
HSP70 and HSP90 in neurodegenerative diseases

Abha Gupta1,#, Ankush Bansal2,#,*, Kazue Hashimoto-Torii2,3,*

1University Institute of Biotechnology, Chandigarh University, Gharuan 140413, India.

2Center for Neuroscience Research, Children’s Research Institute, Children’s National Medical 
Center, Washington, DC 20010, USA.

3Department of Pediatrics, School of Medicine and Health Sciences, The George Washington 
University, Washington, DC 20052, USA.

Abstract

Molecular chaperones have a role to stabilize proteins or assist them in reaching their native fold. 

Heat shock proteins (HSPs) are a family of molecular chaperons that protect proteins from cellular 

stress during the assembly of protein complexes and also prevent the proteins from aggregation 

and disassembly. The immediate increase of HSPs is crucial for cellular adaptation to 

environmental changes and protection of other proteins from denaturation, thereby maintaining the 

cellular homeostasis and increasing the longevity of an organism. HSP70 and HSP90 are the most 

studied HSPs in this very large HSP family. Notably, HSP90 also stabilizes the disease-related 

proteins in neurodegenerative disorders. Therefore, small molecules that inhibit the HSP90 but 

also increase the HSP70 has been tested as potential drugs for neurodegenerative disorders.

Introduction

Heat shock proteins (HSPs) are the chaperones responsible for correct folding of proteins 

during normal conditions and for restoration and refolding of destructed polypeptides in the 

cells under stress exposure. HSP70 and HSP90 are the most studied HSPs in a very large 

HSP family [1]. Unlike enzymes with their finely tuned active sites that transduce the 

specific molecular signaling, chaperones are heavy-duty molecular machines that interact 

with a wide range of protein substrates.

Heat shock response of cells was first reported as a temperature-dependent change in the 

transcriptional activity in the fruit fly Drosophila melanogaster [2]. In 1974, the HSPs were 

brought to light when numerous new bands of proteins were noticed in different tissue 

samples of Drosophila followed by heat shock [3]. Almost a decade later, it was proved that 

HSPs prevent damage to the cells by binding to abnormal proteins resulting from heat shock 

and thus avoiding their accumulation [4]. The transcription of HSPs is mainly regulated by 

Heat Shock Factor 1 (HSF1). During unstressed conditions, HSF1 exists as an inactive 

monomer. Upon exposure to heat or other types of cellular stress, HSF1 is processed to be 

converted into a trimeric and transcriptionally active state. This allows HSF1 bind to 
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promoters of downstream target genes, whereby initiating the transcription [5]. Apart from 

having role in stressed conditions, HSF1 also plays roles in gametogenesis [6], embryonic 

development [7], immune response [8], and neurogenesis of olfactory system [9].

Main cause of neurodegenerative diseases is protein misfolding. Various in-silico, in-vitro, 

and in-vivo studies have been undertaken to understand the misfolding mechanism and to 

develop therapeutics, and pharmacological induction of molecular chaperones has been 

found as a solution for prevention of the disease progression. In this review, we will 

summarize the roles of HSP70 and HSP90 in the onset and progression of neurodegenerative 

diseases and discuss the potentials for the interventions.

Chaperone machinery of HSP70

In both prokaryotic and eukaryotic organisms, HSP70 and HSP90 as well as their 

homologous proteins are highly expressed in many cell types. HSP70 comprises of two 

different domains; a 40 kDa N-terminal nucleotide-binding domain (NBD) that controls the 

interaction with the client protein, and a 25 kDa C-terminal substrate-binding domain (SBD) 

that identifies the hydrophobic regions in the client during initial stages of its folding 

[10,11]. These two domains are connected by a flexible linker. HSP70 possesses a below 

average ATPase activity when not bound to a client [12]. Thus a co-chaperon, J domain 

protein family channels client protein to HSP70 vitalizing its ATPase activity [13]. After the 

J protein leaves this complex, HSP70 is brought to its apo-form by a nucleotide-exchange 

factor liberating ADP from it. This conformation change makes the NBD free to engage 

ATP, leading the α-helical lid to “open” and releasing client [13,14]. This cycle continues 

until the client attains the native conformation or is shifted to other parts of chaperone 

machinery as shown in Figure 1.

HSP40 (also known as DNAJB1) is a main co-chaperon of J domain protein family that 

works with HSP70 by monitoring the activities such as; binding of the polypeptide to 

HSP70, eliminating polypeptide folding before maturation and the ATPase enzymatic 

function of HSP70 [15–17]. HSP40 is widely expressed in the brain and co-localized with 

HSP70 [18]. Especially dense co-immunolabeling of HSP40 and HSP70 was found in 

postsynaptic but not presynaptic compartment, suggesting the functional implication of 

postsynaptic chaperons in neuronal transmission. The recruitment of client proteins to 

HSP70 complex is commenced by interaction with another co-chaperon HSP40, followed by 

transfer of those client proteins to HSP90 complex via another co-chaperone STI1 (also 

called HOP or HSP-organizing protein in humans) [19–22].

