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Endotherms defend their body temperature in the cold by employing shiver-
ing (ST) and/or non-shivering thermogenesis (NST). Although NST is well
documented in mammals, its importance to avian heat generation is unclear.
Recent work points to a prominent role for the sarco/endoplasmic reticulum
Ca2+ ATPase (SERCA) in muscular NST. SERCA’s involvement in both ST
and NST, however, posits a tradeoff between these two heat-generating
mechanisms. To explore this tradeoff, we assayed pectoralis gene expression
of adult songbirds exposed to chronic temperature acclimations. Counter to
mammal models, we found that cold-acclimated birds downregulated the
expression of sarcolipin (SLN), a gene coding for a peptide that promotes
heat generation by uncoupling SERCA Ca2+ transport from ATP hydrolysis,
indicating a reduced potential for muscular NST. We also found differential
expression of many genes involved in Ca2+ cycling and muscle contraction
and propose that decreased SLN could promote increased pectoralis contrac-
tility for ST. Moreover, SLN transcript abundance negatively correlated with
peak oxygen consumption under cold exposure (a proxy for ST) across indi-
viduals, and higher SLN transcript abundance escalated an individual’s
risk of hypothermia in acute cold. Our results therefore suggest that
SLN-mediated NST may not be an important mechanism of—and could
be a hindrance to—avian thermoregulation in extreme cold.
1. Introduction
In the face of thermal stress, endotherms can protect their body temperature
(Tb) by employing heat-generating processes in the form of shivering thermo-
genesis (ST) and/or non-shivering thermogenesis (NST). The use of NST has
been extensively described in mammals, which increase NST to regulate
body temperature in the cold [1]. It is suspected that birds also use NST and,
indeed, some juvenile birds increase NST with cold acclimation [2–4]. Nonethe-
less, few studies have explored the role of NST during cold acclimatization in
adult birds.

Part of this discrepancy arises from uncertainty in the potential mechanism
underlying avian NST. For instance, the mitochondrial uncoupling of oxidative
phosphorylation from ATP synthesis is one well-characterized mechanism of
mammalian NST. During this process, an uncoupling protein (UCP1) facilitates
the leakage of protons across the mitochondrial membrane, which dissipates
heat. In placental mammals, UCP1 is mainly expressed in brown adipose
tissue (BAT) and cold acclimation is associated with BAT recruitment and an
increased capacity for NST [5]. Although birds lack BAT, a role for mitochon-
drial uncoupling in the avian skeletal muscle has been proposed [6,7].
However, direct empirical support for a contribution of the avian UCP
homologue (avUCP) to mitochondrial uncoupling is lacking [8,9].
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Figure 1. (a) Mechanism of heat generation via sarcolipin (SLN) in mammals. RyR, ryanodine receptor channel. (b) Magnitude of SLN expression change across sampling
points. (c) Negative correlation between SLN transcript abundance and Msum. (d ) Effect of SLN expression on risk of hypothermia using best Cox proportional hazards model,
with SLN transcript abundance represented as high or low (mean for control and cold treatments, respectively) and covariates held constant at mean values across individuals.
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Instead, increasing evidence points to a role for the sarco/
endoplasmic reticulum calcium ATPase (SERCA) in facilitat-
ing avian NST [10]. SERCA uses phosphate bond energy
from ATP to move Ca2+ ions from the myocyte cytosol into
the sarcoplasmic reticulum to create a Ca2+ gradient in resting
striated muscle [11] (figure 1a). When present, the peptide
sarcolipin (SLN) binds to SERCA and promotes uncoupling
of Ca2+ transport from ATP hydrolysis, resulting in futile
SERCA activity and heat production in mammals ([11], but
see [12]). Overexpression of SLN in laboratory mice is associ-
ated with increased NST and decreased energy stores in the
cold [13,14].

