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Summary

Though the temporal precision of neural computation has been studied intensively, a data-driven 

determination of this precision remains a fundamental challenge. Reproducible spike patterns may 

be obscured on single trials by uncontrolled temporal variability in behavior and cognition, and 

may not be time locked to measurable signatures in behavior or local field potentials (LFP). To 

overcome these challenges, we describe a general-purpose time warping framework that reveals 

precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled 

from behavior or are temporally stretched across single trials. We demonstrate this method across 

diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and 

olfaction in mice. This approach flexibly uncovers diverse dynamical firing patterns, including 

pulsatile responses to behavioral events, LFP-aligned oscillatory spiking, and even unanticipated 

patterns, like 7 Hz oscillations in rat motor cortex that are not time-locked to measured behaviors 

or LFP.

Introduction

The role of spike time precision in neural computation has been widely examined from both 

experimental and theoretical perspectives, engendering intense debates in systems 

neuroscience over the last several decades (Softky and Koch 1993; London et al. 2010; 

Bruno 2011; Brette 2015; Denève and Machens 2016). Assessing the degree of temporal 

precision in multi-neuronal spike trains is challenging since variations in behavioral and 

cognitive variables can mask precise spike time patterns. For example, the temporal 

precision of olfactory coding may be underestimated by factors of two to four when spike 

times are aligned to stimulus delivery instead of inhalation onset (Shusterman et al. 2011; 

Cury and Uchida 2010; Shusterman et al. 2018).

Thus, experimental estimates of spike time precision hinge on the choice of an alignment 

point, which defines the origin of the time axis on each trial. This choice can often be 

challenging and subjective. Even relatively simple tasks often involve a sequence of stimuli, 

actions, and rewards that occur with varying latencies, thus presenting multiple choices for 

temporal alignment. Moreover, in addition to choosing an origin of time, we must also 

choose its units. Should spike times be measured in absolute clock time relative to some 

measured event, or in units of fractional time between two events? Could any one of these 

choices unmask spike-timing precision that is otherwise invisible? These questions are most 

challenging to answer in systems far from the sensory or motor periphery, where neural 

responses may not be locked to any measurable behavior, and instead reflect internal 

decisions or changes-of-mind.

Past studies have addressed these challenges in a number of ways: grouping trials together 

with similar durations before averaging spike counts (Murakami et al. 2014; Starkweather et 

al. 2017; Wang et al. 2018), manually stretching or compressing time units between 

measured task events (Leonardo and Fee 2005; Shusterman et al. 2011; Kobak et al. 2016; 

Aronov et al. 2017), or repeating statistical analyses around different choices of alignment 

point (Feierstein et al. 2006; Harvey et al. 2012; Jazayeri and Shadlen 2015; Shushruth et al. 

2018).
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These complications, and the diversity of heuristic approaches used to address them, 

underscore a need for statistical frameworks to assess the temporal precision of neural 

computation. Of particular interest are unsupervised statistical methods that reveal precise 

patterns in multi-neuronal spike trains without reference to behavioral measurements. Such 

methods would be broadly applicable, as they make few restrictive assumptions about the 

experimental design. Furthermore, by moving beyond pre-conceived alignments designed by 

human experts, these data-driven methods may discover novel and unexpected results.

While time series and image alignment methods are a well-studied topic in signal processing 

(Marron et al. 2015; Pnevmatikakis and Giovannucci 2017), these techniques have rarely 

been applied to large-scale neural recordings (but see recent work by Poole et al. 2017; 

Lawlor et al. 2018; Duncker and Sahani 2018). Neuroscientists have historically utilized 

simple alignment operations—namely, translating (Baker and Gerstein 2001; Ventura 2004) 

and potentially stretching/compressing activity traces between pairs of behavioral events 

(Shusterman et al. 2011; Leonardo and Fee 2005; Perez et al. 2013; Kobak et al. 2016). In 

contrast, popular statistical methods, such as Dynamic Time Warping (DTW; Berndt and 

Clifford 1994), allow signals to be non-uniformly compressed and dilated on each trial. 

While such nonlinear warping models can be useful, we demonstrate that they can be 

difficult to interpret and sensitive to the high level of noise that is typical of neural data.

To identify interpretable alignments for high-dimensional spike trains, we developed a 

framework for linear and piecewise linear time warping that encompasses existing human-

annotated procedures (Leonardo and Fee 2005; Kobak et al. 2016). We applied these 

methods to multielectrode recordings collected from three experiments spanning different 

animal models (rodents and primates), brain regions (olfactory and motor cortex), and 

behavioral tasks (sensation and motor production). In each case, time warping revealed 

precise spike patterns that were imperceptible in the raw data. Moreover, some of these 

results were not easily captured by any common behavioral alignment. For example, in 

rodents performing a motor timing task, we uncovered ~7 Hz oscillations in spike times that 

were not aligned to the LFP or any measured behavior.

Results

Time Warping Framework

Our ultimate goal is to identify firing patterns that reliably occur on a trial-by-trial basis. If 

these activity patterns are tightly time-locked to a sensory or behavioral event, then we can 

characterize the neural response by averaging over trials. This is illustrated in Figure 1a 

(left), which shows 100 trials of simulated neural activity with additive Gaussian noise. The 

average activity trace (red; bottom) extracts the neural response from noisy single-trial 

instantiations. This simulated example loosely resembles calcium fluorescence traces, but 

the methods we describe can be flexibly applied to any multi-dimensional time series 

including spike trains, fMRI data, or LFP traces.

More formally, if N neurons are measured at T timepoints over K trials, the trial-average is 

given by:
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X = 1
K ∑

k = 1

K
Xk . (1)

Here, Xk is a T × N matrix denoting the activity of all neurons on trial k. In the context of 

spiking data, each column of X corresponds to a peri-stimulus time histogram (PSTH) of a 

recorded neuron. Trial averaging is also a common step in population-level statistical 

analyses (Kobak et al. 2016).

Despite its widespread use, trial averaging can produce inaccurate and misleading results 

when neural activity is misaligned across trials. For example, introducing a random shift to 

each simulated trial produces a less informative result (Fig 1a, right). Such jitter commonly 

arises in practice, leading many research groups to develop custom-built alignment 

procedures. For example, in songbirds it is common to manually segment and cluster song 

syllables and warp intervening spike times on a per-syllable basis (Leonardo and Fee 2005). 

In olfaction, detailed measurements and fluid dynamics modeling of the sniff cycle have 

been pursued to understand the accuracy of sensory responses (Shusterman et al. 2011; 

Shusterman et al. 2018).

Time warping methods address these challenges through a data-driven, statistical approach. 

The key idea is to fit a response template time series that is shifted and stretched—i.e., 

warped—on a trial-by-trial basis to match the data. The response template, denoted X, is an 

T × N matrix of activity traces that captures the average activity across trials after correcting 

for variability in timing.

The time axis of the response template is transformed by a warping function on each trial. 

Formally, we denote the warping function for trial k as ωk(t); this function maps each 

timebin t (clock time) to a new index ωk(t) (template time). If ωk(t) is an integer between 1 

and T, then the warping transformation for every neuron n on trial k amounts to the 

transformation Xt, n Xωk(t), n. If ωk(t) is not an integer then time warping is implemented 

by linear interpolation (see Methods). Note that this model assumes all recorded neurons 

share the same warping function on a trial-by-trial basis, though this assumption could be 

relaxed by future work.

Figure 1b illustrates how different classes of warping functions account for single-trial 

variability in timing. We focus on three main model classes: shift-only warping, linear 
warping, and piecewise linear warping (Fig 1b, top three models). Shift-only warping is the 

simplest model: the warping functions are constrained to be linear with slope equal to one, 

and only a single parameter (the y-intercept of ωk(t)) is fit on each trial. As its name 

suggests, the shift-only model can only account for trial-to-trial differences in response 

latency. In contrast, a linear warping model, which fits the slope in addition to the intercept 

of ωk(t), can account for variable latencies as well as uniform stretches and compressions of 

the response template. A piecewise linear warping model adds further complexity by adding 

one or more knots (points where the slope of ωk(t) can change). Most generally, nonlinear 

warping functions may be used, which non-uniformly stretch and compress portions of the 
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template on each trial (Fig 1b, bottom). In all cases, we constrain the time warping functions 

to be monotonically increasing. Loosely speaking, this ensures that the model cannot go 

backwards in time while making a prediction. This constraint also implies that the warping 

functions are invertible, which we later exploit to align spike times across trials.

The model parameters are fit to minimize reconstruction error over all neurons, trials, and 

timepoints. For simplicity, we chose the mean squared error to quantify model performance. 

Ignoring the interpolation step of time warping for the sake of clarity (see Methods), the 

objective function is:

1
NTK ∑

n = 1

N
∑
t = 1

T
∑

k = 1

K
Xωk(t), n − Xk, t, n

2
(2)

This expression is minimized with respect to the warping functions on each trial, ωk(t), and 

the response template, X. Other loss functions may be substituted for the mean squared 

error. In particular, a loss function based on Poisson noise is popular in neural modeling 

(Paninski 2004) and our accompanying Python package supports this option.

