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A B S T R A C T

We propose a statistical method to address an important issue in cryo-electron tomography image analysis:
reduction of a high amount of noise and artifacts due to the presence of a missing wedge (MW) in the spectral
domain. The method takes as an input a 3D tomogram derived from limited-angle tomography, and gives as an
output a 3D denoised and artifact compensated volume. The artifact compensation is achieved by filling up the
MW with meaningful information. To address this inverse problem, we compute a Minimum Mean Square Error
(MMSE) estimator of the uncorrupted image. The underlying high-dimensional integral is computed by applying
a dedicated Markov Chain Monte-Carlo (MCMC) sampling procedure based on the Metropolis-Hasting (MH)
algorithm. The proposed MWR (Missing Wedge Restoration) algorithm can be used to enhance visualization or
as a pre-processing step for image analysis, including segmentation and classification of macromolecules. Results
are presented for both synthetic data and real 3D cryo-electron images.

1. Introduction

Cryo-electron tomography (cryo-ET) is generally used to explore the
structure of an entire cell and constitutes a rapidly growing field in
biology. The particularity of cryo-ET is that it is able to produce three-
dimensional views of vitrified samples at sub-nanometer resolution,
which allows observing the structure of molecular complexes (e.g. ri-
bosomes) in their physiological environment. Nevertheless, observation
of highly resolved cellular mechanisms is challenging: i/ due to the low
dose of electrons used to preserve specimen integrity during image
acquisition, the amount of noise is very high; ii/ due to technical lim-
itations of the microscope, complete tilting of the sample (90°) is im-
possible, resulting into a blind spot. As a consequence, projections are
not available for a determined angle range, hence the term “limited
angle tomography”.

The blind spot is observable in Fourier domain, where the missing
projections appear as a missing wedge (MW). This separates the Fourier
spectrum into two regions: the sampled region (SR) and the unsampled
regions (MW). The sharp transition between these two regions is re-
sponsible for a Gibbs-like phenomenon: ray- and side-artifacts emanate
from high contrast objects (see Fig. 1), which can hide important
structural features in the image. Another type of artifact arises from the
incomplete angular sampling: objects appear elongated in the direction
of the blind spot (see Fig. 1), in other words the data has an anisotropic

resolution (e.g. linear features perpendicular to the tilt axis disappear).
This elongation erases boundaries and makes it difficult to differentiate
neighboring features. The quality of tomograms can be improved if
sophisticated algorithms such as MBIR (Yan et al., 2019) are applied
instead of conventional methods (e.g. WPB (Radermacher, 1992), SIRT
(Gilbert, 1972)).

Filling up the MW with relevant data enables to potentially reduce
or completely suppress these artifacts. Experimentally this can partially
be achieved during data acquisition by using dual-axis tomography
(Guesdon et al., 2013), where the sample is tilted with respect to the
second axis. Consequently the blind spot is smaller and the MW be-
comes a missing pyramid, which results into a smaller missing spec-
trum. However dual-axis tomography is technically challenging and
requires intensive post-processing in order to correct tilt and movement
bias in the microscope. Another reconstruction approach consists in
exploiting the symmetry of the underlying structure (Förster and
Hegerl, 2007), but this can only be applicable to a limited number of
biological objects (e.g. virus with either helical or icosahedral struc-
ture). Another common computational approach amounts to combining
several hundred or thousands views of the same object, but with dis-
tinct blind spots. This so-called sub-tomogram averaging technique
(Förster and Hegerl, 2007) is routinely used in cryo-ET, and is con-
tinuously improved for structure determination (Xu et al., 2018). To
improve sub-tomogram averaging and compensate the remaining MW
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artifacts, tomographic reconstruction algorithms with dedicated reg-
ularization have also been proposed in (Paavolainen et al., 2014; Leary
et al., 2013).

The objective of our work is to design a statistical approach for the
problem of recovering missing Fourier coefficients from a single volume
in the situation where low and high frequency coefficients are missing
in a specific and large region of the 3D spectrum. A simple way of
handling MW artifacts is described in (Kováčik et al., 2014), where a
dedicated spectral filter is used to smooth out the transition between SR
and MW; ray- and side-artifacts are reduced with this filter, but the
object elongation remains in the resulting image. Inspired from
Maggioni et al. (2013), we have rather investigated MCMC methods to
compute a MMSE estimator based on any non-local image denoiser to
recover the missing information. We show that our Monte-Carlo sam-
pling algorithm performs as well as the iterative method (Maggioni
et al., 2013) but converges faster. Nevertheless, our concept is more
general since any denoising method can be applied, included denoising
algorithms dedicated to cryo-ET images (Frangakis and Hegerl, 2001;
Fernandez and Li, 2003; Darbon et al., 2008; Wei and Yin, 2010;
Kervrann et al., 2008; Moreno et al., 2018). In this paper, we focus on
the cryo-ET restoration problem but the proposed algorithm could be
potentially used to address a large range of applications including
medical and seismic imaging, and other inverse scattering problems.

Related work We first focus on computational methods designed
for spectrum restoration and Fourier coefficients recovering. Most of
methods have been designed for 2D images and very few of them for 3D
imaging. In general, the corruption process is supposed to be known
and the artifacts observed in the input image, are due to a set of missing
Fourier coefficients, well localized in the spectrum. First, several
methods have been investigated to retrieve partially-missing phases of
complex coefficients from modulus of coefficients in electron

microscopy (Fienup, 1982) and time-frequency signal analysis (Krémé
et al., 2018). Here, we focus on another special case which consists in
extrapolating the band-limited spectrum of an image up to higher fre-
quencies. Nevertheless, these problems are generally formulated as
denoising problems with specific reconstruction constraints. For in-
stance, Moisan (2001) and Guichard and Malgouyres (1998) in-
vestigated the Total Variation (TV) minimization to extend the band-
limited spectrum of an image. In (Lauze et al., 2017), the authors
combine TV minimization and positivity constraints to reduce noise and
artifacts, providing an inpainting-like mechanism for the sinogram
missing data in limited-angle tomography (see also (Frikel and Quinto,
2013; Sentosum et al., 2017)). The common objective is to create new
frequencies while preserving discontinuities and details in the restored
image. Instead of explicitly imposing some regularity (e.g. Total var-
iation, or robust regularization (Geman and Reynolds, 1992;
Charbonnier et al., 1997)) on the solution, another successful restora-
tion approach consists in exploiting the spatial redundancy of the input
image. In (Chambolle and Jalalzai, 2014), a non-local method was
suggested in the framework of variational methods for image re-
construction. In this approach, a patchwise similarity measure based on
atoms corresponding to pseudo Gabor filters is designed to compare
corrupted regions. Meanwhile, Maggioni et al. (2013) adapted the
concept of BM3D for recovering the missing spectrum applied to MRI
imaging with very promising results on synthetic data. BM3D (Dabov
et al., 2007) is a popular denoising algorithm which combines clus-
tering of noisy patches, DCT-based transform and shrinkage operation
to achieve the state-of-the-art results for several years. In our approach,
we also focus on patch-based methods (Kervrann and Boulanger, 2008;
Kindermann et al., 2005; Lou et al., 2010; Katkovnik et al., 2010;
Pizarro et al., 2010; Milanfar, 2013; Sutour et al., 2014) to restore the
input image corrupted by noise and non-linear transform. Indeed, it has
been experimentally confirmed that the most competitive denoising

Fig. 1. The effects of the missing wedge on the Shepp-Logan phantom. Left: uncorrupted 3D data displayed as ortho-slices (one central slice along each dimension).
Right: data corrupted by the missing wedge. We display the data in spatial domain (top row) and Fourier domain (bottom row).
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methods are non-local and exploit self-similarities occurring at large
distances in images, such as BM3D (Dabov et al., 2007), NL-Bayes
(Lebrun et al., 2013), PLOW (Chatterjee and Milanfar, 2012), S-PLE
(Wang and Morel, 2013), PEWA (Kervrann, 2014) and many other
adaptative filters (Kervrann and Boulanger, 2006; Kervrann and
Boulanger, 2007; Van De Ville and Kocher, 2009; Deledalle et al., 2009;
Louchet and Moisan, 2011; Duval et al., 2011; Deledalle et al., 2012;
Kervrann et al., 2014; Jin et al., 2017), inspired from the seminal N(on)
L(ocal)-means algorithm (Buades et al., 2005).

To complete the brief overview of non-local methods, we mention
that a noisy image can also be restored from a set of noisy or “clean”
patches or a learned dictionary. The statistics of a training set of image
patches serve then as priors for denoising (Elad and Aharon, 2006;
Mairal et al., 2009; Zoran and Weiss, 2011). Another approach based
multi-layer perceptron (MLP) exploiting a training set of noisy and
noise-free patches was also able to achieve the state-of-the-art perfor-
mance (Burger et al., 2012). Very recently, Buchholz et al. (2018)
proposed to train content-aware restoration networks for denoising
cryo-transmission electron microscopy data. While all these machine
learning methods are attractive and powerful, computation is not al-
ways feasible in 3D because very large collection of 3D “clean” patches
are required. In our study, we focus on unsupervised denoising methods
since they are more flexible for real applications. They are less com-
putationally demanding and are still competitive when compared to
recent machine learning methods.

Our approach is mainly inspired from Maggioni et al. (2013), but
can use any competitive denoising methods for restoring the Fourier
coefficients. The method proposed by Maggioni et al. (2013) works by
alternatively adding noise into the missing region and applying the
BM4D algorithm which is the extension of BM3D (Dabov et al., 2007) to
volumes. The authors interpret this iterative restoration method in the
framework of compressed sensing with two information theory con-
cepts in mind: sparsity of the signal in the transformed domain, and
incoherence between the transform and the sampling matrix. Actually,
BM4D does rely on a transform where the signal is sparse. Moreover, it
is not clearly established that this transform is incoherent with the
sampling matrix, defined by the support of the sampling region.
Therefore, the proof of convergence is not clearly established, even
though the authors presented convincing experimental results on syn-
thetic images corrupted with white Gaussian noise. It remains unclear
how the concept performs on experimental data and non Gaussian
noise. To generalize this idea, we propose a statistical approach well-
grounded in the Bayesian and MCMC framework and applied to chal-
lenging real data in cryo-ET. Our contributions are the following ones:

1. We present a MMSE estimator dedicated to the problem of MW re-
storation.

2. We propose an original Monte Carlo Markov Chain (MCMC) sam-
pling procedure to efficiently compute the MMSE estimator.

Paper organization The remainder of the paper is organized as
follows. In the next section, we present an overview of our computa-
tional method. In Section 3, we give the theoretical background and
formulate the reconstruction problem as an inverse problem. We shortly
describe the usual Bayesian approach to derive a MMSE estimator.
Furthermore, a Monte-Carlo Markov Chains method based on the
popular Metropolis-Hastings algorithm is proposed to compute the
underlying high-dimensional integral. In Section 4, we adapt this gen-
eral Bayesian framework for MW restoration. An original Metropolis-
Hastings procedure is presented to explore the large space of admissible
solutions and to select relevant samples. Section 5 presents the ex-
perimental results obtained on simulated and real data. We illustrate
the potential of our MWR (Missing Wedge Restoration) algorithm with
experiments on real cryo-tomogram images and we compare our
iterative approach to several competitive algorithms.

2. Overview of the MW restoration algorithm

In this section, we present our concept for MW restoration. First, we
formulate the problem and introduce notation. Second, we present the
two-step algorithm which is embedded in a Monte-Carlo simulation
framework.

2.1. Problem formulation and notation

Let us define a n-dimensional image x S: 3 assumed to be
periodic and defined over a cubic domain = [0, 1]3 and =n . The
discrete Fourier transform of =x x s s S{ ( ), } is then as follows:

Fx k i k s x s: exp( 2 · ) ( ),
s S (1)

where s is the coordinate of point in spatial domain S. In our problem,
one considers a corrupted image denoted =y y s s S{ ( ), } defined as

F= xy s i k s k( ) exp(2 · ) [ ]
k W (2)

where W is the sampled spectral region (SR) where the Fourier coef-
ficientsFx k[ ] are positive and non-zero. The regionW is equivalent to
the support of a binary mask m {0, 1}S such as =m k[ ] 1 if k W and
0 otherwise: = mW supp( ). The so-called missing wedge W is assumed
to be symmetric with respect to the origin as illustrated in Fig. 1(bottom
right), and =S W W . In what follows, we assume that the clean
imageFx is known over the regionW . Our objective is then to estimate
x S: in the whole domain S such that

F F=x yk W k k, [ ] [ ] (3)

and >s S x s, ( ) 0. In other words, the set of known Fourier coeffi-
cients will be preserved by the restoration procedure. The challenge is
to recover the unknown set of low, middle and high frequencies in a
large region in the spectrum. This amounts to applying an interpolation
operator W to the spectrum of y to get an estimator x of x :

F F=x y.W
1 (4)

2.2. Principles of the iterative two step-algorithm

Our computational method takes as input an noisy image y and
iterates two steps as illustrated in Fig. 2. At the initialization ( =t 0), we
set =x y(0) :

• In the proposal step and at iteration t, white Gaussian noise is added
to the current image x t( 1). The Fourier coefficients are then non-zero
in the MW regionW. We substitute the original Fourier coefficients in
the SR region W to the noisy Fourier coefficients to preserve in-
formation. Formally, this amounts to applying an projection operator
P (·)W to the artificially noisy image. The objective is to randomly
initialize the Fourier coefficients in the MW. A denoising algorithm is
then used to efficiently remove the majority of the noise while pre-
serving image structure. Due to its random nature, a small amount of
the added noise will be close to the signal and is thus “saved” after
denoising. The denoising algorithm D (·), which promotes smooth-
ness while preserving contours, acts as a spatial regularizer. In sum-
mary, a candidate image D P= +z x( ( ))W

t( 1) is obtained by ap-
plying an projection operator P in the Fourier domain and a
denoising operator D in the spatial domain.
• In the second evaluation step, the candidate image z is compared and
is potentially substituted to the current image x t( 1) depending on its
ability to satisfies several constraints, including fidelity to the ori-
ginal input image z . A cost function (or energy) is used to accept/
reject this candidate image with a certain probability established in
the Metropolis-Hastings simulation framework as presented in the
next section.
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By repeating these two steps iteratively, we collect several hundreds
of images x{ }t( ) to compute an average corresponding to the final re-
stored image. The corresponding MWR (Missing Wedge Restoration)
algorithm is actually able to diffuse information from SR into MW. It
cannot retrieve unobserved data, but it merely makes the best statistical
guess of what the missing data could be, based on what has been ob-
served. The underlying algorithm is controlled by several parameters,
especially the variance 2 of noise added to the current image and
constant at each iteration. More importantly, this iterative procedure
will be successful provided the denoising algorithm is able to remove
the artificial additive Gaussian noise. Any state-of-the art algorithms
can be then applied, especially the BM3D (Dabov et al., 2007) and
BM4D (Maggioni et al., 2013) algorithms. This stochastic procedure can
be interpreted as a data-driven random search in a large space of pos-
sible images. In the next section, we present the theoretical background
required to justify the rationale behind this concept, illustrated in
Fig. 2.

3. Theoretical background

In this section, we describe the theoretical background in the
Bayesian framework to justify our original computational method.

3.1. Bayesian estimator and Monte Carlo Markov Chain sampling

Solving inverse problems in image processing consists in estimating
an unknown image Xx given an image Yy . Different sources of
distortion may cause damages on the ideal image, including noise, blur,
and projections. In the Bayesian framework, the whole information
once the data have been collected, is represented by the posterior
probability density function (pdf) defined via the Bayes’ Theorem:

=x y y x x
y

p p p
p

( ) ( )
( )

,
(5)

where y xp ( ) denotes the likelihood function, xp ( ) is the prior pdf and
yp ( ) is the marginal distribution of y which is in general unknown and

not computable.

3.1.1. Bayesian estimators
In this section, x and y are realizations of a random variable X

(with a pdf xp ( )) and a random realization of Y respectively. Given a
cost function X X× +C: , a Bayesian estimator is defined as the
minimizer of expected risk X x YC[ ( , ( ))]p wrt the joint distribution

x yp ( , ) of the pair X Y( , ). Several Bayesian estimators can be derived
based on the choice of the cost function C.

MAP estimator The most conventional choice is
=x x x xC ( , ) 1 ( , ) where is the Kronecker symbol. The corre-

sponding Maximum A Posteriori estimator, defined as

= =x x y y x xp p pargmax argmin log log ( ) ,
x

MAP
(6)

selects the most likely image x , that is the solution corresponding to
the mode of the posterior distribution x yp ( ).
Furthermore, if we assume that the prior and likelihood functions

are represented by Gibbs functions, the posterior distribution has the
following form

=x y x yp
Z

U1 exp ( , )
(7)

where Z is normalizing factor, = +x y x y xU D( , ) ( , ) ( ) is an energy
functional composed of a data-fidelity term x yD ( , ) and a prior term

x( ), and can be interpreted as a “temperature” or scale parameter.
The prior generally encourages piecewise smoothness (TV) or sparsity
of x. Hence, the MAP formulation is equivalent to the popular varia-
tional problem which amounts to computing the unique image x that
minimizes the following criterion:

= +x x y xDargmin , ( ).
x (8)

Typically =x x( ) 1 ( · is the gradient operator) is the total
variation regularizer and serves to smooth the image x while preserving
image discontinuities.

MMSE estimator Another well-known Bayesian estimator can be
derived if we consider the quadratic cost function =x x x xC ( , ) 2.
The Minimum Mean Square Error (MMSE) estimator is the posterior
expectation (or conditional mean) defined as:

X
= = =x X Y y x x y xp d .MMSE

(9)

If the posterior is modeled as Gibbs distribution, we get:

X

X

=
( )
( )x

x x

x

d

d

exp

exp
.

x y

x yMMSE

U

U

( , )

( , )
(10)

In our case, the MMSE estimator is typically intractable since the
underlying integral involves several thousands of variables (typically n

Fig. 2. The MCMC method flowchart. The 1st icon row represents the data in the spectral domain, the 2nd in spatial domain.
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is the number of pixels in the image). The MMSE estimator cannot be
computed in a closed form, and numerical approximations are typically
required. In high-dimensional space, a common approach consists in
approximating the integral by using Monte Carlo (MC) simulation
techniques (Robert and Casella, 2004) as explained in the next section.

However, we draw the readers’ attention to the fact that it has been
shown that the MMSE estimator has connections with the variational
optimization problem in the case of an image corrupted by white
Gaussian noise:

= +x y x xargmin ( ),MMSE
x

2

(11)

where the function x( ) can be seen as a pseudo-prior which differs
from the prior distribution x xp ( ) exp( ( )). Nevertheless, except in
the case of a explicit and dedicated prior discussed in (Protter et al.,
2010; Gribonval, 2011; Louchet and Moisan, 2013; Kazerouni et al.,
2013), it is not possible to derive an analytical form of x( ) from x( ),
especially if the data-fidelity term is not quadratic. Accordingly, the
most practical way to compute a MMSE estimator in the case of com-
plex data-fidelity terms and prior terms is to applying the MCMC ap-
proach.

3.1.2. Monte-Carlo integration
Let us consider T independent and identically distributed (i.i.d.)

samples x x, T(1) ( ) drawn from a target pdf x y x xp p( ) ( ) ( ). A
consistent estimator can be computed as

=
x x x

T
¯ 1 ,T

t

T
t p

MMSE
1

( )

(12)

i.e. the empirical mean of samples converges in probability to xMMSE
due to the weak law of large numbers. Formally, for any positive
number > 0, we have

> =
+

x xlim Pr(| ¯ | ) 0.
T

T MMSE (13)

The Monte-Carlo estimator is unbiased =x x[ ¯ ]T MMSE and con-
verges provided that the samples x t( ) are i.i.d.. In that case, the variance
of x̄T defined as =x TVar[ ¯ ] /T

2 (where = XVar[ ]2 ) decreases with the
number of samples, and x̄T is Gaussian distributed due to the central
limit theorem: Nx x T¯ ~ ( , / )T MMSE

2 when +T .
A central question is then to draw a series of i.i.d. samples. The most

conventional approach in high-dimensional space is to consider Markov
chain Monte Carlo (MCMC) algorithms (Gilks et al., 1995; Robert and
Casella, 2004; Liang et al., 2010). In the sequel, we focus on a few
important components of the MCMC machinery and we ss the con-
vergence properties of the Metropolis-Hastings algorithm used in our
approach to generate a Markov chain with a target stationary dis-
tribution .

Simulating independent samples and fusion of multiple chains
Drawing independent samples from the target pdf x( ) cannot be di-
rectly applied. A MCMC procedure is able to simulate an ergodic and
stationary Markov chain given a target pdf x( ) and a starting state x (0).
The set of samples x x T(0) ( ) are generally correlated samples, but
it has been established that Monte-Carlo estimator is consistent as

+T . In (Louchet et al., 2008; Louchet and Moisan, 2013), the
authors also studied the behavior of the expected approximation error

= +x x x x x x[ ] [ [ ] ] [ ]T MMSE T T T MMSE
2 2 2 (14)

decomposed into the sum of the trace of the covariance matrix (or span)
and the squared bias which entails the loss of efficiency of the sampling
procedure.

In practice, a MCMC method will provide better performance than
another MCMC method if the samples present less correlation. On the
contrary, it is required to generate many samples to reduce the variance
of the estimator.

Finally, if we consider another Markov chain x defined as x , it is

established that (Louchet et al., 2008; Louchet and Moisan, 2013):
=x x x x[ ~ ~ ] 2 [ ~ [~ ] ]T T T T

2 2 . It follows that the average of the
two chains has a smaller span than the span of each independent chain
while keeping the same bias, i.e..

+ +x x x x x x x
2

1
2

[ [ ] ] [ ] .T T
MMSE T T T MMSE

2
2

2

This suggests that averaging multiple independent Markov chains
should provide better estimators.

Burn-in phase Another consequence of the correlation is the burn-
in period that the chain requires before converging to the invariant
target pdf . In general, the initial Tb samples are discarded and not
included in the computation of the estimator (Robert and Casella,
2004):

=
x x

T T
1 .T

b t T

T
t( )

b (15)

However, the length Tb of the burn-in period cannot be easily pre-
dicted even if a few studies in the literature focused on that problem
(Gelman and Rubbin, 1992; Brooks and Gelman, 1998).

Metropolis-Hastings algorithm The most popular and widely ap-
plied MCMC algorithm is based on the Metropolis-Hastings procedure
(Metropolis et al., 1953; Hastings, 1970) described below. The MH al-
gorithm involves the definition of the proposal density Xx zq z x( ), ,
to move from the state x to state z, and the acceptance probability

x za0 ( , ) 1. The transition probability is then defined as:
=z x z x z xp q a( ) ( ) ( , ). In the MH procedure, a sample z is drawn from

the proposal distribution and then a test is applied to accept the tran-
sition from the state x to the state z or not. If the transition is not
accepted, the chain remains in the same state as before:

The Metropolis-Hastings algorithm

1. Set an initial state x (0).
2. For =t T1, , do

(a) Draw a sample z x xq~ ( )t( 1) .
(b) Compute the acceptance probability

=x z z x z
x z x

a q
q

, min 1, ( ) ( )
( ) ( )

.t
t

t t
( 1)

( 1)

( 1) ( 1)

(c) Draw from a uniform distribution: U~ (0, 1).
(d) If x za ( , )t( 1) then =x zt( ) ,

else =x xt t( ) ( 1).
end if
end for

The MH algorithm returns a set of T Tb correlated samples if we
discard the Tb first samples. Under some mild regularity conditions, it
has been established that the pdf of x t( ) converges to the target pdf
when t increases (Robert and Casella, 2004). In general, the MH algo-
rithm satisfies the so-called detailed balance condition:

X X× =x z x z z z x xp p( , ) , ( ) ( ) ( ) ( ),

(the chain is reversible) which is a sufficient condition to guarantee that
the chain is ergodic and has as stationary distribution (Robert and
Casella, 2004). Note that reversibility of the chain is not a necessary
condition; recent studies experimentally show that non-reversible
Markov chains may provide better convergence, i.e. the number T of
samples can be lower than the reversible chains (Neal, 2004; Bierkens,
2015).

In practice, the proposal density and the acceptance probability can
be modified in order to improve the performance of the algorithm, and
always ensuring the ergodicity of the chain. Actually, the proposal pdf q
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should be chosen as close as possible to the target pdf . In what fol-
lows, we mainly focus on the specification of the proposal densities to
improve convergence.

Choices of the proposal density There is a large flexibility in the
choice of proposal function and it is a challenge to find a proposal
function that is able to use the data efficiently in order to obtain sa-
tisfactory convergence. Below, we ss four possible proposals.

• Assume that the proposal satisfies the equality =z x x zq q( ) ( ) (e.g.
uniform distribution), then the acceptance probability is simplified
since a sample z having a higher value z( ) is always accepted,
whereas the samples with smaller values <z x( ) ( ) are accepted
with a probability lower than 1.
• The proposal pdf has the following form: =z x z xq q( ) ( ). This
means that the new state is explicitly randomly found in the
neighborhood of the current state x . This proposal is then viewed as
random walk and enables to progressively explore the large space of
possible states. Nevertheless, the random walk MH algorithm (1953)
tends to stay in the same state for a long period but the chain has not
converged.
• When the target density is differentiable, the proposal can be gen-
erated in accordance with an approximation of the Langevin diffu-
sion process (Girolami and Calderhead, 2011):

N +z x x~ ( log ( ), )2 for a given small value .

• The idea of adaptive MH algorithm consists in updating the proposal
distribution by using all the information collected so far about the
target distribution (Holden et al., 2009). First, it has been suggested
to model the proposal density as a Gaussian distribution centered on
the current state with a covariance computed from a fixed finite
number of previous states. Given the whole history
x x x( , , , )t(0) (1) ( 1) , the new state z is obtained from

z x x xq ( , , , )t(0) (1) ( 1) assumed to be symmetric.
• If the proposal pdf =z x xq q( ) ( ) does not depend on the state x , the
acceptance probability is defined as

=x z z x
x z

a q
q

, min 1, ( ) ( )
( ) ( )

.

The independent Metropolis-Hastings algorithm is an efficient
sampling algorithm only if q is reasonably close to . An attractive
property of independent proposals is their ability to make large
jumps while keeping the acceptance rate high. Consequently, the
autocorrelation of the chain decreases rapidly.

Note that more sophisticated proposal rules are generally re-
commended to address high-dimensional problems (Girolami and
Calderhead, 2011). For instance, a two-step optimization approach is
typically appropriate for sampling Gaussian distributions (Papandreou
and Yuille, 2010; Gilavert et al., 2015). Another sophisticated approach
is based on data augmentation and the adding of auxiliary variables to
improve convergence speed if the samples are correlated (Marnissi
et al., 2018).

In summary, the convergence of the chain depends on the specifi-
cation of the proposal density but it is also established that the ideal
proposal pdf must as close to possible to the target pdf. In that case, the
MH procedure generates a sequence of states with low correlations and
converges faster. In our approach described in the next section, we
investigated a stochastic scheme to generate samples with low corre-
lations in the context of MW restoration.

4. Our MH algorithm for missing wedge restoration

4.1. Gibbs energy modeling

Let us consider the following image model

D=y x( ),W (16)

where y x, n, and D (.)W is a degradation operator setting to zero
the Fourier coefficients belonging to the MW support W assumed to be
known. Our objective is to compute a MMSE estimator defined as

X

X

X

X

= =x
x y x x
x y x

y x x x x
y x x x

p d
p d

p p d
p p d

( )
( )

( ) ( )
( ) ( )MMSE

(17)

by using a dedicated MH algorithm, where xp ( ) is the prior used to
encourage the solution to be positive and piecewise smooth. In our
modeling, the likelihood function is composed of two terms: i/ we
impose that the Fourier coefficients of the reconstructed image are very
similar to the known coefficients of the corrupted image y, i.e.
F F <x yk k[ ] [ ] ; ii/we consider a data fidelity term defined as the
L2 norm (alternative data fidelity terms will be considered in our ex-
periments) between the corrupted image and the restored image de-
graded by the operator DW , i.e..

F=x y xD y s e k, ( ) [ ] .
s S k S

i k s2 ·
2

(18)

It follows that the posterior is defined as ( A =z( ) 1 if z belongs to
the set A and zero otherwise)

A A X+x y x y x x xp Dexp ( , ) ( ) ( ) ( ) ,

likelihood
prior

y,

(19)

such that A X F F= <x x x yk W k k( ) { : [ ] [ ] }y, and
A X=x x x( ) { : }1 where =x x s( )s S1 is the dis-
crete Total Variation (Rudin et al., 1992). Here, X+ denotes the set of
positive solutions, that is the set of images for which x s s S( ) 0, .
As mentioned in Section 3.1, can be interpreted in (19) as a “tem-
perature” parameter. In Eq. (19), the prior term imposes positivity and
regularity of the solution. The TV norm of the restored image is then
assumed to be lower than a prescribed threshold . The likelihood is
based on reconstruction error (18) and adequacy of frequency in the SR
region W .

Consequently, the MMSE estimator can reformulated as

=
( )
( )x

x x

x

d

d

exp

exp
,

x y

x yMMSE

D

D

( , )

( , )
(20)

where the set of admissible solutions is defined as

X F F= <
<

x x y
x

k W k k s S x s
and

{ : [ ] [ ] , , ( ) 0,
}.1

The performance of MMSE (20) depends on the pre-specified
thresholds and . In practice, these values do not need to be accu-
rately adjusted in practice as ssed below. Meanwhile, because of the
high dimensionality of the problem, we need an efficient MH algorithm
to compute MMSE.

4.2. Implementation of the MH algorithm

The efficiency of a MH algorithm depends on the choice of the
proposal distribution xq (. )t( 1) . In practice, the proposal generator
leads to correlated samples x t( 1) induced by the two following factors:
i/ by construction, the newly proposed state x xq~ (. )t t( ) ( 1) is generated
from the current state; ii/ the new state =x xt t( ) ( 1) when the proposed
move has been rejected. Note that this correlation is not known in
advance but can be empirically estimated and updated from the pre-
vious samples (Holden et al., 2009). To achieve good performance, a
well-chosen proposal distribution both allows significant changes be-
tween the subsequent states with a high probability of acceptance (see
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Section 4.2.4). Unfortunately these requirements cannot be satisfied
easily in practice. If we choose a proposal distribution with small
moves, the probability of acceptance will be high, however the re-
sulting chain will be highly correlated, as x t( ) changes only very slowly.
In return, if we choose a proposal distribution with large moves, the
probability of acceptance will be rather low. Accordingly, we in-
vestigated an original strategy to generate a sequence of moves with a
probability of acceptation in the range of a [0.25 0.6]. In theoretical
studies, it has been shown that the optimal probability of acceptance

=a 0.234 (Roberts et al., 1997) whereas =a 0.574 in Roberts and
Rosenthal (2001).

Given an initial state x (0) , we explore the neighborhood of the
current value set x t( ) of the chain. Our proposal distribution q, which
enables to potentially move from x to x is chosen as (also see
Fig. 2):

D P= +x x( ( )),W (21)

where N ×I~ (0, )n n
2 is a white Gaussian noise, ×In n is the n-dimen-

sional identity matrix,PW is a projection operator that impose that the
F F+ =x yk W k k, ( )[ ] [ ] and D is denoising operator that

ensures that the total variation of the denoised image is lower than .
Consequently, the distribution of increments x x is not parametric
due to the nonlinear operators involved in (21). In the sequel, we only
assume that this non-parametric distribution q is approximately sym-
metric. Even though visualization of the empirical proposal density is
not possible, we suggest that (21) tends to produces similar samples
(denoised images) concentrated around some empirical mean belonging
to , with a few moves quite far away from this mean.

Our simulator can be viewed as a random walk in a high-dimen-
sional space, where all the pixels of the images are modified at once.
Note that in (Louchet et al., 2008; Louchet and Moisan, 2013), only one
pixel is modified at each iteration to compute the TV-LSE estimator.
Our approach can be seen also a blockwise MH sampling procedure but
only one block corresponding to the whole image, is considered in
procedure. In our experiments, we observed a high acceptance rate,
suggesting that the new sample is not far from the previous one (i.e.
x xt t( ) ( 1) is small). To our knowledge, this is the first time that such
a proposal, is used in the context of image restoration and inverse
problems. Our MH algorithm for MW restoration is then as follows (see
Fig. 2):

The Missing Wedge Restoration (MWR) algorithm
Set an initial state x (0) .
For =t T1, , do

1. Generate a new state z with the a three-step approach:
• Perturbation: N+ ×x I, ~ (0, )t

n n
( 1) 2 .

• Projection: ofP +x( )W
t( 1) onto the subspace of images having

the same observed frequencies as y if k W .
• Denoising of P +x( )W

t( 1) to get an image with a small x 1
and set D P= +z x( ( ))W

t( 1) .
2. Compute the acceptance probability

=x z x y z ya D D, min 1, exp ( , ) ( , ) .t
t

( 1)
( 1)

3. Draw from a uniform distribution: U~ (0, 1)
4. If x za ( , )t( 1) then =x zt( )

else =x xt t( ) ( 1).
end if

end for

4.3. Setting of parameters

In the end, the computational method is governed actually by three

parameters: the number of iterations T, the noise variance 2 and the
scaling parameter . At each iteration of the procedure, we consider
that any state-of-the-art algorithm produces a satisfyingly smooth
image, that is an image for which the total variation is lower than . In
practice, it is not required to accurately set this parameter . At each
iteration t, the denoising algorithm removes the perturbation noise. The
parameter affects the acceptance rate of the evaluation step. The
higher the value of , the higher the acceptance rate. For a high enough
value, all proposed samples are accepted and we fall back on the

original method (Maggioni et al., 2013).
Unlike Maggioni et al. (2013), we propose a statistical physics and

energy minimization framework for MW restoration. In (Maggioni
et al., 2013), all candidate samples are accepted at each iteration and
used to compute an aggregated estimator. It is worth noting that in
(Maggioni et al., 2013), the standard deviation decreases through
iterations, and the final estimate is obtained by weighting the samples
x t( ) with weights equal to 1/ updated at each iteration. Hence, this
gives more importance to the last samples. In our case, is constant
through iterations, and the weights results naturally from the MCMC
sampling which selects the most appropriate generated samples. The
most frequent accepted samples have higher weights in the computa-
tion of the Monte-Carlo estimator (Eq. 12).

Similar to (Maggioni et al., 2013), we used BM4D as denoising
operator in MWR. Actually BM4D uses two denoising steps: Step #1 is a
hard thresholding performed in the discrete cosine transform domain;
Step #2 is Wiener filtering. To save computing time (about factor 2), we
focused on Step #1 in our iterative MWR algorithm. Additional ex-
periments on real cryo-ET data (see Fig. 13) also confirmed that the
denoising results were worse after Step #2.

Finally, we add a “periodic plus smooth image decomposition”
(Moisan, 2011) operation prior to Fourier transforms, in order to reduce
artifacts originating from image borders. Indeed, we noticed that a
cross-structure tends to emerge in the restored MW and gets amplified
through iterations. This structure is a well-known spectral artifact of the
Fourier transform, resulting from the false assumption that the images
are periodic signals, when in reality the images rarely have similar
opposite borders. Applying this decomposition allows to reduce the
cross structure and solves the problem.

5. Experimental results

The MW restoration method has been evaluated experimentally on
synthetic noisy data by varying the parameters and the components of
the MH algorithm. Furthermore, we demonstrate the potential of the
method on real cryo-ET data.

5.1. Results on synthetic data

In this section, we justify the choice of algorithm parameters, then
evaluate robustness to noise, and finally compare our approach to a few
other competitive methods. We consider an artificial dataset (Dataset
A) which consists of a density map of the 20S proteasome corrupted by
additive white Gaussian noise and by applying an artificial MW process,
which amounts to setting to zero the Fourier coefficients within an
artificial wedge shaped mask. Given the ground-truth x , we use two
similarity measures for quantitatively evaluating the restoration results
x : the peak signal-to-noise ratio (PSNR) and the constrained correlation
coefficient (CCC), defined as

=x x x s
x s x s

PSNR , max ( )
( ( ) ( ))

,s S

n
s S

1 2

(22)
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F F

F F
=x x

x x

x x

k k

k k
CCC ,

[ ] [ ]

[ ] [ ]
.k W

k W k W

2 2

(23)

The PSNR is a common score in image denoising, and is well
adapted to estimate the global quality of processed images. CCC is a
score used in cryo-ET for sub-tomogram averaging (Förster and Hegerl,
2007). This score is very similar to the Pearson’s correlation coefficient
measured in Fourier domain. Note that only a constrained region of the
Fourier domain is considered for CCC computation. In our work, we use
CCC to quantify the quality of retrieved Fourier coefficients located in
the region W.

5.1.1. Analysis of performance of denoising algorithms
First, we study the influence of several denoising algorithms em-

bedded in our MCMC framework. We focus on three 2D methods: BM3D
(Dabov et al., 2007), non-local Bayes (NL-Bayes) (Lebrun et al., 2013),
total variation (TV) (Rudin et al., 1992). Since it was not possible to
extend all denoisers in 3D, we applied the method on a 2D slice of the
3D volume for assessment. As shown in Fig. 3, the best results have
been obtained by using BM3D, both in terms of PSNR and visual
quality. Nevertheless, NL-Bayes produced very similar results. TV de-
noising produced noticeable worse results. It turns out that the per-
formance strongly depends on the ability of the denoising algorithm to
remove the Gaussian noise. This experiment confirms that our MCMC
procedure achieves better results than traditional denoising algorithms.
In addition, the best results are obtained with the BM3D and NL-Bayes
algorithms embedded in our MH algorithm. This is consistent with the
literature in image denoising. Finally, we confirm that any image de-
noising algorithm (we also tested NL-means (Buades et al., 2005) PEWA
(Kervrann, 2014), OWE (Jin et al., 2017)) allow us to produce a re-
stored image with less MW artifacts. Because faster and very perfor-
mant in terms of PSNR values, we used BM4D (Maggioni et al., 2013)
which a 3D extension of BM3D, for processing 3D cryo-ET data.

5.1.2. Acceptance rate of MH algorithm
In this section, we evaluate the sensitivity of the parameter con-

trolling the acceptance rate of the MH procedure (combined with
BM4D). In Fig. 4(left), it is confirmed that the acceptance rate affects
the convergence speed. Nevertheless, whatever the parameter chosen
in the range ×[1.5 4.0] 10 5, the algorithm provides solutions with a
similar PSNR value close to 34 dB. Note that we got similar re-
constructed images by uniformly aggregating all the samples or by
aggregating samples with weights equal to the exponential form of the
data fidelity term.

In theory, the recommended acceptation rate is about 0.234 (Breyer
and Roberts, 2000) in the MH algorithm if we consider a Gaussian
proposal distribution. In our case, we get faster convergence since the
maximum acceptation rate is about 70%, suggesting that the set of
proposed samples are relevant.

In what follows, we set = ×4.0 10 5 since it provides faster con-
vergence as shown in Fig. 4(left).

5.1.3. Data-fidelity terms
We have tested several data-fidelity terms x yD ( , ), corresponding to

PSNR (see (22)), L1 and L2 norms defined as

=x yD x s y s, ( ) ( ) ,L
s S

1
(24)

=x yD x s y s, ( ( ) ( )) ,L
s S

2
2

(25)

and the Pearson’s correlation coefficient (CC):

=x yD
x s µ y s µ

x s µ y s µ
,

( ) ( )

( ( ) ) ( ( ) )
,

x y

x y

s S

s S s S

CC
2 2

(26)

where µx and µy are the means of x and y, respectively. We have also
evaluated a data-fidelity term based and the mutual information (MI):

=x yD p i j
p i j

p i p j
, , log

( , )
( ) ( )

,xy
xy

x yi j
MI

, (27)

where p i j( , )xy is the joint probability function of x and y with intensity
bins i and j, and p i( )x and p j( )y denote the marginal probability dis-
tribution functions of x and y, respectively. In our implementation, we
approximate the probability functions by histograms of pixel values.

It turns out that the resulting images are very similar for all these
data-fidelity terms (see Fig. 4(right)). We observed a maximum error of
0.1 db between the final restored images. In the sequel, we decided to
focus on the DL2 data-fidelity term to evaluate the components of the
MH algorithm.

5.1.4. Spectral analysis of MW
The MW has different shapes if we consider different reciprocal

spaces as illustrated in Fig. 5. In our framework, any spectral transform,
provided that the transform allows us to decompose the spectral do-
main into connected components, that is two regions corresponding to
non-zero and zero coefficients. The wavelet transform is typically not
appropriate as shown in Fig. 5. The MW region should be as small as
possible to make restoration successful. Accordingly, we investigated
several spectral transforms to improve image restoration with our ap-
proach (see Fig. 6). The best result is achieved with the discrete fast
Fourier transform (FFT), followed very closely by the discrete cosine
transform (DCT). The pseudo-polar fast Fourier transform (PP-FFT),
already considered in cryo-ET (Miao et al., 2005), achieves a worse
result, both visually and in terms of PSNR values. Finally, it turns out
that the performance of our method is not impacted by the transform
type, but is actually influenced by the potential precision of the inverse
transform. When evaluating the implementations of the considered
three transforms, the resulting mean squared errors are in the range of
10 34 for DFT, 10 32 for DCT and 10 12 for PP-DFT. These errors perfectly
correlate with the performance given in Fig. 6. Therefore, similar re-
sults could be achieved with another transform, provided that the in-
verse transform is precise enough.

5.1.5. Comparing MAP and MMSE estimators
Both the MAP and MMSE have been used considered for solving

image restoration problems. For instance, in (Louchet et al., 2008;
Louchet and Moisan, 2013), the authors compared TV-MAP and TV-LSE
and consider the TV norm as a prior to encourage piece-wise constant
images. TV-MAP is more appropriate for restoring piecewise constant
images (e.g. cartoons, shepp-Logan phantom), but washes out textures
present in natural images and in microscopy images. To reduce stair-
casing artifacts produced by TV-MAP, Louchet and Moisan (2013)
proposed the TV-LSE estimator to favor smooth transitions between
contrasted regions instead of sharp ones.

In our modeling framework, we do not directly use TV as in
(Louchet et al., 2008; Louchet and Moisan, 2013). The TV constraint is
actually used to a priori discard irrelevant samples during the proposal
step in the MCMC sampling procedure. Nevertheless, we can compare
the performance MMSE estimator to the MAP estimator corresponding
to the most frequent sample in the MCMC sequence. At first glance,
both estimates look visually similar, even though the MAP estimate
produces more background noise (see Fig. 7). The difference is more
noticeable in the spectral domain: the MW of the MAP estimate contains
higher amplitudes in the high frequencies. However, this does not mean
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that the MW restoration is of better quality. Indeed, according to the
PSNR values, MMSE is closer to the ground-truth than any generated
sample. Therefore the higher MW amplitudes in the MAP estimate most
likely carry noise rather than meaningful information.

5.1.6. Robustness to noise, comparison to BM4D (Maggioni et al., 2013)
From the results on dataset A (see Fig. 8(a)), it can be seen how well

our method works in the absence of noise ( = 0n ): a quasi perfect
image recovery has been achieved, despite the complexity of the object.
Increasing the amount of noise deteriorates the performance, but as it
can be observed for = 0.2n , the result is still satisfying. For high
amounts of noise ( = 0.4n ), the object contrast is still greatly enhanced
but the MW artifacts could not be completely removed. In Fourier do-
main (Fig. 8(b)), the MW has been filled up completely when = 0,n
whereas for an increasing amount of noise the MW reconstruction is
increasingly restrained to the low frequencies. This is because high
frequency components of a signal are more affected by noise, which
makes them more difficult to recover. In Fig. 8(c), the evolution of the
PSNR over time shows that the method converges to a stable solution.

In Fig. 8(d), we compare our MH method to the method proposed by
Maggioni et al. (2013). Both methods produce visually identical results
in spatial domain, as well as in the spectral domain, as confirmed by the
final PSNR values. However, the difference lies in the convergence
speed: our method takes about half as long as the original method
(Maggioni et al., 2013). Even though the synthetic dataset A is a sim-
plified case of data corruption in cryo-ET, it gives a good intuition of the
performance of our method.

5.1.7. Comparison to other MW restoration methods
We compare our results to those produced by three competing

methods (see Fig. 9): sMAPEM (Paavolainen et al., 2014), BFLY
(Kováčik et al., 2014), and a TV method with spectral constraints
(Moisan, 2001), each adopting a different strategy to reduce MW arti-
facts. We implemented the Moisan’s method as follows:

Our implementation of the Moisan (2001)’s method:
Set an initial state x(0) .
For = …t T1, , do

Fig. 3. Dataset A (2D): comparison of denoising algorithms. First, we compare conventional denoisers (left column) to our MH method (right column). Second, we
compare the results obtained by applying three different 2D denoising algorithms: BM3D, NL-Bayes, and ROF denoising. On the bottom, we evaluate the performance
in terms of PSNR and CCC values. It turns out that our MH method performs better than conventional denoisers in all situations.
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1. Projection: P=z x( )t
W

t( ) ( )

2. Denoising: +z x xminx
t( ) 2

1

end forwhich amounts to alternatively minimizing TV (Rudin et al.,
1992) and satisfying the spectral constraints. The sMAPEM algorithm
(Paavolainen et al., 2014) is an iterative tomogram reconstruction
procedure, designed to reduce MW artifacts and achieve isotropic re-
solution. In our experiments, we performed the comparison in 2D
mainly because sMAPEM is not available in 3D. Our method, BFLY and
the TV method operate on tomograms (2D in our case), while sMAPEM
operates on projections (1D). These projections were obtained from the
dataset A ground-truth, with a tilt-range of −60°–60° and a tilt incre-
ment of 2 degrees. We then added Gaussian noise ( = 0.17n ) to the

projections. In order to make a fair comparison, the inputs should ori-
ginate from these same projections. Therefore we use the weighted
back-projection (WBP (Radermacher, 1992)) algorithm to produce the
2D data needed for the other methods.

As explained above, the strategy of sMAPEM differs from ours, in the
sense that it takes as an input projections and gives as an output a re-
constructed tomogram. One may argue that the best strategy would be
the one adopted by sMAPEM, because it directly uses the projections,
instead of a tomogram which is already contaminated by MW artifacts.
However, as shown in Fig. 9, our method achieves a better PSNR value
than sMAPEM. Visually both methods seem to approach isotropic re-
solution, however the result of our method is smoother, while the result
of sMAPEM contains pixelated artifacts. The result of the Moisan’s

Fig. 4. Dataset A: This figure shows the impact of algorithm parameters. We illustrate these effects in terms of PSNR through iterations. We do not show images
because obtained results are visually similar. On the left, the influence of parameter controlling the acceptance rate of the MH sampling, is shown: = ×1.5 10 5

(blue), = ×2.0 10 5 (red), = ×4.0 10 5 (yellow). Clearly, the choice of affects the convergence speed, however in all cases our method converges to the same
result. On the right, the influence of the data fidelity term is presented. We compare the L1 (24) and L2 norms (25), the correlation coefficient (26), the PSNR (22),
and the mutual information (27). The results are very similar (maximum error of 0.1 dB between restored images). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Real space Fourier Cosine

WaveletPseudo-polar Fourier

Missing coe cient
zone

Fig. 5. The missing wedge shape (in red) for different transforms: Fourier transform, cosine transform, and pseudo-polar Fourier transform. Note that the missing
wedge is not apparent in all transforms, as is illustrated with the wavelet transform.
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method is visually satisfying. In real space, noise appears to be removed,
however the result suffers from staircasing artifacts, as well known with
TV denoising. In Fourier space, the entire MW appears to be restored, as
opposed to our method and sMAPEM where the restoration is con-
strained to lower frequencies. However according to CCC values, these
restored Fourier coefficient do not correlate as well with the ground truth
as our method and sMAPEM. The BFLY filter aims at reducing the MW
ray-artifacts by smoothing the sharp transition between the MW and the
SR. The object elongation and side artifacts however remain. Unlike
other competing methods, BFLY does not recover missing Fourier coef-
ficients, it is therefore not surprising that it has the worst performance,
both visually and in terms of PSNR and CCC values.

In summary, our approach outperforms competing methods both in
terms of PSNR and CCC values. Visually, our approach produces a
smoother image, while sMAPEM and the Moisan’s method introduce
artifacts in the result. The weakest performance is achieved by BFLY,
however this was expected as the other methods have much higher
complexity. That being said, BFLY is the fastest method.

5.2. Results on experimental data

In this section, we evaluate the performance of our MH method
(combined with BM4D) on real images to confirm the results obtained
on artificial images.

5.2.1. Experimental datasets
Three datasets (B, C and D) have been used to evaluate the per-

formance of the method on experimental data. Dataset B is an experi-
mental sub-tomogram containing a gold particle. Dataset C is an ex-
perimental sub-tomogram containing 80S ribosomes attached to a
membrane. Dataset D is an experimental sub-tomogram depicting a
region of an E. Coli bacteria, and contains unidentified macromolecules
next to a membrane. Unlike data-sets B and C, the dataset D is available
as single-axis and double-axis data (see Section 1).

5.2.2. Criteria and method for evaluation
The evaluation differs depending on the dataset. In dataset B, the

Fig. 6. Dataset A (3D): influence of the transform type for MW restoration. From left to right: the ground truth (reference for measuring the PSNR), the corrupted
image (used as input for the method), and the processed images using the Fourier transform, cosine transform and pseudo-polar Fourier transform. The best result is
obtained by using the Fourier transform.

Fig. 7. Dataset A (3D): comparison of MAP and MMSE estimators. From left to right: the ground truth (reference for PSNR), the corrupted image, the MAP and MMSE
estimators computed with our MCMC procedure. As can be observed in the zoomed in regions (the red frames), the MMSE estimator is less noisy than the MAP
estimate, with a higher PSNR value.
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gold particle is deformed and elongated (ellipse) due to the MW arti-
facts. Improving the sphericity of the object is thus a good evaluation
criterion. For dataset C, we measure the similarity between the central
ribosome and a reference (obtained via sub-tomogram averaging). The
evaluation criterion is the Fourier shell correlation (FSC), commonly
used in cryo-ET (Van Heel and Schatz, 2005). In order to measure the
quality of the recovered MW only, we also compute the FSC over the
MW support (“constrained” FSC or cFSC). For dataset D, we have both
single-axis and double-axis versions of the data. A double-axis volume
has less missing Fourier coefficients than a single-axis volume. There-
fore, when processing the single-axis volume, the additional Fourier
coefficients of the double-axis volume can act as an experimental
ground truth. We evaluate the result with the CCC score, as illustrated
in Fig. 13.

5.2.3. Analysis of restoration results
The result on dataset B shows that noise is reduced and a significant

part of the MW was recovered (see Fig. 10). Even though the recovery is
not complete, it is enough to reduce the MW artifacts while preserving
and enhancing image details. The ray and side artifacts induced by the
high contrast of the gold particle are reduced and its sphericity has been
improved, bringing the image closer to the expected object shape. The
result on this dataset shows that the method is able to handle experi-
mental noise in cryo-ET.

The dataset C (ribosomes, Fig. 11) is more challenging because the
objects have a more complex shape and less contrast, i.e. the SNR is
lower. Nonetheless, the method significantly enhanced the contrast
and, according to the FSC criteria, the signal has indeed been improved.
Although visually it is more difficult to conclude that the MW artifacts

have been affected, the Fourier spectrum shows that Fourier coeffi-
cients were recovered. As expected, the amount of recovered high fre-
quencies is less than for dataset B, because of the lower SNR. It is now
necessary to provide a proof that the recovered coefficients carry a
coherent signal, therefore the cFSC has been measured. The black curve
in Fig. 11 depicts the cFSC between the unprocessed image and the
reference: given that the MW contains no information, the curve re-
presents noise correlation. Consequently, everything above the black
curve is signal, which is indeed the case for the processed data (red
curve in Fig. 11). To illustrate how the method can improve visuali-
zation, a simple thresholding has been performed on the data (3D views
in Fig. 11). While it is difficult to distinguish objects in the unprocessed
data, the shape of ribosomes become clearly visible and it can be ob-
served how they are attached to the membrane. In addition, in order to
demonstrate that our procedure is not limited to ribosomes (considered
as easy targets because of their good contrast), we perform the same
evaluation procedure (i.e. dataset C) on subtomograms containing
proteasomes (see Fig. 12). In both processed proteasome sub-tomo-
grams, the contrast has been enhanced and the FSC and cFSC curves
provide proof of an improved signal.

Dataset D has a broader field of view than precedent datasets. As
can be observed in Fig. 13, the double-axis volume has a better contrast
than the single-axis volume, the reason being that it has more sampled
Fourier coefficients, and therefore contains more signal and less noise.
For this dataset, we processed the single-axis volume and investigated
how close to the double-axis volume the restoration results are. We
compare the results obtained with the MWR algorithm to those ob-
tained with BM4D (Step #1 and Step #2). From Fig. 13, MWR tends to
enhance contrast, which facilitates the identification of membrane and

Fig. 8. Simulated data of the 20S proteasome, for varying amounts of noise (dataset A). All images depict ortho-slices of 3D volumes. The volume size is × ×64 64 64
voxels. For (a) and (b), top row: method inputs, bottom row: method outputs. Results are shown in spatial domain (a) and spectral domain (b). In (c) can be observed
the ground-truth and the increase of the PSNR values over iterations. In (d) we compare our method to the original method (Maggioni et al., 2013).
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macromolecules. Also, the global contrast is higher in the images re-
stored with MWR than those produced by BM4D. Moreover, we can
notice that the output of Step #1 (D1 in Fig. 13) has a better constrast
than the output of Step #2 (D2 in Fig. 13), which is surprising at first
glance because Step #2 is generally used to ”boost” the result of Step
#1. This suggests that the assumptions made in Step #2 (i.e. additive
noise and known stationary signal and noise spectra), do not hold after
Step #1 in our specific case in cryo-ET. When examining the data in
Fourier domain, it is clear that several Fourier coefficients have been
partially recovered, and correlate better with the double-axis volume as
confirmed by the CCC values (0.29 before and 0.71 after applying
MWR). The volumes obtained with BM4D show little (or no) im-
provement in terms of CCC values (0.39 for D1 and 0.29 for D2). All
these results confirm that our MWR algorithm improves the restoration
of MW when compared to conventional denoising algorithms.

6. Conclusion

In this paper, we addressed the problem of restoring an image
corrupted by missing Fourier coefficients in a well-localized spectral
region (missing wedge). We proposed an original Monte-Carlo method
to denoise 3D cryo-ET images and compensate MW artifacts. Our al-
gorithm cannot recover unobserved data, but it merely makes the best
statistical guess of what the missing data could be, based on what has
been observed. Any non-local or patch-based denoiser can be used in
our Bayesian framework, and the procedure converges faster than
(Maggioni et al., 2013). Our experiments on both synthetic and ex-
perimental cryo-ET data demonstrate that even for high amounts of
noise, the method is able to enhance the signal. The method performs
better if the contrast of the object of interest is high, which is not always
the case in cryo-ET.

In terms of complexity (linear with respect to the number of pixels),
the timings of MWR are actually 5.5 min (with a non-optimized version
of the algorithm (Matlab) with no parallel implementation) if the

Fig. 9. Dataset A (2D): comparing our approach to competitive methods: i/sMAPEM, a regularized tomographic reconstruction method designed to achieve isotropic
resolution; ii/ the Moisan’s method designed to extrapolate missing regions in Fourier space; iii/BFLY, a filter designed to reduce MW artifacts. The sMAPEM method
takes projections as input, therefore we used the same projections to produce the 2D input (via WBP) for the other methods. On the bottom we display the PSNR and
CCC scores obtained for all tested methods.
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number of iterations is set to 500. However, we usually get very similar
results after 100 iterations (see Fig. 4), that is 1 min for processing a
64×64×64 voxels image. To improve computation, several in-
vestigations can be performed. We suggest to handle in parallel and fuse
several shorter Markov chains (see Louchet et al., 2008; Louchet and

Moisan, 2013). Hence, we can exploit multithreading since the Markov
chains are independent. At the end, we can expect a gain of factor 10 if
we consider only 100 iterations and several Markov chains. For future
work, a GPU implementation of the algorithm can be also investigated
to process larger volumes.

Fig. 10. Experimental sub-tomogram ( × ×61 61 61 voxels) containing a gold particle (dataset B). The top row shows the input in the spectral and spatial domains,
the bottom row shows the restored image and spectrum.

Fig. 11. Experimental sub-tomogram ( × ×46 46 46 voxels) containing ribosomes attached to a membrane (dataset C). (a) Top row: input image in spectral domain,
spatial domain and 3D view of the thresholded data. Bottom row: the same representations for the output. (b) FSC and cFSC measures of the method input (in black)
and output (in red). The FSC measures overall quality, while the cFSC measures quality of recovered Fourier coefficients only (i.e. MW). All measures are wrt the
same reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Software In terms of computational performance, MWR takes 5min
and 30 s (0.66 s/iteration, =T 500 samples) on a standard volume of

× ×64 64 64 voxels on a Macbook Pro equipped with 2.9 Ghz Intel Core
i7, 16 Gb of RAM and the Mac OS X v.10.12.3 operating system. The
computing time increases linearly with the number of voxels. The MRW
software (Matlab code) can be downloaded from the Git-Hub websi-
te:https://gitlab.inria.fr/serpico/mwr.

Data Datasets B and C have been obtained from tomograms of
Chlamydomonas Reinhardtii cells (see (Pfeffer et al., 2017; Albert et al.,
2017)] for details about data acquisition). Dataset D has been obtained
from a tomogram of E. coli cell, obtained via dual-axis tilt Cryo-ET on
FIB-milled samples, and acquired by J. Ortiz (Max-Planck Institute,

Chemistry Department, Martinsried, Germany).
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Fig. 12. Two experimental sub-tomograms ( × ×46 46 46 voxels) containing proteasomes. Data is displayed in both Fourier and spatial domains. We evaluate the
result with FSC and cFSC measures of the method input (in black) and output (in red). The FSC measures overall quality, while the cFSC measures quality of
recovered Fourier coefficients only (i.e. MW). The reference has been obtained via subtomogram averaging of 2949 proteasomes. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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