Chaperone machinery of HSP90

In eukaryotes, HSP90 accounts for 1% of all proteins in a cell [4]. Higher eukaryotes contain 

four HSP90 paralogs: GRP94 in the endoplasmic reticulum, TRAP1 in mitochondria, and 

HSP90α and HSP90β in the cytosol. The active unit of all HSP90 paralogs is created by a 

homodimerization of three different regions that are linked via flexible linkers. The N-

terminal domain is accountable for binding of a nucleotide, while the middle domain 

recognizes the client proteins and triggers hydrolysis of ATP. The C-terminal domain serves 
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as the important site for the dimerization [19,23]. In the apo state, HSP90 adopts a V-shaped 

open conformation for ATP as shown in Figure 1. ATP binding activates a series of 

conformational changes including repositioning of the N-terminal lid region and a change in 

the N terminal-middle domain orientation. This allows the N-terminal region to support the 

dimerization and engages the middle domain in hydrolysis of ATP via a conserved arginine 

(R380 in yeast) [24]. HSP90 requires the ATP hydrolysis and structural rearrangement to 

reconfigure abnormally folded proteins to their normal states [25]. This process is governed 

by a group of co-chaperons such as stress inducible protein (STI1), cell division cycle 37 

(Cdc37), protein phosphatase 5 (PP5), FK506-binding protein 51 (FKBP51), FK506-binding 

protein 52 (FKBP52) and cyclophilin 40 (Cyp40) [26].

Roles of HSP70 and HSP90 in neurogenerative diseases

Protein accumulation is the characteristic feature of various neurodegenerative disorders 

including Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral 

sclerosis (ALS), and Alzheimer’s disease (AD) [27] In this section, we will summarize the 

roles of HSPs in neurodegenerative diseases that were discovered by using animal models 

and in vitro cells.

PD is the second most prevalent neurodegenerative disorder, the major hallmark of which is 

the loss of dopaminergic neurons in the substantia nigra [28,29]. α-synuclein, a protein 

consisting of 140 amino-acids that localizes predominantly in presynaptic compartment [30], 

is linked genetically [31] and neuropathologically to PD [32–34]. It belongs to the synuclein 

family which also includes β and γ-synuclein. This family share a conserved KTKEGV 

repeat motifs at the N-terminus [35]. α-synuclein accumulates into intracellular filamentous 

inclusions with both phosphorylated and ubiquitinated forms [36–38]. HSP70 
overexpression results in 50% reduction of α-synuclein species in the human neuroglioma 

cells [39]. Furthermore, 17-allylamino-17-demethoxygeldanamycin (17-AAG) that inhibits 

HSP90 and also increases HSP70 reduces oligomerization of α-synuclein and the 

neurotoxicity (Table 1)[40].

HD is a neurodegenerative disease caused by a mutation in huntingtin (HTT) gene [41]. 

Long CAG repeats in the HTT gene that code for an extended polyglutamine (polyQ) stretch 

of the HTT protein [42] lead to the aggregation of the HTT protein [43]. Protein aggregates 

of the mutated HTT form inclusion bodies in the neurons of the spinal cord and several brain 

regions [44]. Although a study showed Hsp70.1/Hsp70.3 double knockout mice have 

increased size of the polyQ inclusion bodies in the cerebral cortex. The overexpression of 

the Hsp70 shows moderate effect on delaying the neurodegeneration in mouse models of HD 

[45–49]. Another study that used cell culture model of HD also demonstrated that 

overexpression of HSP70 and HSP40 inhibits polyQ accumulation [50].

ALS is a degenerative disorder of nervous system affecting the motor neurons of brainstem, 

cortex and spinal cord [51,52]. In most cases of the disease, an RNA binding protein called 

trans-active DNA binding protein-43 (TDP-43) which is normally found in the nuclear 

region, erroneously localize in the cytoplasm of neurons and glial cells forming aggregates 

[53]. The HSP70 is drastically reduced in the spinal cord tissues of patients with sporadic 
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cases of the disease [54]. Knocking down HSP70 in human neuroblastoma cells 

considerably increases the toxic TDP-43 accumulated in the cytoplasm [55], suggesting 

roles of HSP70 in suppressing formation of the toxic forms.

AD is the most common type of dementia, mainly afflicting aging population [56–58]. A 

major hypothesis for the disease pathology posits the accumulation of misfolded proteins, 

Amyloid β and Tau in the forebrain [59,60]. In addition to clearly visible extracellular 

accumulation of Amyloid β [61,62], observation made in rodent models and human 

postmortem tissues demonstrated the intraneuronal accumulation [63,64]. Similarly, Tau 

accumulation is also found in both intracellular [65,66] and extracellular compartments [67]. 

Recent results reveal that Aβ and tau synergize to impair the functional integrity of neural 

circuits in vivo and suggest a possible cellular explanation contributing to disappointing 

results from anti-Aβ therapeutic trials [68]. Similar to other neurodegenerative diseases, AD-

affected brains and animal models show an increase of HSPs and their co-chaperones, 

including HSP70 [69]. Inhibition of HSP90 by a classical inhibitor, Geldanamycin that had 

been placed to clinical trials of cancer, has been also tested in preclinical models of 

neurodegenerative disorders. Administration of Geldanamycin (GA) reduces phosphorylated 

Tau in vivo and in vitro, suggesting the protective role of HSP90 for hyperphosphorylated 

Tau against degradation in mouse brain (Table 1) [70].

As described above, misfolded proteins accumulate to form hard insoluble plaques and 

fibers that are a leading cause of neurodegeneration [71]. Clearance and refolding of these 

misfolded proteins are mediated by HSPs, especially by HSP70. On the other hand, the 

HSP90 rather plays a role in augmentation of neurodegeneration. For instance, 

pharmacological inhibition of HSP90 suppresses the progression of the neurodegeneration.

Pharmacological inhibition of HSP90 for treatment of neurodegenerative 

disorders

Based on the observations made in animal models that are described above, it is evident that 

HSP90 plays a major role in stabilizing the proteins and maintaining the pathology-

associated changes, thereby leading to degeneration and dysfunction of neurons in 

neurodegenerative diseases. Given the proved effectiveness in animal models, HSP90 

inhibitory drugs that have been utilized in cancer treatment were also considered for the 

application to neurodegenerative diseases. The GA and its derivative 17-AAG act as highly 

selective inhibitors of HSP90 via its specific binding to the ADP/ATP binding pocket so as 

to block later process that includes interaction with the co-chaperons [72,73]. Inhibition of 

HSP90 also promotes transcriptions of HSP encoding genes including Hsp70 and HSP40 
through HSF-1 activation [74]. Unfortunately, 17-AAG failed the phase 1 clinical trials due 

to hepatotoxicity [75]. This means that many alternative strategies that target HSPs are still 

required; examples include 1) maintaining a balance between HSP70 and HSP90 activities; 

2) targeting co-chaperons that are associated with HSP70 and HSP90 for modifying the 

activities; 3) testing drugs that target non-canonical pathways of HSF1.

Accumulations of Amyloid and Tau in AD have been suggested as the trigger and bullet in 

disease pathogenesis [76]. Based on this hypothesis, many attempts including tests of 
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HSP70 inducer and HSP90 inhibitors, that target clearance of Tau and Amyloid β 
accumulations were made in animal studies [77–79]. Failure of the HSP90 inhibitors in 

clinical trials also suggests us to expand alternative approaches other than targeting the 

aggregation of misfolded proteins, such as the gene therapy of Amyloid Precursor Protein 

(APP) and Presenilin (PS) mutations [80].

Perspectives

Although the positive results of preclinical tests of HSP-targeted drugs encouraged the 

clinical application to the neurodegenerative diseases but there is no significant advancement 

happened in HSP90 inhibitor development process due to increased cytotoxity and lower 

effectiveness that were confirmed in phase 1 trials for cancer treatment. Therefore, current 

unmet need is to develop chaperon complex-targeted drugs with reduced toxicity, and this 

may be achieved by data science-assisted optimization for better pharmacological and 

pharmacokinetic characterization. This process would be accelerated by aggressive 

application of mathematical modeling and machine learning using accumulated big data 

[96–98]
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Fig. 1. 
Schematic representation of HSP70 and HSP90. (a) HSP70 domains (b) HSP90 domains (c) 

HSP70 and (d) HSP90 co-chaperons mediated protein folding
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Table 1.

Drugs that target HSPs in the clinical trials.

Drug Primary function References

YM-01 HSP70 inducer [77,78]

YM-08 HSP70 inducer [79]

MKT-077 HSP70 inducer [78]

JG-273 HSP70 inducer [77]

JG-48 HSP70 inducer [77]

GGA HSP70 inducer [81–83]

GA HSP90 antagonist [70,84–89]

17-AAG HSP90 antagonist [89–94]

AUY922 HSP90 antagonist [95]

Neurosci Lett. Author manuscript; available in PMC 2020 July 06.


	Abstract
	Introduction
	Chaperone machinery of HSP70
	Chaperone machinery of HSP90
	Roles of HSP70 and HSP90 in neurogenerative diseases
	Pharmacological inhibition of HSP90 for treatment of neurodegenerative disorders
	Perspectives
	References
	Fig. 1
	Table 1.