For illustration, we fit shift-only, linear, and nonlinear warping models to the misaligned 

synthetic data shown Figure 1a. By design, the shift-only model is sufficient to capture the 

ground truth variability. As expected, this model identifies a highly accurate template firing 

pattern (Fig 1c, top left), along with warping functions that tightly correlate with the ground 

truth delay (Fig 1c, top right). The linear warping model is a gentle extension of the shift-

only warping model, which only introduces one additional parameter on each trial—the 

slope of each warping function. Yet, even this minor extension produces a slightly worse 

estimate, due to overfitting (Fig 1c, middle).

To demonstrate a more severe case of overfitting, we fit a nonlinear warping model using 

Dynamic Time Warping (DTW; Berndt and Clifford 1994), combined with a standard 

barycenter averaging procedure (Petitjean et al. 2011). This method can be highly effective 

on datasets with low levels of noise and complex temporal deformations. However, as we 

will soon see, neural datasets often exhibit the opposite—high levels of noise and simple 

temporal deformations. In this regime, DTW barycenter averaging identifies a noisy 

template (Fig 1c, bottom left), and unnecessarily complex warping paths (Fig 1c, bottom 

right).

These results demonstrate that time warping models, particularly with complex warping 

functions, are susceptible to overfitting. We adopted four strategies to mitigate this 

possibility. First, as mentioned above, we assume that each trial’s warping function is shared 

across neurons, thus mitigating the possibility of overfitting to noise in any single neuron. 

Second, as illustrated by the progression of models in Figure 1c, we always compare the 

estimates of complex warping models (e.g. with piecewise linear warping functions) to the 

performance of simpler models (e.g. shift-only warping). Third, we include a roughness 

penalty on the template, which directly encourages the model to identify smooth firing rates. 

Fourth, we place a penalty on the area between each warping function and the identity line, 
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which penalizes the magnitude of warping on each trial. We include these roughness and 

warp-magnitude penalties in subsequent results, but show the results of unregularized time 

warping in Figure 1c for the sake of illustration.

These models enable several strategies for visualizing and understanding neural data. First, 

one can directly inspect the model parameters (Fig 1c): the response template for each 

neuron captures the shape of the neural response, while the warping functions capture trial-

to-trial variability in timing. Second, one can view the model prediction as a denoised 

estimate of firing rates on a single-trial basis (Fig 1d). Third, one can re-sort the trials by the 

slope or the intercept of the warping function, producing a multi-trial raster plot that is easier 

to visually digest (Fig 1e). Finally, one can invert the warping functions on each trial to 

transform the raw data into an aligned time domain (Fig 1f). This alignment procedure 

simply entails plotting each activity trace as a function of ωk
−1(t) instead of raw clock time, t. 

Intuitively, this amounts to reversing the flow diagram shown Figure 1b, which is possible as 

long as the warping functions are monotonically increasing and thus invertible.

Extraction of precise, ground truth spike patterns on synthetic data

Before proceeding to biological data, we examined a more challenging simulated dataset 

consisting of spike trains from N = 5 neurons, T = 150 timebins, and K = 75 trials. On each 

trial, the neural firing rates were time warped by randomized piecewise linear functions with 

one knot (the “ground truth” model). This resulted in spike trains that appear highly variable 

in their raw form (Fig 2a).

Time warping successfully reveals the spike patterns corresponding to the ground truth 

process. Figures 2b–e show model-aligned spike trains (as in Fig 1f) across warping models 

of increasing complexity. The patterns evident in the ground truth data (Fig 2f) are partially 

revealed by shift-only and linear time warping (Fig 2b–c), but these models are too simple to 

capture the fine-scale temporal structure in the data. A piecewise linear warping model with 

one knot (piecewise-1 model; Fig 2d) accurately captures these details, and represents a 

parsimonious and “correct” model since it matches the data generation process. 

Furthermore, the parameters this model closely matched the ground truth response template 

(Fig 2g) and warping functions (Fig 2h). Using a piecewise linear model with 2 knots did 

not result in substantial overfitting and indeed closely matched the result of the piecewise-1 

model (Fig 2e).

Identifying a parsimonious warping model is challenging in real-world applications where 

there is no observable ground truth. To select the appropriate model and regularization 

strengths we developed a nested cross-validation scheme, which correctly identified the 

piecewise-1 model as having optimal performance on a held out test set (Fig 2i). This 

approach fits the neural response templates to a subset of trials (Fig 2j; shaded blue regions), 

and fits the warping functions to a subset of the neurons (Fig 2j; shaded red regions). We 

refer to the intersection of these two sets as the training set (Fig 2j; shaded purple regions), 

while the intersection of the complement sets are used for validation and testing (Fig 2j; 

unshaded regions). This procedure is then repeated many times with different randomized 

partitions of the data.

Williams et al. Page 6

Neuron. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used the proportion of variance explained (R2) to quantify model performance. Unlike in 

trial-averaged analyses, R2 values will typically be very low because spike trains exhibit 

substantial single-trial variability. In the case of this synthetic dataset in Figure 2, the ground 

truth model achieves an R2 of approximately 0.131 (blue dashed line, Fig 2i). This R2 value, 

while low due to unexplainable trial-to-trial spiking variability, nevertheless constitutes an 

upper bound on the R2 value achievable by any model on a held out test set. The piecewise-1 

model closely matches this performance, achieving an average R2 of 0.113 on the test set 

(Fig 2i). However, in real experimental data it is not possible to know how close we are to 

this performance ceiling. Thus, while R2 can be useful as a relative measure when 

comparing two different models, the absolute magnitude should be interpreted cautiously.

After using cross-validation to select the number of warping function knots and the 

regularization parameters, we are often interested in using time warping to visualize single 

neuron raster plots (as in Fig 2a–f). To further validate these raster plots, we can hold out 

single neurons, fit the model to the remaining data, and apply the inverse warping functions 

to align the held out neuron (Fig 2k). All model-aligned raster plots shown in subsequent 

results are generated using this procedure.

Alignment of olfactory responses to sniff cycle

Mitral/tufted cells in the mouse olfactory bulb exhibit variable firing patterns across trials 

when naïvely aligned to odor delivery (Fig 3a). If spike times are instead aligned to the onset 

of inhalation neural responses are drastically more reliable (Shusterman et al. 2011).

We reasoned that simple time warping models could be used to align mitral/tufted cell 

activity using purely neural activity, bypassing the need to measure inhalation directly. We 

tested this hypothesis on a multielectrode recording from N = 30 neurons over K = 45 trials 

of odor presentation at a fixed concentration (α-pinene, 10−2 M). We experimentally 

measured intra-nasal pressure to detect sniff onset and offset, but these measurements were 

not provided to the model and spike times were instead aligned to odor presentation. As 

expected, this initial alignment strategy produced highly disordered spike rasters (Fig 3b).

We found that a shift-only time warping model captured precise sensory responses from 

these raw data, as revealed by re-sorting the trials based on the model’s shifts (Fig 3c) or by 

applying these shifts to align the raw spike times (Fig 3d). Here, as well as in all subsequent 

results, we use the leave-one-out validation procedure shown in Figure 2k; thus, any 

temporal structure seen in Figure 3d is unlikely to arise as an artifact of overfitting.

As expected, aligning spike times to inhalation onset revealed similar patterns in these data 

(Fig 3e). Indeed, the shifts learned by the model correlated very tightly with the onset of 

sniffing (see blue dots and histograms, Fig 3b–e). These results are nonetheless a useful 

demonstration, since the model inferred these precise responses from the neural data 

directly. Furthermore, closer examination suggested that the unsupervised, shift-only model 

may enjoy slight performance advantages relative to the simple supervised alignment 

method. For example, when aligned to sniff onset, cells 4 and 5 in Figure 3 exhibit subtle, 

but perceptible, jitter in their responses (Fig 3e), and this variability is visibly corrected by 

time warping (compare to Fig 3d).
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To explore these effects on a neuron-by-neuron basis, we quantified trial-to-trial variability 

before and after time warping by computing the coefficient of determination (R2) of the 

neuron’s PSTH. Larger R2 values imply that the trial-averaged PSTH better approximates 

single trial firing rates. We fit time warping models while holding out neurons one at a time 

and computed R2 on the held out neuron before and after warping. Relative to the raw spike 

times, shift-only time warping improved R2 in nearly all neurons, with many increasing over 

two-fold (Fig 3f; average 107% increase in R2, geometric mean; Wilcoxon signed rank test, 

p < 10−4, n = 30). Linear warping did not produce consistent improvements at the level of 

single neurons (Fig 3g; average 6.6% decrease in R2, geometric mean; Wilcoxon signed rank 

test, p = 0.24, n = 30). Relative to sniff onset alignment, shift-only time warping improved 

the R2 criterion mildly (Fig 3h; average 11% increase in R2, geometric mean; Wilcoxon 

signed rank test, p = 0.005, n = 30). Overall, we conclude that timing variability in these 

olfactory responses is well-described by a per-trial shift. Further, the optimal shift correlates 

tightly with, but may not coincide exactly with, sniff onset (Shusterman et al. 2018).

Alignment of motor cortex dynamics during reaching in nonhuman primates

Neural dynamics underlying motor control exhibit variable time courses due to differences 

in reaction times and muscle kinematics. To investigate the benefits of time warping in this 

setting, we examined data from a canonical reaching experiment in a nonhuman primate (Fig 

4a). On each trial, the subject (Monkey J) moved its arm to one of several target locations 

after a delay period that randomly varied between 300 and 700 ms. In addition to this 

inherent timing variability due to task design, the monkey exhibited variable reaction time 

ranging from 293–442 ms (5th and 95th percentiles). We limited our analysis to upward 

reaches (90° from center) with the target placed at 40, 80, or 120 cm from the center. We 

observed similar results on other reach angles (Fig S1), as well as when data was pooled 

across all reach angles (data not shown). Multiunit activity was collected from N =191 

electrodes across two Utah multielectrode arrays placed in primary motor (M1) and 

premotor (PMd) cortices (see Methods).

The most dramatic changes in neural firing rates are closely time-locked to movement 

(Kaufman et al. 2016). Thus, it is common to track hand position on a moment-by-moment 

basis and use these measurements to align spike times to the onset of movement or the peak 

hand velocity on each trial. We instead examined spike trains aligned to the beginning of the 

delay period (Fig 4b), and used time warping to infer an alignment without any reference to 

the animal’s behavior.

As expected, a shift-only warping model closely aligned spike times with the onset of 

movement. The model’s learned shift parameter on each trial correlated very tightly with 

movement onset (Fig 4c), achieving a comparable level of performance (R2 = 0.9) to what 

was recently reported for a complex, nonlinear warping method (Duncker and Sahani 2018). 

Furthermore, the shift-only warping model enabled the visualization of movement-related 

firing rate changes in single-neuron rasters, either by re-sorting the trial order of the raw data 

(Fig 4d) or by re-aligning the spike times (Fig 4e).

Thus, learning a single per-trial shift was sufficient to align neural spike times to movement, 

without any reference to hand tracking data. However, shifting spike times in this manner 
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also destroyed other structure in the data. Namely, a subset of multiunits, mostly in PMd, 

showed increased firing around ~100ms into the delay period—i.e. shortly after the reach 

target was visually presented to the animal (see units 2 & 3 in Fig 4). Due to the variable 

delay between target onset and movement onset, a shift-only warping model is incapable of 

simultaneously aligning spikes across these two events.

A linear time warping model more appropriately captures this structure in the data. On each 

trial, the model utilizes its two free parameters—the slope and intercept of the warping 

function—to precisely align these two task events (Fig 4f). Thus, these results provide strong 

evidence, via an unsupervised time warping method, that reliable neural dynamics occur 

around the time of movement onset and shortly after target onset. Piecewise-linear warping 

functions did not provide substantial benefits over linear warping; however, linear warping 

provided a reproducible benefit over the shift-only warping model in cross-validated 

performance (Fig S1).

Detection of ~13–40 Hz spike-time oscillations in primate pre-motor cortex

Thus far, we have shown that the temporal alignments learned by simple warping models 

can closely correlate with behaviors (e.g. movement or sniffing) and sensory cues (e.g. reach 

target presentation). This agreement demonstrates that time warping models can converge to 

reasonable and human-interpretable solutions, and, conversely, suggests that established 

alignment practices in these systems are well-justified from a statistical perspective. We now 

show that time warping can also uncover more subtle and unexpected features in spike train 

data.

LFP signals in primate premotor cortex show oscillations in the beta frequency range (13–40 

Hz) during movement preparation, which are correlated with spike timing (Murthy and Fetz 

1992; Sanes and Donoghue 1993; Reimer and Hatsopoulos 2010). While recent work has 

investigated the relationships between LFP and behavior (Khanna and Carmena 2015; 

Khanna and Carmena 2017; Chandrasekaran et al. 2019), the impact of beta oscillations on 

population-level spiking activity is still poorly understood. Recent work used a complex, 

black box model of neural dynamics to detect oscillatory structure in high-dimensional spike 

trains (Pandarinath et al. 2018). Here, we show that shift-only or linear time warping models 

can recover similar oscillations.

We examined premotor cortical data collected from two different monkey subjects (Monkey 

J and Monkey U) performing point-to-point reaches; one animal performed these reaches 

with an unrestrained hand, while the other used a manipulandum (see Methods). Since the 

oscillations are strongest during the pre-movement delay period, we focused on a time 

window beginning 400 ms prior to and 100 ms after go cue presentation. We found that 

having a larger number of trials was beneficial, so we pooled trials from all reach angles for 

this analysis. We analyzed multiunit data for each monkey from N = 96 electrodes placed in 

PMd.

No oscillations were visible in spike rasters aligned to go cue (Fig 5a; data from Monkey U). 

However, re-aligning these spike trains based on a shift-only warping model revealed 

oscillations at ~18 Hz in Monkey U (shown in Fig 5b) and at ~40 Hz in Monkey J (Fig S2); 
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these results are within previously reported frequency ranges (Murthy and Fetz 1992; Sanes 

and Donoghue 1993). In Monkey U, these oscillations were more apparent after linear 

warping (Fig 5c), suggesting that the frequency (in addition to the phase) of the oscillations 

may be variable. Further, these oscillations were roughly in-phase across multiunits—as a 

result, averaging spike counts across all multiunits and trials after time warping produced 

cleaner estimates (Fig 5a–c, bottom).

To quantify these effects across all multiunits, we compared the PSTHs computed from raw 

data (blue traces; Fig 5a) to PSTHs computed from data aligned by linear time warping (blue 

traces; Fig 5c). We used Fourier analysis to estimate the amplitude and phase of the 

oscillation at 18 Hz, and found that time warping increased the strength of the oscillation by 

1–2 orders of magnitude in most multiunits (Fig 5d). Furthermore, in the raw PSTHs the 

oscillation phases were widely spread across multiunits, consistent with there being no 

detectable oscillations above background noise (Fig 5e; gray dots); in the aligned PSTHs, 

the phases were tightly clustered, reflecting that oscillations were detectable and in-phase 

across nearly all multiunits (Fig 5e; purple dots).

We confirmed that the spike-level oscillations were in-phase with LFP oscillations in 

Monkey U. To do this, we applied the time warping models fit on spike train data to align 

bandpass-filtered LFP signals (10–30 Hz). The LFP signal was misaligned across trials in 

raw data, but was accurately aligned by the spike-level time warping models (Fig S3), 

suggesting that the two signals are coherently time-warped (in this case, temporally shifted 

and/or stretched) on a trial-by-trial basis. On a methodological level, this demonstrates that 

time warping models can generalize and make accurate predictions about other time series 

(e.g., LFP) with qualitatively distinct statistics from the training data (e.g., spike times).

We wondered whether time warping would fail to recover these oscillations if the 

movement-related spiking, which occurs at a much higher firing rate than pre-movement 

activity, was included in the analysis. To examine this, we fit warping models to a larger 

time window (±400 ms around go cue presentation). Time warping was still able to extract 

oscillations under these more challenging circumstances (Fig 5f). Interestingly, a shift-only 

model was no longer sufficient to capture oscillatory activity, suggesting that the oscillations 

were not phase-locked to movement onset. In contrast, linear or piecewise linear warping 

functions were able to recover the oscillations (Fig 5f; bottom). Thus, while the shift-only 

model is simplest to interpret, it may be insufficient to capture certain results. This 

demonstrates the utility of exploring a range of time warping models, with varying levels of 

complexity, on the same dataset.

Detection of ~6–7 Hz oscillations in rat motor cortex

We have seen that time warping can reveal interpretable structure, even under well-

controlled experimental conditions. Discrete reaching, for example, is arguably the simplest 

volitional motor behavior that one can study, and yet straightforward behavioral alignments 

obscure salient spike-time oscillations (Fig 5). To study a more complex behavior, in a 

different animal model, we analyzed motor cortical activity in rats trained to produce a timed 

motor sequence (Kawai et al. 2015; Dhawale et al. 2017). Rats were trained to press a lever 

twice with a target time interval of 780 ms, and were rewarded if the sequence was 
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completed within ±80 ms of this target (Fig 6a). While rats produce stereotyped motor 

sequences in this setting, the duration between lever presses and the timing of intermediate 

motor actions is variable from trial-to-trial. We examined a dataset consisting of N = 30 

neurons and K = 1265 trials (3 recording sessions, collected over a 2 day period). In these 

sessions, the interval between lever presses ranged from 521–976 ms (5th- and 95th-

percentiles) across trials.

This experiment has three obvious alignment procedures: align spike times to the first lever 

press, align spike times to the second lever press, or linearly stretch/compress the spike 

times to align both lever presses across trials (i.e. human-supervised time warping). Figure 

6b–d shows the activity of six example neurons under these alignment strategies. At a high 

level, these raster plots demonstrate that neurons preferentially respond to different 

behavioral events within a trial. For example, cell 1 in Figure 6 fires after the second lever 

press, while cell 6 in Figure 6 fires after the first press. Thus, it is not obvious which 

alignment is preferable and indeed different insights may be gained from analyzing each.

Unsupervised time warping revealed structure in the data that is hidden in all three 

behavioral alignments. A shift-only warping model uncovered strong oscillations in many 

neurons, as visualized either by re-sorting trials based on the learned shift (Fig 6e, same 

alignment as Fig 6b), or by using the model to re-align spike times (Fig 6f). These findings 

are not due to spurious alignments produced by an overfit model; each spike raster in Figure 

6f was generated on held out data as diagrammed in Fig 2k. Linear and piecewise linear time 

warping recovered qualitatively similar oscillations (data not shown), and were not superior 

to the shift-only model in terms of cross-validated performance (Fig S4).

These results reveal a partial decoupling of behavioral events (lever presses) with neural 

firing patterns. After alignment, both the first and second lever presses occur at variable 

times within each trial (Fig 6f, histograms at bottom), and the learned shift on each trial only 

loosely correlated with inter-press interval (Fig 6g). Furthermore, while multiple neurons 

exhibited spike oscillations, these oscillations were out-of-phase across neurons and 

therefore not visible in single-trial raster plots (Fig S4). Taken together, these features of the 

data suggest that it would be difficult to discover this oscillatory structure by manual 

alignment, demonstrating the power of unsupervised time warping.

While the uncovered oscillations are not phase locked with lever press times, they are 

nonetheless correlated with certain aspects of the animal’s behavior. In particular, some cells 

only exhibit the ~6–7 Hz oscillation following the first lever press, with remarkable temporal 

precision (see cells 3 and 6 in Fig 6f). Indeed, multiple cells exhibit non-oscillatory firing 

prior to the first lever press, but rapidly switch to an oscillatory behavior following the lever 

press (see cell 3 in Fig 6f and Fig S5). Other cells exhibit oscillations prior to the first lever 

press, but the amplitude and precision of the oscillations appears to improve following the 

first lever press (see cell 4 in Fig 5F). Still other cells either do not exhibit oscillations (cell 1 

in Fig 6f) or exhibit strong oscillations both prior to and following the first lever press (cell 5 

in Fig 6f). Time warping enables us to discover and visualize this full spectrum of functional 

cell types, which are otherwise difficult to detect and characterize. The presence of 

oscillations in single neurons can be confirmed by plotting the distribution of inter-spike-
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intervals (Fig S5); the shift-only model goes beyond this method by demonstrating that a 

large population of neurons are coherently phase-shifted on a trial-by-trial basis, and by 

enabling characterization of the full population dynamics and behavioral events in an 

aligned temporal space.

We then examined whether these spike-level oscillations were aligned with oscillations in 

LFP. The average frequency spectrum of the LFP did display a prominent peak at ~6–7 Hz

—a very similar frequency range to the spike-level oscillations identified in Figure 6. To 

characterize the relationship between these two oscillatory signals, we bandpassed filtered 

the LFP between 5–9 Hz on each trial and fit a separate shift-only time warping model to the 

LFP traces. The time warping functions learned on LFP data did not uncover the spike-time 

oscillations shown in Figure 6, and likewise the LFP signals were not well-aligned by the 

time warping functions fit to spike times (Fig S6). Thus, unlike the oscillations identified in 

primate premotor cortex, the oscillations in rat motor cortex were not aligned with the LFP.

Discussion

While the temporal precision of neural coding has been a matter of intense debate, few 

studies have leveraged statistical alignment methods to investigate this problem. Earlier 

work incorporated time warping into single neuron encoding and decoding models 

(Aldworth et al. 2005; Gollisch 2006; Smith and Paninski 2013; Lawlor et al. 2018), as well 

as dimensionality reduction methods (Poole et al. 2017; Duncker and Sahani 2018). Here, 

we decoupled time warping from these other modeling objectives to achieve a flexible and 

simplified framework. We surveyed a broader range of datasets than past work, spanning 

multiple model organisms, brain areas, and sensory/motor tasks. In all cases, we found that 

the simplest and most interpretable models—often those with shift-only or linear warping 

functions—matched the performance of more complex models, while uncovering striking 

and sometimes unanticipated dynamics.

Our results suggest that shift-only and linear warping models can match or even outperform 

more complex nonlinear warping methods. These simpler models have three attractive 

properties. First, they manipulate model estimates of single-trial firing rates in a more 

interpretable manner (see Fig 1), enabling exploratory data analysis and visualization. 

Second, we developed efficient and scalable optimization methods for this class of models. 

On a modern laptop, these models can typically be fit to data from 1000 neurons, 100 

timepoints, and 1000 trials in one minute or less. This scalability is of great practical 

importance given the increasing scale of neural recordings (Stevenson and Kording 2011), 

and the growing need for rigorous cross-validation and model comparison methods 

(Chandrasekaran et al. 2018), which are often computationally intensive if not prohibitive. 

Indeed, another contribution of this work is the development of cross-validation procedures 

to compare the performance of time warping models ranging from simple (shift-only) to 

more complex (piecewise linear; see Fig 2i–k). In essence, this enables a data-driven 

determination of the questions we posed in the introduction of this manuscript—should 

spike times be reported in absolute clock time, relative time between two behavioral events, 

or something else? Though the answer to this question will depend on the particulars of the 
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experimental context, time warping may be used to rigorously compare these possibilities on 

a case-by-case basis.

Time warping also uncovered firing patterns that were not aligned to any stimulus or 

measured behavior. For example, we observed ~13–40Hz spike time oscillations in primate 

premotor cortex during movement preparation (see Fig 5), which we then verified were 

phase-aligned with LFP (see Fig S3). Similar non-phase-locked oscillations have been 

previously observed in functional neuroimaging experiments (Makeig et al. 2002; David et 

al. 2006). Notably, the time warping models we used did not assume any oscillatory 

structure in the data, and thus provide strong evidence that spike-level oscillations are a 

salient feature of the dynamics. When an oscillation is uncovered, a linear time warping 

model considers the activity of the full neural population to estimate the changes in the 

phase (y-intercept) and frequency (slope) of the oscillation on a trial-by-trial basis. This 

population-level approach can be contrasted with popular frequency-domain statistical 

measures like coherence, which measures the degree of phase synchronization between two 

spike trains or between a single spike train and LFP (Fries et al. 1997). These pairwise 

analysis methods are likely more sensitive to noise in single neurons than the population-

level models we investigated here; future work could explore the relative advantages and 

disadvantages of these approaches and develop new methods that combine desirable 

elements from both.

Oscillatory spike patterns may not always be synchronized to LFP, as we observed in rat 

motor cortex (see Fig 6). These ~7 Hz oscillations were sometimes gated by a motor action

—specifically, the first lever press—thus suggesting a potential relevance to timed motor 

production (Fig S5). Another possibility is that orofacial behaviors such as whisking and 

licking are the primary driver of these oscillations (Hill et al. 2011). Other work has shown 

that persistent ~7 Hz LFP oscillations may be locked to the respiration cycle (Tort et al. 

2018); however, the transient, spike-level oscillations we observed were decoupled from 

LFP, and are thus potentially distinct from this phenomenon. Regardless of their root cause, 

this result demonstrates the ability of time warping to extract unexpected features of 

scientific interest from high-dimensional spike trains. Further work is needed to confirm and 

fully elucidate the properties of these oscillations.

Time warping is only one form of variability exhibited by single-trial neural dynamics. For 

simplicity, we examined time warping in the absence of other modeling assumptions, such 

as trial-to-trial variation in amplitude (Bollimunta et al. 2007; Williams et al. 2018), or 

condition-specific changes in dynamics (Duncker and Sahani 2018). Nonetheless, the 

models described here could be extended in several ways to capture more complex single-

trial dynamics. First, we made the restrictive assumption that all neurons share the same time 

warping function on each trial. Under more complex experimental conditions—e.g., in large-

scale recordings of multiple brain regions—it may be fruitful to fit multiple time warping 

functions associated with different neural sub-populations. Second, we fit only a single 

response template for each neuron. Relaxing this assumption may be useful in situations 

where neurons exhibit more than one canonical response pattern. Finally, we assumed that 

neural data was collected over repeated trials. To accommodate more unstructured 

experimental designs, future work could incorporate time warping into state space models 
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(Macke et al. 2015) or sequence extraction algorithms (Mackevicius et al. 2019). Despite 

these exciting prospects for future statistical methodology, our work demonstrates that even 

a simple time warping framework can provide a rich and practical set of tools for the modern 

neuroscientist.

While our results already show that averaging over short, stereotyped trials can obscure fine 

temporal oscillations and firing events, these shortcomings are undoubtedly more severe in 

behaviors that have longer temporal extents and exhibit more variability. Thus, we expect 

time warping methods to play an increasingly crucial role in neural data analysis as the field 

moves to study more complex and unstructured animal behaviors (e.g. under more 

naturalistic settings; Krakauer et al. 2017). Furthermore, in complex experimental tasks 

involving large numbers of conditions and exploratory behaviors, the same motor act or 

sensory percept may present itself only a small number of times. In this trial-limited regime, 

precise data alignment may be critical to achieve the necessary statistical power to make 

scientific claims. We expect simple models, such as linear and piecewise linear warping, to 

perform best on these emerging datasets due to their interpretability, computational 

efficiency, and robustness to overfitting.

STAR Methods

Contact for Reagent and Resource Sharing

Further requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Alex H. Williams (ahwillia@stanford.edu).

Experimental Model and Subject Details

Mouse Olfactory Task—Experimental subjects were male C57B/6 mice (Jackson 

Laboratories). All procedures were approved by the Institutional Animal Care and Use 

Committee of New York University Langone Medical Center.

Primate Motor Task—Experimental subjects were two male rhesus macaque monkeys 

(Macacca mulatta), denoted monkey J and monkey U. The monkeys were 13 (J) and 7 (U) 

years old and weighed 16 kg (J) and 13 kg (U) at the time of these experiments. All 

procedures and experiments were reviewed and approved by the Stanford University 

Institutional Animal Care and Use Committee.

Rat Motor Task—Experimental subjects were female Long Evans rats, 3–8 months old at 

the start of the experiment (Charles River). All procedures and experiments were reviewed 

and approved by the Harvard Institutional Animal Care and Use Committee.

Method Details

Mathematical Notation—We follow the same notation introduced in the main text. 

Matrices are denoted in bold, uppercase fonts, e.g. M, while vectors are denoted in bold, 

lowercase fonts, e.g. v. Unless otherwise specified, non-boldface letters specify scalar 

quantities, e.g. S or s. We use MT and M−1 to denote the transpose and inverse of a matrix, 

respectively.
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We consider a dataset consisting of N features over K trials with T timesteps per trial. For 

simplicity, we refer to N as the number of neurons in the dataset; however, N could also refer 

to the number of fMRI voxels, multiunits, or regions of interest in imaging data. The full 

dataset is a third-order tensor (a three-dimensional data array) with dimensions K × T × N. 

The kth slice of the data tensor is a T × N matrix Xk, which represents the activity of the 

neural population on trial k. We denote a single element of the tensor as Xk,t,n, which 

specifies the activity of neuron n at timebin t on trial k.

The time warping model produces an estimate of population activity on each trial. Mirroring 

standard notation in linear regression, we denote the model estimate on trial k as Xk (a T × N 

matrix).

Model Estimate and Template Interpolation Scheme—The main idea behind time 

warping is to approximate each trial, Xk, as a warped version of a T × N template, X, that is 

shared across all trials. For neuron n, at time bin t, on trial k, the spirit behind the model is:

Xk, t, n = Xωk(t), n (3)

However, this expression is only valid when the warping function, ωk(t), produces integer 

values. To allow the warping functions to produce non-integer values, we adopt a standard 

linear interpolation scheme. Let ωk(t) denote the time warping function for trial k. The 

inputs to the warping function are integer-valued time indices t (clock time), and the outputs 

are any real number (aligned time). We assume that ωk(t) is monotonically increasing and 

thus invertible. Then, the model estimate for neuron n, at time bin t, on trial k is given by:

Xk, t, n = ωk(t) − ωk(t) X ωk(t) , n + ωk(t) − ωk(t) X ωk(t) , n (4)

where ⎿·⏌ represents the “flooring” operation, and ⎾·⏋ represents the “ceiling” 

operation. Because the model estimate (Eq 4) is a linear combination of X ωk(t) , n and 

X ωk(t) , n, the warping transformation can be represented as a matrix W with nonzero 

elements given by:

W t, ωk(t) = ωk(t) − ωk(t)
W t, ωk(t) = ωk(t) − ωk(t) (5)

For each trial, the warping matrix Wk can be uniquely determined from the warping function 

ωk. Thus, the model estimate on each trial is given by:

Xk = WkX (6)

Optimization Strategy—The model template and warping functions are optimized to 

minimize an objective function, which we denote as F X, ω1, ω2, …, ωK . We assume that this 

objective function decomposes across trials as follows:
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F X, ω1, ω2, …, ωK = ∑
k = 1

K
fk X, ωk + ρ1(X) (7)

Here fk is a function defining the model loss on trial k, and ρ1 is a regularization term, 

penalizing the roughness and size of the template (described in the next section). Our online 

code package supports least-squares and Poisson loss functions; we adopted the least-

squares criterion for the purposes of this paper due to its computational efficiency and its 

ability to be adapted to non-spike time data (e.g. fMRI or calcium imaging). Under this 

choice, the per-trial loss function is:

fk X, ωk = WkX − Xk F
2 + ρ2 ωk (8)

Here, ρ2 is a regularization term that penalizes the magnitude of warping (described in the 

next section), and ⋅ F
2  denotes the squared Frobenius norm, which is simply the sum of 

squared residuals, M F
2 = ∑ijMij

2 .

To minimize F, we adopt an alternating optimization (block coordinate descent) approach 

(Wright 2015). First, each warping function is initialized to be the identity, ωk(t) = t, and the 

template and warping functions are cyclically updated according to the following sequence 

of optimization subproblems:

X argmin
X

F X, ω1, …, ωK

ω1 argmin
ω1

F X, ω1, …, ωK

⋮
ωK argmin

ωK
F X, ω1, …, ωK

(9)

Here, an underlined variable denotes a dummy variable that is optimized over in each 

subproblem. This sequence of parameter updates is cyclically repeated until the objective 

value ceases to improve; by construction, the objective monotonically decreases at each step 

of the algorithm so convergence is guaranteed under mild assumptions (Wright 2015).

Partitioning the parameter updates in this manner is useful because each subproblem can be 

solved very efficiently. When the template is considered a fixed variable, the objective 

function decouples across trials (Eq 8), which simplifies the warping function updates 

considerably:

ωk argmin
ωk

fk X, ωk (10)

These parameter updates are entirely independent, with each update only depending on the 

raw data for trial k, Xk, and the current warping template X. Our code package executes 
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them efficiently in parallel across CPU threads. Furthermore, each warping function is 

controlled by a small number of parameters in our framework—at best a single parameter 

(shift-only warping) and at worst only a few parameters (piecewise linear warping). Thus, 

we perform these updates by a brute force random search (see Warping Function 
Regularization and Update Rule).

The response template is also very simple to update, especially under a least-squares loss 

criterion. Assume for the moment that the model is not regularized; i.e., ρ1(X) = 0 and 

ρ2(Wk) = 0. Then, because each Wk is held constant, updating the template amounts to a 

least-squares problem that can be solved in closed form:

argmin
X

∑
k = 1

K
WkX − Xk F

2 = argmin
X

∑
k

Wk
⊤Wk X − ∑

k
Wk

⊤Xk
F

2

= ∑
k

Wk
⊤Wk

−1
∑

k
Wk

⊤Xk

(11)

Furthermore the matrix ∑k = 1
K WkWk

⊤ is a symmetric, tridiagonal matrix. Intuitively, this 

tridiagonal structure arises from the constraint that each warping function is monotonically 

increasing, and the local structure of the linear interpolation scheme: for any warping matrix 

W, with an associated warping function ω, Equation 4 implies that Wi,tWj,t = 0 if |ω(t) − i| > 
1 or if |ω(t) − j| > 1 and thus [WTW]i,j = 0 if |i – j| > 1.

The tridiagonal structure of ∑kWk
⊤Wk enables the template parameters to be updated 

extraordinarily fast for practical applications. We use a specialized solver for systems of 

linear equations with banded, symmetric structure (scipy.linalg.solveh_banded). This allows 

the optimization problem in Equation 11 to be solved with O(TN) operations. If ∑kWk
⊤Wk

were naïvely treated as a dense matrix, the solution would instead require O(T3 + T2N) 

operations.

Template Regularization and Update Rule—We found that introducing regularization 

(penalties on the magnitude or complexity of model parameters) can improve the 

interpretability of the model and its ability to predict held out data. First, we found in some 

datasets that the warping template could exhibit rapid, high-frequency changes in firing rate 

(see, e.g., the template in Fig 1C, which was fit without regularization). These irregularities 

likely correspond to the model overfitting to noisy neuronal data, and can be discouraged by 

penalizing the magnitude of the second finite differences along the temporal dimension of 

the template (Grosenick et al. 2013; Maheswaranathan et al. 2018). We refer to this term as a 

roughness penalty or smoothness regularization. Second, it is possible that the matrix 

∑kWk
⊤Wk appearing in eq. (11) would become non-invertible or ill-conditioned during 

optimization. To prevent this, and to discourage the template firing rates from becoming too 

large, we added a penalty on the squared Frobenius norm of the template. Formally, the 

regularization on the template is given by:
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ρ1(X) = λ DX F
2 + γ X F

2
(12)

where λ > 0 controls the strength of the roughness penalty and γ > 0 controls the strength of 

the Frobenius norm penalty. The matrix D is a (T − 2) × T matrix that computes second-

order finite differences:

D =

1 −2 1 0 … 0
0 1 −2 1 ⋮
⋮ ⋱ 0
0 … 0 1 −2 1

(13)

Incorporating this regularization term into the update of the warping template (eq. (11)), we 

get:

argmin
X

∑
k

Wk
⊤Wk X − ∑

k
Wk

⊤Xk
F

2
+ λ DX

F

2
+ γ X

F

2

= argmin
X

∑
k

Wk
⊤Wk + λD⊤D + γI − X ∑

k
Wk

⊤Xk
F

2 (14)

Which yields the template update rule:

X ∑
k

Wk
⊤Wk + λD⊤D + γI

−1
∑

k
Wk

⊤Xk (15)

Thus, the solution is the same as before except a term λDTD + γI is added to the inverted 

matrix (left-hand side of linear system). These modifications hardly affect the computational 

complexity of the parameter update since λDTD + γI is also a symmetric, banded matrix. 

Furthermore, as long as γ > 0 the overall matrix is positive definite and therefore guaranteed 

to be invertible.

In practice, we have found that it is simple to hand-tune the regularization strengths for 

exploratory analysis (though cross-validation procedures, described below, should always be 

used to monitor for overfitting). We typically set the L2 regularization (γ) to be zero or very 

small (e.g., 1e-4) and do not tune it further. A reasonable value for the roughness penalty 

scale can be found by visually inspecting the template for various neurons (columns of X) 

and increasing λ if these time series appear noisy.

Warping Function Regularization and Update Rule—We found that the 

optimization landscape of linear and piecewise linear warping functions is complex and full 

of local minima. Thus, gradient-based optimization methods can be ineffective. Thankfully, 

the warping functions are (a) low-dimensional and (b) entirely decoupled across trials. Thus, 

when updating the warping functions, we perform a brute force parameter search for each 
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trial in parallel. For shift-only warping models, we perform a dense grid search over the 

parameter (the magnitude of the shift).

For piecewise linear warping models we perform an annealed random search as follows. 

Consider a warping function ωk(t) for any arbitrary trial. We parameterize the warping 

function as:

ωk(t) = 1 + (T − 1) ⋅ ωk
t − 1
T − 1 0

1
(16)

Where ωk is a piecewise linear function mapping the unit interval [0, 1] to any real number, 

and z 0
1 = max(min(z, 1), 0) denotes clipping any real number z to have a value between zero 

and one.

The piecewise linear function ωk(t) intuitively defines the “unclipped” warping function for 

trial k. We define these functions by a series of M x-y coordinates, {(α1, β1),(α2, β2), …
(αM, βM)}, where 0 = α1 < α2 < … < αM = 1 and β1 ≤ β2 ≤ … ≤ βM. We refer to these 

coordinates as the knots of the warping function.

ωk(t) =

β1 if t = α1 = 0

β1 1 − t − α1
α2 − α1

+ β2
t − α1

α2 − α1
if α1 < t < α2

⋮ ⋮

βM − 1 1 − t − αM − 1
αM − αM − 1

+ βM
t − αM − 1

αM − αM − 1
if αM − 1 < t < αM

βM if t = αM = 1

(17)

Note that the warping function for each trial has a different set of knots; however, we have 

suppressed the trial index variable k on the knot coordinates (αm and βm) for notational 

brevity.

To optimize the warping functions we perform a random search over these coordinates/

knots. Let α = [α1, α2, …, αM] and β = [β1, β2, …, βM] denote the current coordinates for 

any particular trial. We form a new proposed warping function by:

α′ sort(α + Qη)
α′ α′ − α1′ / αM′ − α1′
β′ sort(β + Qη)

(18)

where Q > 0 is a scalar parameter tuning the amount of exploration, and η is a vector of 

random normal variables with mean zero and unit variance. The procedure “sort(v)” re-

orders the elements of a vector so that they are in ascending order. If the proposed warping 

function improves the objective function, we accept the new parameters:

α α′
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β β′

For each round of optimization we exponentially relax Q from 1.0 to 0.01 over a fixed 

number of iterations.

We also found that penalizing the warping functions based on their distance from the 

identity line was helpful in some cases. Intuitively, this encourages the warping functions to 

be minimal—as the penalty strength increases the warping functions will approach ω(t) = t, 
resulting in no warping at all in this extreme limit. Similar penalties or hard constraints on 

time warping have been examined in prior literature (see e.g., Zhang et al. 2017). We chose 

the penalty to be the area between the unclipped warping function and the identity line:

ρ2 Wk = μ∫
0

1
ωk(t) − t dt (19)

which, for piecewise linear functions with relatively small M, can be efficiently computed as 

the sum of triangular and trapezoidal regions. Here, μ ≥ 0 is a scalar hyperparameter 

controlling the strength of the penalty. In practice we start with μ = 0 and increase it if, upon 

visual inspection, the warping functions are highly deviant from the identity line. Increasing 

μ in these cases can result in more sensible and interpretable templates. Again, cross-

validation procedures can be used to asses whether μ is too low (resulting in overfitting) or 

too high (resulting in underfitting).

Synthetic data examples—In Figure 1 data from a single neuron was simulated as a 

difference of two exponential curves. The activity at T = 100 equally spaced time points 

between [−8, +8] was given by:

xk(t) =
0 sk − t < 0
3.3 ⋅ exp sk − t /2 − exp sk − t + η sk − t ≥ 0

Where sk was a random shift parameter drawn uniformly on the interval [−5.5,3.5), and η 
was randomly drawn zero-mean gaussian noise with a standard deviation of 0.15. 

Unregularized shift-only, linear, and piecewise linear (with 1 knot) models were fit to K = 

100 simulated trials. DTW-Barycenter Averaging (DBA; Petitjean et al. 2011) was fit to the 

same data using an open-source package called tslearn (Tavenard 2017).

In Figure 2 we simulated random warping warping functions following the procedure listed 

in Equation 18, with Q = .12. The firing rate template of each neuron was given by a 

smoothed, sparse sequence of heavy-tailed random variables:

x(t) = 0.01 + conv bt ⋅ et

where et were randomly drawn from an exponential distribution (with scale parameter equal 

to one) and bt were binary random variables drawn from a Bernoulli distribution (with 

probability of 0.92 that bt = 0). The conv(·) procedure denotes convolution with a Gaussian 
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smoothing kernel with a standard deviation of 2. Truncated Poisson random variables were 

then drawn in each timebin; any bins with more than two spikes were truncated to one spike.

Mouse Olfactory Task—We analyzed data from a single recording session collected as 

part of a previously published study (Wilson et al. 2017). Subjects were implanted with a 

RIVETS headbar for head-fixation 7 days prior to the experiment (see description in 

Arneodo et al. 2018). Subjects were water deprived prior to the experiment and were 

administered water during random odor presentations to acclimate animals to the 

experimental apparatus.

On the day of experiment, subjects were anesthetized using isoflurane and a ~0.3 mm 

craniotomy was preformed to gain access to the dorsal olfactory bulb. NeuroNexus A2×32 

probes were inserted approximately 500 μm into the dorsal bulb to record from the mitral-

tufted cell layer. After probe insertion, subjects were allowed to recover from anesthesia for 

30 minutes prior to recording. Electrophysiological and respiration signals were recorded 

using the HHMI Janelia Whisper recording system at 25000 Hz. Respiration (sniff) was 

monitored non-invasively using a pressure sensor sampling from the airflow in front of the 

nose. Action potentials from the recording were identified and classified into units offline 

using Spyking Circus template-matching software (Yger et al. 2018).

Two odors at 3 concentrations were presented in randomly interleaved trials. Subjects were 

passively sampling odor during trials. Concentrations covered a range of 2 orders of 

magnitude of molarity in carrier air. Odorants were diluted in mineral oil, stored in amber 

volatile organic analysis vials, and delivered via a 8-odor olfactometer. Odorant 

concentrations were controlled using a combination of gas- and liquid-phase dilution. We 

restricted our analysis to subsets of trials with odorant concentrations of 10−2 M—the 

highest concentration analyzed in (Wilson et al. 2017).

Primate Motor Task—Monkeys performed a standard center-out delayed reach task 

described previously in (Gilja et al. 2012; Ames et al. 2014). Targets were presented at (40, 

80, 120) cm and 90 cm from the central starting location for monkeys J and U respectively. 

For monkey J, delay periods were evenly distributed between 300 and 700 ms (monkey J) 

with ~4.5% non-delay trials randomly interleaved. For monkey U, delays were randomly 

distributed between 350 and 600 ms on 87% trials, between 5 and 350 ms on 10% of trials, 

with 3% non-delay trials. Monkeys received a liquid reward upon touching and holding the 

cursor on the target. Movement during the delay period caused a trial failure and provided a 

brief automated time out (~1 s). Non-delay trials were not analyzed.

For monkey J, the virtual cursor and targets were presented in a three-dimensional 

environment (MusculoSkeletal Modeling Software, Medical Device Development Facility, 

University of Southern California). Hand-position data were measured at 60 Hz with an 

infrared reflective bead–tracking system (Polaris, Northern Digital). Behavioral control and 

neural decode were run on separate PCs using the Simulink/xPC platform (Mathworks) with 

communication latencies of less than 3ms. This system enabled millisecond timing precision 

for all computations. Visual presentation was provided via two LCD monitors in a 

Wheatstone stereotax configuration, with refresh rates at 120 Hz, yielding frame updates of 
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7 ± 4 ms. Two mirrors visually fused the displays into a single three-dimensional percept for 

the user, as described previously in (Gilja et al. 2012).

For monkey U, the virtual cursor and targets were presented on a standard 2D display. The 

monkey controlled the position of an onscreen cursor using a haptic manipulandum which 

applied no additional forces applied to the arm and was only used for positional cursor 

control. The haptic device was constrained to move within a 2D vertical workspace and 

cursor position tracks hand position 1:1 without perceptible lag.

Neural recordings were obtained via implanted 96-electrode Utah Microelectrode arrays 

(Blackrock Microsystems) using standard neurosurgical techniques. Two arrays were 

implanted in the left hemisphere of Monkey J, one in dorsal premotor cortex (PMd) and one 

in primary motor cortex (M1). Three arrays were implanted in the left hemisphere of 

Monkey U, one in PMd, one in medial M1, and one in lateral M1. For both monkeys, 

implantation location was estimated visually from local anatomical landmarks.

Neural data were band-pass filtered between 250–7500 Hz, and processed to obtain 

multiunit ‘threshold crossings’ spikes, defined as any time the signal crosses −3.5 times 

RMS voltage. We did not perform spike sorting, and instead grouped together the multiple 

neurons present on each electrode. As such, we anticipate that these population recordings 

contain both single and multiunit activity.

For Figure 4 and Figure S2 (Monkey J), each trial was defined as the 1200 ms following the 

reach target onset. Spike times were binned in 5 ms increments. For Figure 5 (Monkey U) 

and Figure S3 (Monkey J), we aligned spike times to the go cue instead of target onset. To 

highlight oscillatory spiking activity, we defined each trial as the period occurring 400 ms 

prior to go cue and 100 ms after go cue. Spike times were binned in 2.5 ms increments for 

Monkey J and 5 ms increments for Monkey U; similar results were found for smaller bin 

sizes, and stronger smoothness regularization. In Figure 5F (Monkey U), we extended each 

trial duration to ±400 ms around the go cue, but otherwise kept the same parameters.

Tuning the regularization strength of on template smoothness (λ) and warp magnitude (μ) 

was important to uncover the oscillations in premotor cortex. We used the cross-validation 

procedure described above to determine roughly appropriate values for these parameters. To 

be conservative and to be confident that these results were not due to overfitting, we 

increased the regularization strength further for the purposes of visualization.

Rat Motor Task—We analyzed data that was collected as part of a previously published 

study (Dhawale et al. 2017), which describes all experimental procedures and data collection 

protocols in greater detail. Extracellular recordings were obtained from 16 chronically 

implanted tetrodes in the motor cortex. Signals were amplified and digitized on a customized 

head-stage, and sampled at 30 kHz. The head stage was attached to a custom-designed 

tethering system that allowed the animal to move freely within its cage. Before implantation, 

an automated behavioral training framework (described in Poddar et al. 2013) was used to 

train the rats on a timed lever-pressing task (described in Kawai et al. 2015) until asymptotic 

performance was achieved.
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The tetrode drive was then surgically implanted and targeted to motor cortex, through a 4–5 

mm diameter craniotomy made 2 mm anterior and 3 mm lateral to bregma. The tetrode array 

was lowered to a target depth of 1.85 mm. At the end of the experiments, the position of the 

electrodes was verified by standard histological methods—brains were fixed via transcardial 

perfusion (4% paraformaldehyde in phosphate-buffered saline, Electron Microscopy 

Sciences) and the location of the electrodes was reconstructed by viewing mounted coronal 

sections (60 mm).

After 7 days of recovery post-surgery, training on the task resumed in the animal’s home 

cage. Neural and behavioral data was recorded continuously during this time (12–16 weeks) 

with only brief interruptions (median time of 0.2 hr). Spikes were sorted using Fast 

Automated Spike Tracker (FAST), a custom algorithm designed for parsing long-term 

continuous neural recordings (for details, see Dhawale et al. 2017). We examined K = 1265 

trials, collected over a two day period.

Each trial was defined as the period starting 500 ms prior to the first lever press and 1500 ms 

after the first lever press. Spike times were binned in 10 ms increments for each unit. Raw 

spike counts were provided to the time warping algorithm; however, we observed similar 

results under various normalization schemes, such as soft-normalization (Churchland et al. 

2012). All analyses of these data used a shift-only time warping model. The per-trial shift 

was constrained to be less than 10% of the total trial duration.

Quantification and Statistical Analysis

Cross-validation—As with any statistical method, one must be very careful that time 

warping does not reveal spurious structure and features of the data. In Fig 1, we saw that 

even a simple linear warping model can result in noticeable overfitting on a simple synthetic 

time series. An important technical contribution of our work is a rigorous cross-validation 

framework for time warping models. This framework, described in detail below, enables us 

to fine-tune all regularization terms—i.e. the hyperparameters {γ, λ, μ}—across all warping 

models. That is, we can rigorously compare the performance of shift-only, linear, and 

piecewise-linear time warping models on an even footing, and thus critically examine the 

degree of nonlinearity in time warping. While cross-validation is a common procedure in 

statistical modeling and in modern neuroscience, there are subtle pitfalls that must be 

avoided in unsupervised learning models (Bro et al. 2008; Perry 2009), and in models with 

temporally correlated noise (Opsomer et al. 2001).

To properly compare the performance of different warping models, it is important to perform 

nested cross-validation, so that regularization terms are separately tuned for each model. For 

example, a piecewise linear warping model will often require stronger smoothness and warp 

regularization terms, compared to a simpler, shift-only warping model. Thus, on each cross-

validation run we split the data in three partitions: a training set, a validation set, and a test 

set. For each model class (shift-only, linear warping, piecewise-linear warping, etc.) we fit 

100 models with randomized regularization strengths to the training set; we then evaluated 

all 100 models on the held out validation set; finally, the best-performing model was 

evaluated on the test set. The test set performance is then compared across model classes. 

Model performance was measured by computing the coefficient of determination (R2), 
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averaged across neurons. Formally, for any partition of neurons N ⊆ {1, 2, …, N} and trials 

K ⊆ {1, 2, …, K} we define the coefficient of determination as:

R2 = 1 −
∑n ∈ N ∑t = 1

T ∑k ∈ K Xk, t, n − Xk, t, n
2

∑n ∈ N ∑t = 1
T ∑k ∈ K Xk, t, n − Xn

2 (20)

Where Xn = 1
TK ∑t = 1

T ∑k = 1
K Xk, t, n is the average activation for neuron n.

Recall that our dataset consists of N neurons, T timebins, and K trials. The question then 

arises, should we hold out neurons, timepoints, or trials during cross-validation? Since the 

warping functions are assumed to be shared across all neurons, these model parameters can 

be fit on a subset of neurons (training set), and then evaluated on held out neurons 

(validation/test sets). However, if we hold out individual neurons entirely, then it is 

impossible to fit the response template matrix X for those cells. Conversely, the response 

template can be fit to a subset of trials (training set) and evaluated on the remaining trials 

(validation/test sets). However, if we hold out individual trials entirely, then it is impossible 

to fit the warping functions associated with those held out trials.

To circumvent this problem we adopt a bi-cross-validation hold out pattern (Owen and Perry 

2009). This entails separately and independently partitioning neurons and trials. Thus, we 

randomly choose training neurons (~73% of all cells), validation neurons (~13% of all cells), 

and testing neurons (the remaining ~13%). Additionally, we randomly choose training trials, 

validation trials, and testing trials, according to these same ratios. The model warping 

functions are fit to all trials, but only on the training neurons; the response template is fit for 

all neurons, but only on the training trials. When reporting the training performance, we 

compute the reconstruction loss on the intersection of the training neurons and training 

trials. Likewise, when evaluating models on the validation (or test) set, we compute the the 

reconstruction loss on the intersection of the validation (or test) neurons and validiation (or 

test) trials.

Temporal dependencies in model errors can complicate proper cross-validation (Opsomer et 

al. 2001; Latimer 2018). To avoid these complications, we leave out entire trials for 

individual neurons, rather than leaving out a subset of time bins.

Null models and other sanity checks—The cross-validation procedure described 

above is fully rigorous, but computationally expensive to perform. Even if each optimization 

run only takes a few seconds to complete, comparing M warping models over P random 

samples of the regularization parameters, and repeating the whole process over Q 
randomized folds leads to long run times; for example, ~26 hours for M = 5, P = 100, Q = 50 

and each model taking ~20 seconds to optimize. This rather unfavorable scaling underscores 

why our attention to performance enhancements—e.g. by exploiting banded matrix structure 

when updating the model template—is critical for practical applications. On the other hand, 

a full cross-validation run is often unnecessary for exploratory data analysis and 

visualization. Here we briefly outline two simple procedures for validating time warping 
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visualizations in a more interactive manner. Our online code package also supports both of 

these options.

First, one can create a very simple null dataset of neural activity that, by construction, 

contains no warping. By comparing the results of time warping on this null dataset to those 

achieved on the real data, we gain an informative reference point. For spiking data, we 

simulate null data by computing the trial-average firing rate of each neuron and then drawing 

Poisson i.i.d. random spike trains on every trial. That is, on each trial, the spike train for a 

neuron is drawn from an inhomogeneous Poisson process, with a rate function given by the 

trial-average firing rate. Similar baselines could be developed for calcium imaging and fMRI 

studies after specifying an appropriate noise model. We did not apply this method directly in 

this manuscript, but nonetheless mention it here for completeness.

Second, a key visualization tool enabled by time warping is the alignment of neural activity 

across trials. This alignment is achieved by applying the inverse warping functions to re-

scale the time axis on the raw data; it does not directly rely on the response template, X. 

Thus, one can visualize the aligned activity of an individual neuron in a held out manner—

the model is fit to all trials and all other neurons, and the warping functions are applied to 

the held out cell (see Fig 2k). This can then be repeated for each neuron in the full 

population. All spike raster plots in the main paper were produced using this procedure.

While these two approaches do not supplant the need for careful cross-validation, they can 

provide a quick validation for visualizations and presented results.

Data and Software Availability

Our code for fitting linear and piecewise linear time warping models is distributed as a 

GitHub repository (under an MIT license): https://github.com/ahwillia/affinewarp. This 

repository also contains pre-processed versions of all three experimental datasets detailed in 

this paper, alongside step-by-step tutorials which reproduce the major results in Figures 2, 3, 

5, and 6. Our Python implementation relies on the standard SciPy scientific computing 

libraries (Jones et al. 2001–; Hunter 2007). Additionally, we achieved substantial 

performance enhancements by leveraging numba, a Python library that enables just-in-time 

(JIT) compilation (Lam et al. 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Illustration of time warping models.
(A) Single-neuron synthetic data from 100 trials. When data are aligned (top left) the trial-

average provides a good description of activity (bottom left). When the data are misaligned 

by introducing jitter (right), the trial-average does not produce a useful description (bottom 

right). (B) Time warping models estimate a template (black line, left) that is transformed on 

a trial-by-trial basis by warping functions (middle column) producing single-trial estimates 

of neural activity (right column). Colored lines represent warping functions and estimated 

firing rates on three example trials. Top row illustrates shifting the template activity (shift-

only warping), second row illustrates stretching and compressing the template in addition to 

shifting (linear warping), third row illustrates piecewise-linear warping with two line 

segments, the bottom row illustrates a fully nonlinear warping. (C) Results of shift-only 

warping (top), linear warping (middle), and nonlinear warping (bottom; Petitjean et al. 2011) 

fit to the synthetic data from panel A, right. For each model, we show the warping templates 

(left, black lines) and warping functions (right, lines colored by ground truth shift; red 

indicates rightward shift, blue indicates leftward shift). (D) The predicted firing rates of 

shift-only warping provide a denoised trial-by-trial estimate of neural activity. (E) The raw 
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data sorted by the learned per-trial shift parameter. (F) Data aligned by the shift-only model; 

the per-trial shift is applied in the opposite direction to the raw data.
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Fig 2. Recovery of ground truth warping functions in synthetic data.
(A) Synthetic spiking data from N = 5 units, T = 150 timebins, and K = 75 trials. Data were 

simulated from a ground truth model with piecewise linear warping functions with 1 knot. 

(B) Data re-aligned by a shift-only warping model. (C) Data re-aligned by a linear warping 

model. (D) Data re-aligned by a piecewise-linear (1-knot) warping model. (E) Data re-

aligned by a piecewise-linear (2-knots) warping model. (F) Data re-aligned by the ground 

truth model. Note similarity with panels D & E. (G) Ground truth neural response templates 

(black) and estimated response templates (red) from the piecewise-linear (1-knot) model. Y-

axis denotes the probability of spiking in each time bin. (H) Ground truth warping functions 

(black) on six representative trials, and estimated warping functions (red) from the 
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piecewise-linear (1-knot) model. (I) Model performance (R2) in training, validation, and test 

partitions of various warping models. Thin lines represent maximum and minimum values; 

thick lines represent mean ± standard error. Results were computed over 40 randomized 

cross-validation runs. The horizontal dashed blue line reflects the performance ceiling on 

held out data achieved by the ground-truth model. (J) Cross-validation procedure (see 

Methods). On each trial, the warping functions are fit to a subset of neurons (red boxes). For 

each neuron, the response templates are fit to a subset of the trials (blue boxes). The training 

set refers to the overlap of these two regions (purple overlap). The validation and test sets are 

subsets of the remaining data (uncolored white regions). (K) Validation procedure for single-

neuron raster plots. The visualized neuron is held out; the warping functions are fit to the 

remaining neurons and then applied to the held out cell.
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Fig 3. Time warping of mitral/tufted cell activity recovers sniff-locked activity patterns.
(A) A head-fixed mouse sampled odorized air (α-pinene, 10−2 M). Variability in inhalation 

onset from trial-to-trial caused jitter in the olfactory response. (B) Spike raster plots for six 

representative cells over all K = 45 trials with spike times aligned to odor delivery. Black 

dots denote spike times, blue dots denote sniff onsets. Blue histogram indicates the 

distribution of sniff onsets. (C) Same as (B), but with trials re-ordered by the magnitude of 

shift warping. (D) Same as (B), but with the time axis aligned by shift-only warping. (E) 

Same as (B), but with the time axis aligned to sniff onset. (F) Trial-to-trial reliability (R2) for 

all N = 30 cells before (x-axis) and after (y-axis) alignment by the shift-only model. Dashed 

black line indicates the identity line. Dashed grey lines indicate a two-fold increase or 

decrease in R2. The p-value is computed using a Wilcoxon signed rank test. (G) Same as (F), 

but comparing the alignment of linear warping to shift-only warping. (H) Same as (F), but 

comparing the alignment of shift-only warping to sniff onset alignment.
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Fig 4. Time warping of reach dynamics in a nonhuman primate.
(A) Reaches towards a 90° target were analyzed. (B) Spike data from four example 

multiunits over all trials. Units 1 & 4 were from primary motor cortex; units 2 & 3 were 

from pre-motor cortex. At the bottom, the temporal distribution of task events is shown: 100 

ms after target onset (TARG, green), end of delay period (GO, blue), and movement onset 

(MOVE, red). (C) Scatterplot showing correlation between the hand movement onset on 

each trial and the learned shift parameter in the shift-only warping model. (D) Same as (B), 

but with trials re-ordered by the magnitude of shift warping. (E) Same as (B), but with the 

time axis aligned by shift-only warping. (F) Same as (B), but with the time axis aligned by 

linear warping. (G) Same as (B), but with the time axis aligned by piecewise-linear warping 

with one knot.
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Fig 5. Time warping reveals spike-level oscillations in primate premotor cortex.
(A) Multiunit activity aligned to go cue. Four representative multiunits are shown; spike 

rasters (black) trial-average PSTH (blue) are shown for each multiunit. Go cue onset is 

shown in red. The average firing rate across all multiunits is shown on the bottom (black 

trace). Shaded grey region denotes upper and lower quartiles. (B) Same as (A) but with spike 

times aligned by shift-only warping model. Each displayed multiunit was held out from the 

model fit. (C) Same as (A) but with spike times aligned by linear warping model. Each 

displayed multiunit was held out from the model fit. (D) Oscillatory power at 18Hz in trial-

average multiunit activity aligned to go cue (black dots) and after linear warping (purple 

dots). Each dot represents one of N = 96 multiunits. (E) Same as (D) but showing oscillation 

phase for each multiunit. (F) Multiunit activity averaged across electrodes and trials in a 

larger time window (800 ms) around go cue (red arrow). Oscillations are not visible in the 

raw data (top) or after shift warping (second from top). Oscillations are recovered by either 

linear (second from bottom) or piecewise linear warping (bottom). Shaded grey region 

denotes upper and lower quartiles.
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Fig 6. Shift-only time warping reveals temporally precise theta-locked oscillations in rat motor 
cortex.
(A) Rats were trained to press a lever twice with a prescribed delay. The range of inter-press-

intervals across trials is listed (median ± inter-quartile range). (B) Raster plots for six 

representative cells with spike times aligned to the first lever press (blue line) and trials 

sorted by second lever press time (red line). Histograms at the bottom denote the distribution 

of the lever press times. (C) Same as (B) but with time aligned to the second lever press. (D) 

Same as (B) but with time linearly re-scaled to align both lever presses. The missing scale 

bar reflects the fact that time units are no longer preserved across trials. (E) Same as (B) but 

with trials re-ordered by the magnitude of shift warping. The time of the second lever press 

on each trial is denoted by a semi-transparent red dot. (F) Same as (E) but with the time axis 

aligned by shift-only warping. (G) Relationship between the magnitude of shift warping and 

inter-press interval on each trial. Dashed red line denotes a robust linear regression fit 

(Huber loss function, ϵ = 1.001); the Median Absolute Deviation (MAD) and R2 are listed as 

measures of fit.
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