2) C36—C37—C38 120.4 (5)
C59—P3—Pt1 119.15 (15) C38—C37—H37 119.8
Pt1—C1—Fe1 75.25 (13) C37—C38—H38 120.2
C2—C1—Pt1 109.1 (3) C39—C38—C37 119.6 (5)
C2—C1—Fe1 69.2 (2) C39—C38—H38 120.2
C2—C1—C12 119.6 (4) C38—C39—H39 120.0
C12—C1—Pt1 130.5 (3) C38—C39—C40 120.1 (5)
C12—C1—Fe1 129.0 (3) C40—C39—H39 120.0
C1—C2—Fe1 72.5 (2) C35—C40—H40 119.4
C1—C2—C3 111.2 (4) C39—C40—C35 121.2 (4)
C1—C2—C4 126.2 (4) C39—C40—H40 119.4
C3—C2—Fe1 62.1 (2) C42—C41—P2 121.3 (3)
C3—C2—C4 121.9 (4) C42—C41—C46 118.5 (4)
C4—C2—Fe1 124.8 (3) C46—C41—P2 120.1 (3)
O3—C3—Fe1 146.8 (3) C41—C42—H42 119.7
O3—C3—C2 136.5 (4) C41—C42—C43 120.6 (4)
C2—C3—Fe1 75.8 (3) C43—C42—H42 119.7
S1—C4—H4A 109.0 C42—C43—H43 120.3
S1—C4—H4B 109.0 C44—C43—C42 119.3 (5)
C2—C4—S1 112.9 (3) C44—C43—H43 120.3
C2—C4—H4A 109.0 C43—C44—H44 119.3
C2—C4—H4B 109.0 C43—C44—C45 121.3 (4)
H4A—C4—H4B 107.8 C45—C44—H44 119.3
C6—C5—S1 121.9 (4) C44—C45—H45 120.3
C6—C5—C10 118.4 (5) C44—C45—C46 119.4 (4)
C10—C5—S1 119.7 (4) C46—C45—H45 120.3
C5—C6—H6 119.8 C41—C46—H46 119.6
C7—C6—C5 120.4 (5) C45—C46—C41 120.8 (4)
C7—C6—H6 119.8 C45—C46—H46 119.6
C6—C7—H7 118.9 C48—C47—P3 122.3 (4)
C6—C7—C8 122.2 (5) C52—C47—P3 120.0 (3)
C8—C7—H7 118.9 C52—C47—C48 117.7 (4)
C7—C8—C11 121.0 (5) C47—C48—H48 119.5
C9—C8—C7 116.9 (5) C49—C48—C47 121.0 (5)
C9—C8—C11 122.1 (5) C49—C48—H48 119.5
C8—C9—H9 118.9 C48—C49—H49 119.8
C8—C9—C10 122.2 (5) C48—C49—C50 120.5 (5)
C10—C9—H9 118.9 C50—C49—H49 119.8
C5—C10—H10 120.0 C49—C50—H50 120.2
C9—C10—C5 119.9 (5) C51—C50—C49 119.6 (5)
C9—C10—H10 120.0 C51—C50—H50 120.2
C8—C11—H11A 109.5 C50—C51—H51 120.1
C8—C11—H11B 109.5 C50—C51—C52 119.8 (5)
C8—C11—H11C 109.5 C52—C51—H51 120.1
H11A—C11—H11B 109.5 C47—C52—C51 121.3 (4)
H11A—C11—H11C 109.5 C47—C52—H52 119.3
H11B—C11—H11C 109.5 C51—C52—H52 119.3
S2—C12—H12A 109.1 C54—C53—P3 116.1 (3)
S2—C12—H12B 109.1 C54—C53—C58 118.7 (4)
C1—C12—S2 112.3 (3) C58—C53—P3 125.1 (4)
C1—C12—H12A 109.1 C53—C54—H54 119.5
C1—C12—H12B 109.1 C55—C54—C53 121.0 (5)
H12A—C12—H12B 107.9 C55—C54—H54 119.5
C14—C13—S2 124.4 (4) C54—C55—H55 120.3
C18—C13—S2 118.1 (3) C56—C55—C54 119.4 (5)
C18—C13—C14 117.5 (4) C56—C55—H55 120.3
C13—C14—H14 119.6 C55—C56—H56 119.8
C15—C14—C13 120.7 (4) C57—C56—C55 120.5 (4)
C15—C14—H14 119.6 C57—C56—H56 119.8
C14—C15—H15 119.1 C56—C57—H57 120.0
C16—C15—C14 121.7 (4) C56—C57—C58 120.0 (5)
C16—C15—H15 119.1 C58—C57—H57 120.0