While SLN can enhance NST, it may also negatively
impact ST. For instance, experimental increases in exogenous
SLN result in reduced peak isometric force, lower rates of
contraction and relaxation, and increased fatigue of the
soleus in rats [15]. Because rapid muscular contractions
require high Ca2+ cycling activity [16], SLN-associated
reductions in Ca2+ cycling could similarly reduce shivering
activity. These potentially antagonistic effects of SERCA on
ST and NST therefore setup an obvious, yet unexplored
tradeoff between heat-generating mechanisms.

We explored this tradeoff using transcriptome-wide pat-
terns of gene expression to reveal the many co-occurring
processes within the skeletal muscle of dark-eyed juncos
( Junco hyemalis) exposed to chronic temperature acclimations.
Juncos winter at high latitudes across North America [17] and
we have previously shown that they increase their thermo-
genic performance with increasing duration of cold
acclimation [18]. Here, we present the first evidence, to our
knowledge, for SLN expression in the avian skeletal muscle.
We predicted that if SLN-mediated NST is an advantageous
mechanism of avian heat generation, birds should increase
SLN expression in the cold. Alternatively, if shivering is the
most important component of avian facultative thermogen-
esis, we expected cold-acclimated birds to decrease SLN
expression. We further predicted that potential SLN differ-
ences would be accompanied by changes in the expression
of genes related to ST muscle contraction, as well as whole-
organism measures of thermogenic performance. Our results
suggest that, if SLN-mediated NST occurs in adult birds, it
has a minimal role in their acclimation to extreme cold,
revealing exciting directions for future exploration of
tradeoffs between these heat-generating mechanisms.
2. Methods
We have previously described our acclimation experiment and
physiological assays in detail [18]. Briefly, in 2017 we exposed
wild-caught, adult juncos from Missoula, MT to constant labora-
tory conditions for six weeks (18°C), then randomly assigned
birds to cold (−8°C) or control (18°C) acclimation treatments
lasting one, two, three or six weeks (electronic supplementary
material, table S1). Following acclimations, we simultaneously



Table 1. Cox proportional hazards model estimates for the standardized effects of SLN transcript abundance and Msum on the risk of hypothermia while
controlling for variation in Ta (n = 45). Robust standard error (SE); likelihood-ratio test (LRT).

Ta SLN Msum SLN × Msum

LRTβ SE p β SE p β SE p β SE p

−2.45 0.53 3.5 × 10−6 48.64

−3.23 0.68 1.8 × 10−6 1.12 0.97 0.25 53.34

−2.56 0.54 2.4 × 10−6 −1.16 0.48 0.02 60.23

−3.41 0.65 1.5 × 10−7 1.21 0.87 0.16 −1.15 0.49 0.02 64.84

−4.15 0.73 1.4 × 10−8 1.68 0.80 0.04 −1.46 0.58 0.01 −3.13 1.15 6.3 × 10−3 81.58
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assayed an individual’s core Tb (using a passive-integrated trans-
ponder tag inserted into the cloaca) and peak oxygen
consumption (Msum [ml O2 per min]; using open-flow respirome-
try) during acute cold trials (short-term exposure to temperatures
below −10°C in a heliox environment). Upon trial completion,
we immediately euthanized individuals and harvested the pec-
toralis (the principal shivering muscle for small birds [19]). We
flash froze tissues and stored them at −80°C.

To assay gene expression, we isolated mRNA from left pec-
toralis tissue of 47 randomly selected individuals (electronic
supplementary material, table S2) using TRI Reagent (Sigma-
Aldrich). The UT Austin Genomic Sequencing and Analysis
Facility performed TagSeq [20] library preparation and sequen-
cing. The 47 libraries were pooled in one lane and sequenced
three times on an Illumina HiSeq 2500 platform, yielding 254
million reads. We filtered raw reads in accordance with [20]
using publicly available scripts (https://github.com/z0on/
tag415 based_RNAseq) and trimmed reads with the FASTX-
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), resulting in
μ = 1.46 million reads per individual. We mapped these reads
to the genome of the white-throated sparrow (Zonotrichia albicol-
lis, a close junco relative), using bwa mem [21], with μ = 816 600
reads per individual mapped. Finally, we generated individual-
level transcript abundances using FEATURECOUNTS [22] for use in
downstream analyses, which we conducted in R [23] (electronic
supplementary material, table S3).