C15—C16—C17 117.2 (4) C53—C58—C57 120.4 (5)
C15—C16—C19 121.7 (4) C53—C58—H58 119.8
C17—C16—C19 121.1 (5) C57—C58—H58 119.8
C16—C17—H17 119.2 C60—C59—P3 122.2 (3)
C18—C17—C16 121.6 (5) C60—C59—C64 118.9 (4)
C18—C17—H17 119.2 C64—C59—P3 118.9 (3)
C13—C18—H18 119.4 C59—C60—H60 119.9
C17—C18—C13 121.2 (4) C61—C60—C59 120.2 (4)
C17—C18—H18 119.4 C61—C60—H60 119.9
C16—C19—H19A 109.5 C60—C61—H61 119.6
C16—C19—H19B 109.5 C62—C61—C60 120.9 (5)
C16—C19—H19C 109.5 C62—C61—H61 119.6
H19A—C19—H19B 109.5 C61—C62—H62 120.6
H19A—C19—H19C 109.5 C63—C62—C61 118.8 (4)
H19B—C19—H19C 109.5 C63—C62—H62 120.6
O2—C20—Fe1 178.7 (4) C62—C63—H63 119.4
O1—C21—Fe1 179.9 (5) C62—C63—C64 121.1 (4)
C23—C22—P1 116.6 (4) C64—C63—H63 119.4
C27—C22—P1 124.9 (4) C59—C64—H64 119.9
C27—C22—C23 118.4 (4) C63—C64—C59 120.1 (4)
C22—C23—H23 119.9 C63—C64—H64 119.9
Pt1—P2—C34—P1 52.0 (2) C22—P1—C28—C29 109.4 (4)
Pt1—P2—C35—C36 −87.5 (3) C22—P1—C28—C33 −70.4 (4)
Pt1—P2—C35—C40 92.7 (4) C22—P1—C34—P2 −172.0 (2)
Pt1—P2—C41—C42 −5.3 (4) C22—C23—C24—C25 0.1 (6)
Pt1—P2—C41—C46 177.8 (3) C23—C22—C27—C26 −0.6 (6)
Pt1—P3—C47—C48 −174.1 (3) C23—C24—C25—C26 −1.6 (7)
Pt1—P3—C47—C52 2.6 (4) C24—C25—C26—C27 2.0 (7)
Pt1—P3—C53—C54 34.5 (4) C25—C26—C27—C22 −0.9 (7)
Pt1—P3—C53—C58 −148.9 (3) C27—C22—C23—C24 1.0 (6)
Pt1—P3—C59—C60 −122.1 (4) C28—P1—C22—C23 −58.9 (3)
Pt1—P3—C59—C64 57.8 (4) C28—P1—C22—C27 124.9 (4)
Pt1—C1—C2—Fe1 −65.2 (2) C28—P1—C34—P2 84.2 (2)
Pt1—C1—C2—C3 −15.6 (4) C28—C29—C30—C31 0.1 (8)
Pt1—C1—C2—C4 174.2 (3) C29—C28—C33—C32 1.8 (7)
Pt1—C1—C12—S2 18.9 (5) C29—C30—C31—C32 1.4 (8)
Fe1—P1—C22—C23 72.6 (3) C30—C31—C32—C33 −1.4 (8)
Fe1—P1—C22—C27 −103.6 (3) C31—C32—C33—C28 −0.2 (8)
Fe1—P1—C28—C29 −18.2 (5) C33—C28—C29—C30 −1.7 (7)
Fe1—P1—C28—C33 162.1 (3) C34—P1—C22—C23 −165.5 (3)
Fe1—P1—C34—P2 −48.1 (2) C34—P1—C22—C27 18.3 (4)
Fe1—C1—C2—C3 49.6 (3) C34—P1—C28—C29 −144.9 (4)
Fe1—C1—C2—C4 −120.6 (4) C34—P1—C28—C33 35.3 (4)
Fe1—C1—C12—S2 −86.2 (4) C34—P2—C35—C36 158.2 (3)
Fe1—C2—C3—O3 −170.8 (6) C34—P2—C35—C40 −21.6 (4)
Fe1—C2—C4—S1 −172.3 (2) C34—P2—C41—C42 110.2 (4)
S1—C5—C6—C7 −179.4 (4) C34—P2—C41—C46 −66.6 (4)
S1—C5—C10—C9 180.0 (4) C35—P2—C34—P1 179.29 (19)
S2—C13—C14—C15 −175.3 (4) C35—P2—C41—C42 −143.8 (4)
S2—C13—C18—C17 176.1 (4) C35—P2—C41—C46 39.3 (4)
P1—C22—C23—C24 −175.4 (3) C35—C36—C37—C38 0.6 (6)
P1—C22—C27—C26 175.5 (3) C36—C35—C40—C39 −0.8 (6)
P1—C28—C29—C30 178.5 (4) C36—C37—C38—C39 −0.1 (7)
P1—C28—C33—C32 −178.5 (4) C37—C38—C39—C40 −0.8 (7)
P2—C35—C36—C37 −179.9 (3) C38—C39—C40—C35 1.3 (7)
P2—C35—C40—C39 179.0 (3) C40—C35—C36—C37 −0.1 (6)
P2—C41—C42—C43 −176.3 (4) C41—P2—C34—P1 −76.2 (2)
P2—C41—C46—C45 177.1 (3) C41—P2—C35—C36 51.1 (3)
P3—C47—C48—C49 −179.2 (3) C41—P2—C35—C40 −128.7 (4)
P3—C47—C52—C51 −179.3 (3) C41—C42—C43—C44 −0.1 (7)
P3—C53—C54—C55 177.3 (3) C42—C41—C46—C45 0.2 (7)
P3—C53—C58—C57 −175.9 (3) C42—C43—C44—C45 −1.1 (8)
P3—C59—C60—C61 179.5 (4) C43—C44—C45—C46 1.8 (7)
P3—C59—C64—C63 −179.3 (4) C44—C45—C46—C41 −1.3 (7)
C1—C2—C3—Fe1 −55.2 (3) C46—C41—C42—C43 0.5 (7)
C1—C2—C3—O3 134.0 (6) C47—P3—C53—C54 161.5 (3)
C1—C2—C4—S1 −79.3 (5) C47—P3—C53—C58 −21.8 (4)
C2—C1—C12—S2 −172.5 (3) C47—P3—C59—C60 111.6 (4)
C3—C2—C4—S1 111.4 (4) C47—P3—C59—C64 −68.5 (4)
C4—S1—C5—C6 72.5 (4) C47—C48—C49—C50 −2.6 (7)
C4—S1—C5—C10 −108.5 (4) C48—C47—C52—C51 −2.3 (6)
C4—C2—C3—Fe1 115.5 (4) C48—C49—C50—C51 −0.5 (7)
C4—C2—C3—O3 −55.3 (8) C49—C50—C51—C52 2.1 (7)
C5—S1—C4—C2 −78.1 (4) C50—C51—C52—C47 −0.6 (7)
C5—C6—C7—C8 −1.0 (8) C52—C47—C48—C49 3.9 (6)
C6—C5—C10—C9 −0.9 (7) C53—P3—C47—C48 60.8 (4)
C6—C7—C8—C9 −0.2 (8) C53—P3—C47—C52 −122.4 (3)
C6—C7—C8—C11 179.4 (5) C53—P3—C59—C60 0.3 (4)
C7—C8—C9—C10 0.8 (8) C53—P3—C59—C64 −179.9 (4)
C8—C9—C10—C5 −0.3 (8) C53—C54—C55—C56 −0.3 (7)
C10—C5—C6—C7 1.6 (7) C54—C53—C58—C57 0.7 (6)
C11—C8—C9—C10 −178.7 (5) C54—C55—C56—C57 −0.9 (7)
C12—S2—C13—C14 −36.3 (5) C55—C56—C57—C58 1.9 (7)
C12—S2—C13—C18 146.7 (4) C56—C57—C58—C53 −1.9 (7)
C12—C1—C2—Fe1 124.0 (4) C58—C53—C54—C55 0.4 (6)
C12—C1—C2—C3 173.6 (4) C59—P3—C47—C48 −44.9 (4)
C12—C1—C2—C4 3.3 (7) C59—P3—C47—C52 131.8 (3)
C13—S2—C12—C1 −166.4 (3) C59—P3—C53—C54 −93.2 (3)
C13—C14—C15—C16 −1.5 (8) C59—P3—C53—C58 83.5 (4)
C14—C13—C18—C17 −1.1 (7) C59—C60—C61—C62 −0.3 (8)
C14—C15—C16—C17 0.6 (7) C60—C59—C64—C63 0.6 (7)
C14—C15—C16—C19 179.8 (5) C60—C61—C62—C63 0.8 (8)
C15—C16—C17—C18 −0.1 (7) C61—C62—C63—C64 −0.6 (8)
C16—C17—C18—C13 0.4 (8) C62—C63—C64—C59 −0.1 (8)
C18—C13—C14—C15 1.7 (7) C64—C59—C60—C61 −0.4 (7)
C19—C16—C17—C18 −179.3 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O1i 0.93 2.67 3.316 (6) 128
C34—H34A···O3 0.97 2.62 3.271 (5) 125
C39—H39···O3ii 0.93 2.49 3.239 (6) 138

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant . Verband der Chemischen Industrie grant .