We performed differential expression analyses using package
edgeR [24]. We first removed lowly expressed genes that occurred
in fewer than 6 individuals, resulting in 12 249 genes in our data-
set (electronic supplementary material, table S4). We then
normalized read counts using calcNormFactors, estimated dis-
persion using estimateDisp and employed a generalized linear
model [25] to test for differential expression among experimental
treatments using glmFit, with cold acclimation duration as the
main effect and all control treatments combined as the reference
(false discovery rate [FDR] less than 0.05). We performed func-
tional enrichment analysis on the list of differentially expressed
(DE) genes using package gprofiler2 [26] with the 12 249 genes
as our background gene set (electronic supplementary material,
table S5). To help explain the pattern of increasing thermogenic
performance observed across the acclimation period [18], we
asked whether each DE gene also differed in its magnitude of
change across the acclimation duration by regressing its log
fold change (from the fitted glm) on treatment duration (in
weeks) using linear regressions ( p < 0.05).

We related normalized SLN transcript abundance to pheno-
typic measures from [18], for each individual. We tested for an
association between SLN and Msum using a linear regression.
To determine if SLN expression influenced thermoregulatory
performance, we fit Tb data from acute cold trials to Cox pro-
portional hazards regression models with the package Survival
[27]. We created survival objects using an individual’s hypother-
mic status (Tb < 10% of starting Tb) for each one-minute interval
of the trial, then fit regressions using the function coxph with all
terms clustered by individual to quantify the effects of SLN
expression, Msum, and their interaction on the risk of hypother-
mia. To account for variation in acute temperature stimulus
among individuals, we also included ambient temperature (Ta)
for each time event as a covariate (see [18] for details). We
standardized each predictor variable according to [28] and
removed from this analysis two individuals that ejected their
Tb transponders before they became hypothermic.

Finally, we asked if cold-acclimated birds altered the
expression of genes involved in skeletal muscle contraction. To
do this, we mapped expression patterns onto the muscle contrac-
tion (MC) and excitation-contraction coupling (ECC) pathways
identified in [29]. Pathways included multiple isoforms for many
proteins and some genes were not present in the dataset (2 ECC
genes) or annotated in the Zonotrichia genome (7 of 38 MC
genes; 5 of 32 ECC), including those encoding SERCA1 and RyR1.

3. Results
We found 526 DE genes among temperature treatments (elec-
tronic supplementary material, table S6). Compared to
control birds, juncos consistently upregulated 196 genes and
downregulated 256 across cold groups. Fifty-seven DE genes
showed patterns of increasing or decreasing fold change over
the duration of cold acclimation, and the top among them
was SLN (lowest FDR; electronic supplementary material,
table S7). Normalized SLN transcript abundance decreased in
the cold, with the magnitude of downregulation increasing
with acclimation duration (β =−0.37, p= 0.019; figure 1b).
SLN transcript abundance also negatively correlated with
Msum (β =−0.45, p = 0.016, R2 = 0.10; figure 1c). The best
model explaining risk of hypothermia in acute cold included
Ta, SLN transcript abundance, Msum and SLN×Msum

(table 1). A disparity in hypothermia risk emerges between
high and low SLN expression when the other two variables
are held constant, such that individuals with low expression
better maintain Tb (figure 1d). Additionally, of the candidate
skeletal muscle contraction genes present in our dataset, 5 of
31 genes in the MC pathway and 3 of 25 in the ECC pathway
were DE (28% and 12% of represented proteins, respectively;
figure 2; electronic supplementary material, table S8).

4. Discussion
Endogenous heat generation through either ST or NST can
allow endotherms to maintain high Tb at low ambient
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temperatures. Despite its established importance in mamma-
lian thermoregulation, the adaptive significance of avian NST
is difficult to determine because the evidence derives entirely
from juvenile birds [30]. To address this gap, we used
previously reported patterns of avian thermogenic performance
to explore the use of facultative NST in wild, adult dark-eyed
juncos following cold acclimation. We employed whole-tran-
scriptome expression patterns to simultaneously examine
multiple pathways related to ST and NST within the avian pec-
toralis. We provide novel evidence that SLN is expressed in
adult birds; however, juncos downregulated SLN after acclim-
ation to subzero temperatures, demonstrating that if SLN-
mediated NST is used by birds, it is not important—and
perhaps even counterproductive—to adult thermoregulation
in extreme cold.

We attribute the pattern in SLN expression to the possible
cost of uncoupling Ca2+ cycling for NST in the form of reduced
muscle activity for ST. Indeed, the potential for NST to impair
muscular function has been proposed as a hypothesis to
explain the evolution of BAT-mediated NST in placental
mammals [10,31]. It therefore follows that at truly cold temp-
eratures, like those used here, birds should prioritize the
process with the greatest heat-generating capacity. Impor-
tantly, SLN-mediated NST is estimated to produce only a
small fraction (2%) of the heat generated during a single-
muscle contraction [32]. Accordingly, we observed a tradeoff
between SLN expression and Msum across individuals. Over
the course of acclimation, cold birds further decreased the
expression of SLN, perhaps facilitating increases to ST.

In support of this idea, we found differential expression of
several genes related to skeletal muscle contraction. Whether
these expression differences resulted in increased muscle con-
tractility is unknown, but several of the expression patterns
we observed are consistent with this hypothesis. For instance,
overexpression of β-tropomyosin (TPM2) in cardiac muscle is
associated with a delay in relaxation [33] and juncos accord-
ingly downregulated TPM2 in the cold. Many additional DE
genes are involved in striated muscle Ca2+ cycling, such as
members of the adrenergic signalling pathway (ADCY6,
CREB5, CREM, KCNQ1, PLCB1, PPP2R2D and PPP2R5A).
We also observed expression changes in transcription factors
(MEF2C, EGR1 and NFATC1) that have been implicated in
heightened striated muscle performance in mice (e.g. faster
relaxation, increased contractility, reduced fatigability and
enhanced force) [34]. Nonetheless, while our findings indi-
cate that juncos are simultaneously incorporating several
modifications that could improve ST in the cold, quantifi-
cation of shivering (e.g. using electromyographic activity
[4]) is necessary to verify the thermogenic effects of these
expression patterns. Moreover, although juncos did not
change the expression of a biomarker for mitochondrial
abundance (citrate synthase, CS), measures of junco mito-
chondrial function are needed to fully address the potential
effects of SLN on muscle energetics (e.g. [14]).

Previous work has demonstrated that cold-acclimated
ducklings increase SERCA activity in the gastrocnemius, and
this has been cited as evidence of increased capacity for NST
[2,35]. We did not measure SERCA activity, but we did not
find changes in the expression of SERCA2 or SERCA3
(ATP2A2 and ATP2A3) with cold acclimation. There is likely
functional differentiation between SERCA isoforms, with
SERCA1 being implicated in NST and SERCA2a in ST
[31,36]. However, the gene that encodes SERCA1 is not anno-
tated in our reference genome. These discrepancies are difficult
to interpret but it is possible that the relative benefit of NST
differs among muscles and/or across life stages in birds.

Although limited to a single muscle in a single species,
our work highlights a possible discrepancy in the utilization
of NST among small birds and many mammals in the cold.
This difference may emerge because mammals with BAT
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can compartmentalize one mechanism of NST within a
specialized organ, while for birds and other organisms lack-
ing BAT, NST is constrained by the diverse functions of the
skeletal muscle. Our evidence thus suggests a potential trade-
off between shivering and non-shivering heat production in
birds and emphasizes the need for direct measures of avian
Ca2+ uncoupling. These results point to fruitful avenues
for further investigation regarding the evolution of avian
endothermy and the use of NST in seasonal acclimatization.
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