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Akabori, S., Kumagai, T., Shirahige, T., Sato, S., Kawazoe, K., Tamura, C. & Sato, M. (1987). Organometallics, 6, 526–531.
  3. Akita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103–106.
  4. Aly, S. M., Pam, A., Khatyr, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Bauer, J. O., Strohmann, C. & Harvey, P. D. (2014). J. Inorg. Organomet. Polym. 24, 190–200.
  5. Amouri, H., Da Silva, C., Malézieux, B., Andrés, R., Vaissermann, J. & Gruselle, M. (2000). Inorg. Chem. 39, 5053–5058. [DOI] [PubMed]
  6. Bai, S.-Q., Hoi Ka Wong, I., Zhang, N., Lin Ke, K., Lin, M., Young, D. J. & Hor, T. S. A. (2018). Dalton Trans. 47, 16292–16298. [DOI] [PubMed]
  7. Bennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189–199.
  8. Boni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551–3556.
  9. Bonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480–494.
  10. Braunstein, P., Knorr, M., DeCian, A. & Fischer, J. (1995). Organometallics, 14, 1302–1309.
  11. Brieger, L., Jourdain, I., Knorr, M. & Strohmann, C. (2019). Acta Cryst. E75, 1902–1906. [DOI] [PMC free article] [PubMed]
  12. Casey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424–3428.
  13. Dennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). Dalton Trans. pp. 63–73. [DOI] [PubMed]
  14. Dickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97–109.
  15. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  16. Everhardus, R. H. & Brandsma, L. (1978). Synthesis, pp. 359.
  17. Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750.
  18. Gelling, A., Went, M. J. & Povey, D. C. (1993). J. Organomet. Chem. 455, 203–210.
  19. Hitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155–162.
  20. Horiuchi, S., Murase, T. & Fujita, M. (2012). Angew. Chem. Int. Ed. 51, 12029–12031. [DOI] [PubMed]
  21. Johnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097–5099.
  22. Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343–5359.
  23. Jourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). Inorg. Chem. Commun. 9, 127–131.
  24. Kiel, G.-Y., Zhang, Z., Takats, J. & Jordan, R. B. (2000). Organometallics, 19, 2766–2776.
  25. Knorr, M., Guyon, F., Khatyr, A., Däschlein, C., Strohmann, C., Aly, S. M., Abd-El-Aziz, A. S., Fortin, D. & Harvey, P. D. (2009). Dalton Trans. pp. 948–955. [DOI] [PubMed]
  26. Knorr, M. & Jourdain, I. (2017). Coord. Chem. Rev. 350, 217–247.
  27. Knox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). Polyhedron, 14, 2723–2743.
  28. Levanova, E. P., Vakhrina, V. S., Grabel’nykh, V. A., Rozentsveig, I. B., Russavskaya, N. V., Albanov, A. I., Klyba, L. V. & Korchevin, N. A. (2015). Russ. Chem. Bull. 64, 2083–2089.
  29. McKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249–259.
  30. Mirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). Organometallics, 13, 3063–3067.
  31. Pourcelot, G. & Cadiot, P. (1966). Bull. Soc. Chim. Fr. 9, 3024–3033.
  32. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  33. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  34. Wong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530–532.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020007859/pk2630sup1.cif

e-76-01087-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020007859/pk2630Isup3.hkl

e-76-01087-Isup3.hkl (838.3KB, hkl)

CCDC reference: 1996804

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES