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ABSTRACT One of the most useful models in population genetics is that of a selective sweep and the consequent hitch-hiking of
linked neutral alleles. While variations on this model typically assume constant population size, many instances of strong selection and
rapid adaptation in nature may co-occur with complex demography. Here, we extend the hitch-hiking model to evolutionary rescue,
where adaptation and demography not only co-occur but are intimately entwined. Our results show how this feedback between
demography and evolution determines—and restricts—the genetic signatures of evolutionary rescue, and how these differ from the
signatures of sweeps in populations of constant size. In particular, we find rescue to harden sweeps from standing variance or new
mutation (but not from migration), reduce genetic diversity both at the selected site and genome-wide, and increase the range of
observed Tajima’s D values. For a given initial rate of population decline, the feedback between demography and evolution makes all of
these differences more dramatic under weaker selection, where bottlenecks are prolonged. Nevertheless, it is likely difficult to infer the
co-incident timing of the sweep and bottleneck from these simple signatures, never mind a feedback between them. Temporal

samples spanning contemporary rescue events may offer one way forward.
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HE simple models used to predict the genetic signatures of

selective sweeps have been incredibly helpful in under-
standing and identifying population genetic signals of adap-
tation (e.g., Maynard Smith and Haigh 1974; Kaplan et al.
1989; reviewed in Stephan 2019). These models are usually
based on constant-sized, Wright-Fisher populations. Mean-
while, many instances of adaptation—and thus selective
sweeps—in nature will co-occur with complex demography.
In fact, many of the most well-known examples of selective
sweeps have arisen following a rather extreme and sudden
change in the environment (e.g., after the application of insec-
ticides, Sedghifar et al. 2016, or antimalarial drugs, Nair et al.
2003), which could have simultaneously imposed sharp demo-
graphic declines. Attempts to capture such complex demo-
graphic scenarios typically impose qualitatively appropriate
changes in population size (e.g., Hermisson and Pennings
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2005). Indeed, a number of studies have explored the genetic
signatures of selective sweeps during demographic bottlenecks
(e.g., Innan and Kim 2004; Teshima et al. 2006; Wilson et al.
2014). However, these demographies are nearly always chosen
in the absence of an explicit population model and indepen-
dently of evolution.

Here, we model selective sweeps in a scenario where de-
mography and adaptive evolution are not independent. In
particular, we model an instance of evolutionary rescue
(Gomulkiewicz and Holt 1995; reviewed in Bell 2017),
where a sudden environmental change causes population de-
cline that is reverted by a selective sweep. Under this frame-
work, rescue is a simultaneous demographic bottleneck and
selective sweep, where each affects the other. First, because
the mean absolute fitness of the population changes with the
beneficial allele’s frequency, the depth and duration of the
bottleneck depends on the dynamics of the selective sweep,
i.e., evolution affects demography. Second, the probability
that the beneficial allele establishes depends on its growth
rate and thus the rate of population decline, i.e., demography
affects evolution. Together, this feedback between demogra-
phy and evolution restricts the range of dynamics that are
possible, and therefore also restricts the range of genetic

Genetics, Vol. 215, 813-829  July 2020 813


http://orcid.org/0000-0001-6170-8182
http://orcid.org/0000-0001-8431-0302
https://doi.org/10.1534/genetics.120.303173
https://doi.org/10.25386/genetics.12284324
https://doi.org/10.25386/genetics.12284324
mailto:mmosmond@ucdavis.edu

signatures we should expect to observe. Our goal here is to
describe the range of genetic signatures that (this model of)
evolutionary rescue allows, to help elucidate how rescue may
obscure inferences of past selection and demography and to
identify patterns that could be used to infer rescue in nature.

Most theory on evolutionary rescue to date (reviewed in
Alexander et al. 2014) has focused on the probability of res-
cue. Recently, however, some attention has been given to the
dynamics of population size (Orr and Unckless 2014), the
probability of soft sweeps (Wilson et al. 2017), and the ge-
netic basis of adaptation (Osmond et al. 2020) given rescue in
haploid or asexual populations. Here, we extend this line of
thinking to three modes of rescue in diploid, sexual popula-
tions, and use coalescent theory and simulations of whole
chromosomes to examine the genetic signatures at linked,
neutral loci. Our focus is on three common genetic signa-
tures: the number of unique lineages of the beneficial allele
that establish (i.e., the softness of the sweep), the pattern of
nucleotide diversity around the selected site (i.e., the dip in
diversity), and the pattern of Tajima’s D around the selected
site (i.e., skews in the site-frequency spectrum). We explore
three modes of rescue, where the beneficial allele arises from
either standing genetic variance, recurrent de novo mutation,
or migration, and compare to selective sweeps arising in pop-
ulations of constant size. Qualitatively, we find that for a
given selection coefficient rescue causes faster, harder sweeps
that produce wider, deeper dips in diversity, and more extreme
values of Tajima’s D. Due to the feedback between demography
and evolution, the effect of rescue on the signatures of selective
sweeps becomes more pronounced as the selection coefficient,
and, thus, the probability of rescue, gets smaller.

Materials and Methods
Population dynamics

Deterministic trajectories: Consider a population of size N(t)
with a beneficial allele, A, at frequency p(t) and an ancestral
allele, a, at frequency 1—p(t). Assume nonoverlapping gen-
erations, and let Wy,, Wy, and W,, be the absolute fitness
(expected number of offspring) of each genotype. We are inter-
ested in the scenario where a population composed of primarily
aa genotypes is declining at some rate d, ie, Wy, = 1 — d.
The beneficial allele, A, is then assumed to act multiplicatively
with the fitness of the ancestral background, such that
Wae = (1 —d)(1 + hs) and Was = (1 — d)(1 + s). Throughout
the text, we assume random mating, weak selection, s < 1, and
additivity at the selected locus, h = 1/2, such that the allele
frequency [cf. equation 5.3.12 in Crow and Kimura (1970)] and
population dynamics [N(t + 1) = W(t)N(t), with W(t) the pop-
ulation mean fitness] can be approximated by

—~ 1_p(0) —st -1
p(t)~(1+ (0) e /2>
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Equation 1 allows for unbounded population growth; to pre-
vent this we impose a simple carrying capacity at N(0) by
setting N(t) to be the minimum of N(0) and the value given
in Equation 1.

Effective initial allele frequency: Equation 1 considers only
the deterministic dynamics. We are, however, primarily con-
cerned with a stochastic event: the establishment of a (po-
tentially rare) beneficial allele. In rescue, we are particularly
interested in only those instances where the beneficial allele
establishes—otherwise the population is extinct. Condition-
ing on establishment creates a bias away from the determin-
istic trajectory. As shown in Maynard Smith (1971) [see Orr
and Unckless (2014) for an application to evolutionary res-
cue], we can approximate this bias by assuming that a single
copy of an allele that establishes with probability P, instan-
taneously increases from an initial frequency of 1/(2N) to
1/(2NPes). In essence, dividing the initial allele frequency
by the probability of establishment implies that an allele es-
caping random loss when rare will quickly increase to a larger
frequency than otherwise expected before settling into its
deterministic trajectory. As we will see below, we can com-
bine this logic with the waiting time distribution for an estab-
lishing mutation to arrive to derive an effective initial allele
frequency, po. Using the deterministic prediction (Equation 1)
with p(0) = po then approximates the forward-time trajec-
tory of an allele that is destined to fixation.

We derive the probability of establishment, Py, assuming
alleles do not interact (i.e., a branching process). Under this
assumption, a single copy of an allele that is expected to leave
1 + € copies in the next generation with a variance of v has an
establishment probability of [Allen (2010), p. 172, see also
Feller (1951), equation 5.7, for a derivation from a diffusion
approximation]:

Pest = 1 — e 2¢/V, )

Whend = 0, weignore density-dependence, and the growth
rate of the establishing heterozygote then depends only on its
absolute fitness, e = Wy, — 1= (1 +sh)(1 —-d) — 1 ~sh—d.
The variance, v, depends on particulars of the lifecycle (see
section Genetic drift in the simulated lifecycle in the Supplemen-
tary material for details). Whenh = landv = 1, we retrieve
the probability of establishment of a weakly beneficial mutation
in an exponentially growing or declining haploid population
with a Poisson offspring distribution, Py = 2(s —d) (Otto
and Whitlock 1997).

Effective final allele frequency: Above, we have stitched
together the initial stochastic phase of the allele frequency
and population dynamics with the deterministic phase by
using p(0) = po. We next incorporate the final phase, fixa-
tion, which is also stochastic. Incorporating this final phase is
important here (as opposed to studies that predict only the
forward-time dynamics; e.g., Orr and Unckless 2014) because
in looking at genetic signatures we are concerned primarily



with the dynamics backward in time from the point of fixa-
tion, and this third phase determines how fast fixation
occurs.

As shown in Martin and Lambert (2015), we can treat
the backward-in-time dynamics from fixation as we did
the forward-in-time dynamics at establishment. In particular,
the probability the heterozygote establishes (backward in
time) in a population of mutant homozygotes is also given
by Equation 2, but with the growth rate of a rare
heterozygote in this population, €, replaced by —e (let’s
call this probability P_). For instance, if the fitness of the
heterozygote is Wy, = (1 —d)(1 +sh) and the fitness of
the mutant homozygote is Was = (1 —d)(1 +5s), and the
population is at carrying capacity, then the growth rate of
the heterozygote depends only on its relative fitness,
—e=1—Wy/Wasa =1—(1+5sh)/(1+s)~s(1—h),which
is independent of demography;, d.

Given the heterozygote establishes (backward-in-time), it
will quickly increase to 1/P,, copies, implying that, in a pop-
ulation of size N, fixation effectively occurs when the determin-
istic trajectory reaches a frequency of pr =1—1/(2NP_).
Below, we will explore scenarios where fixation is expected to
occur while the population is at carrying capacity, N(0). Thus,
in all cases, we have the same effective final allele frequency,

1

2N(0)Pest’ 3)

pr=1-
where P, is given by Equation 2, withe = 1 — (1 +sh)/(1 + ),
and v is as given in the section Genetic drift in the simulated
lifecycle in the Supplemental text.

Time to fixation: We can estimate the time to fixation in the
additive model (h = 1/2) as the time it takes the determin-
istic approximation (Equation 1) to go from the effective
initial frequency, po, to the effective final frequency, ps, which
is [equation 5.3.13 in Crow and Kimura (1970)]

2. |(1-po)ps
tr = Zlog |22 | 4
T Og[PO(l_Pf)} @

Backward-time dynamics: Setting t = t; — 7 in Equation 1
gives an approximation of the dynamics of allele frequency
and population size backward in time,
1- -1
p,(T) ~ (1 + pfeST/Z)
pr
)

/ e 1—po \2079
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from the point of fixation, 7 = 0, to the time of establishment,
7 = tr. Note that the backward-time allele frequency dynam-
ics do not depend on the initial frequency, po, or demography,
d, except in determining the maximum value of 7, t. Thus the
backward-time allele frequency dynamics are expected to be
the same in rescue as in populations of constant size with the

same carrying capacity (such that the final frequency, py, is the
same). Meanwhile, the backward-time population size dy-
namics depend heavily on the initial frequency as the time
at which the sweep establishes determines the depth and
duration of the bottleneck.

The structured coalescent

Event rates: To explore the genetic patterns created by
evolutionary rescue we next consider a random sample of
chromosomes at the time the beneficial allele fixes. Focusing
on a neutral locus that is recombination distance r from the
selected site, we are interested in calculating the rate of co-
alescence, the rates of recombination and mutation off the
selected background, and the rate of migration out of the
population. If our sample of alleles has k distinct ancestors
on the selected background 7 generations before fixation,
these rates are approximately [see Table 1 in Hudson and
Kaplan (1988); equation 16 in Pennings and Hermisson
(20064a); see section Deriving the structured coalescent for der-
ivations in the Supplemental text]

N !
Peoal(k, ) = (2> W
Drec(k,7) = kr[l —p’(T)}

(6)
L u[l—p'(7)]
met(k7 T) =k p’(’T)
m
Pmig(k,7) = kzN’(T)p’(r)’

where N,'(7) is the effective population size 7 generations
before fixation (see section Genetic drift in the simulated life-
cycle in the Supplemental text for details).

Event timing: We now use the instantaneous event rates
(Equation 6) to calculate the probability that the most recent
event is 7 generations before fixation, and is either coales-
cence, recombination, mutation, or migration. Letting
i,j € {coal, rec, mut, mig}, the probability that i is the most
recent event and occurs 7 generations before fixation is (cf.
equation 6 in Pennings and Hermisson (2006b))

pik) = itk ) ([T -] ) TT (T -mik.0))
J

j#i 1=0
~ pi(k, T)exp(—z /0 pj (k, l)dl),
j
@)

i.e., the waiting time for an inhomogeneous exponential ran-
dom variable. The approximation assumes the p;(k,7) are
small enough such that, at most, one event happens each
generation, with small probability, and the changes in the
pi(k, 7) from one generation to the next are small enough that
we can approximate a sum across T with an integral. As a
technical aside, to speed computation we analytically solve
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the integrals in Equation 7 under the assumption of un-
bounded population growth (Equation 1).

Genetic signatures at linked neutral loci

Pairwise diversity: One classic signature of a selective sweep
is a dip in genetic diversity around the selected site (Maynard
Smith and Haigh 1974; Kaplan et al. 1989). Here, we consider
the average number of nucleotide differences between two
randomly sampled sequences, 7 (Tajima 1983), focusing on
sequences of length 1 (i.e., heterozygosity).

We first consider our expectation for 7 at a site that is far
enough away from the selected site to be unaffected by hitch-
hiking, which will provide us with an expectation for ge-
nome-wide average diversity. While not directly impacted
by the sweep, these loci are indirectly impacted as the sweep
dictates the severity of the population bottleneck. Our expec-
tation for 7 at such a site in a population of constant effective
size, N,, is simply [E[w|unlinked] =6=4N,U (Watterson
1975), with U the per base per generation mutation rate at
neutral loci. Ignoring neutral mutation input during the
sweep, the 7 at a sufficiently loosely linked site in a popula-
tion of changing size is this neutral expectation times the
probability a sample of size two does not coalesce during
the sweep (c¢f. equation 4 in Slatkin and Hudson (1991)
and equation 7 in Griffiths and Tavaré (1994)),

&
E[m|unlinked] ~ 6 exp(— / ®
0

1
2N{ (7) dT) '

We next consider sites that are close enough to the selected
locus that they are directly affected by the selective sweep
through hitchhiking. To keep the analysis simple, we assume
that, if recombination or mutation moves one of the sampled
alleles to the ancestral background before the two samples
coalesce, then it is as if both samples were on the ancestral
background from the start and therefore coalesce with each
other as if they were at an unlinked locus (Equation 8). This
assumption ignores the time it takes for the two samples to
arrive on the ancestral background, and is therefore expected
to underestimate diversity at moderately linked sites. There
is also the possibility that no events occur in the history of the
sample during the sweep. Then, if the sweep arose from mu-
tation or migration, or from a single copy of the beneficial
allele (x = 1), the sample must coalesce. If we instead start
with more than one beneficial copy, « > 1, it is possible that
the two samples had ancestors that were linked to distinct
copies of the beneficial allele within the standing variation.
While the coalescent naturally tells us the probability that
two lineages do not coalesce during the sweep (since distinct
copies of the beneficial allele are exchangeable; e.g., Tavaré
1984), our continuous-time approximation of the coalescent
(Equation 7) implicitly assumes a large number of copies of
the beneficial allele at any one time. To account for the fact
that k is finite, and often small, we assume that, if, under the
continuous-time approximation of the coalescent, there re-
main two lineages on the beneficial background at the
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beginning of the sweep, then they coalesce with proba-
bility 1/k [see the “instantaneous” approximation in
Anderson and Slatkin (2007) for a similar approach].
Finally, we assume that each copy of the beneficial allele
in the standing variance has a recent and unique muta-
tional origin (implying the beneficial allele was suffi-
ciently deleterious before the environmental change; cf.
Prezeworski et al. 2005; Berg and Coop 2015), so that
two distinct ancestral lineages are independent draws
from a neutral population. Ignoring neutral mutations
during the sweep, a simple approximation for diversity
at any location in the genome is then

E[m] & Pogt(2, t;)E[rr|unlinked] + Py (2, t)(1 — 1/x)8, (9

where Py (k, tr) = éf [Prec(k, T) + Pmut(k, 7)]d7 is the proba-
bility of recombination or mutation before coalescence dur-
ing the sweep and Pg(k, tf) = exp(—>_; féf pj(k,7)dr) is the
probability that no events have occurred in the history of the
sample during the sweep (j € {rec, mut, coal}). Equation 9 is
a function of recombination distance, r, and approaches
[E[m|unlinked] as r gets large.

Tajima’s D: As a second genetic signature at linked neutral
sites we consider Tajima’s D statistic (Tajima 1989), which
measures the excess (positive D) or deficiency (negative D) of
intermediate frequency polymorphisms relative to the stan-
dard neutral model. Quantitative predictions of Tajima’s D
require one to consider samples of size greater than two,
which quickly becomes complicated with selection and non-
equilibrial demography. Instead, here we discuss the expected
qualitative patterns based on intuition from the analysis pre-
sented above.

First, hard selective sweeps tend to produce star-like gene
genealogies, with most samples coalescing near the beginning
of the sweep, and recombination allowing a few samples to
coalesce much further back in time (Kaplan et al. 1989). Hard
sweeps therefore produce an excess of low and high fre-
quency polymorphisms (Wakeley 2009, p. 120), leading
to negative D (Braverman et al. 1995). Larger selection
coefficients create more star-like genealogies (as there is
then less time for recombination off the sweep), and, thus,
more negative D when conditioned on a hard sweep. How-
ever, with sufficient standing genetic variation (SGV) or
rates of recurrent mutation or migration, larger selection
coefficients will tend to cause softer selective sweeps as
they increase the probability any one copy establishes
(Equation 2). Soft selective sweeps (by definition) allow
some samples to coalesce further back in time, before the
start of the sweep, even at the selected site. Soft sweeps
therefore tend to have less effect on neutral genealogies,
and, hence, on D, although sufficiently soft sweeps can
actually cause positive D, by allowing intermediate-sized
groups of samples to descend from different ancestors con-
taining the beneficial allele (Pennings and Hermisson
2006b).



As linkage to the selected site decreases, so too does this
skew in genealogies. In the case of a constant population size,
D should asymptote to the neutral expectation of zero. In the
case of rescue, however, the bottleneck will cause an excess of
intermediate frequency polymorphisms (Wakeley 2009, p.
120), and, therefore, D should asymptote at some positive
value (more positive with more severe bottlenecks).

Simulations

The simulation details are described in full in the section
Simulation details in the Supplemental text. Briefly, the life-
cycle described in Simulated lifecycle was simulated in
SLiM 3 (Haller and Messer 2019) with tree-sequence record-
ing (Haller et al. 2019). We simulated a 20 Mb segment of a
chromosome, with all but one of the center loci neutral, with
a per base recombination rate of rp, = 2 X 10~ and per base
mutation rate at neutral loci of U = 6 X 1079 (both in-
spired by Drosophila estimates; Mackay et al. 2012; Haag-
Liautard et al. 2007). A simulation was considered successful
and ended when the beneficial mutation was fixed and the
population size had recovered to its initial size, N(0). Suc-
cessful simulations were recapitated with Hudson’s coales-
cent algorithm (Hudson 1983, 2002), implemented in
msprime (Kelleher et al. 2016), using N, ~ 4N(0)/7 (see
Genetic drift in the simulated lifecycle). Pairwise diversity, Taji-
ma’s D, site frequency spectra, and linkage disequilibrium
were then calculated directly from the tree sequences using
tskit (Kelleher et al. 2018), for a random sample of 100 con-
temporary chromosomes. We chose to simulate a population
with initial census size N(0) = 10% declining at rate
d = 0.05, where the beneficial allele had selection coeffi-
cients = 0.13 ors = 0.20. This describes a relatively small
population that is expected to go extinct in ~200 generations
in the absence of a sweep at a locus under strong selection (as
might be expected following a severe environmental
change).

Data availability statement

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article and Supplementary Material. Code used
to derive and plot all results (Python scripts and Mathematica
notebook) is available at https://github.com/mmosmond/
rescueCoalescent.git and on figshare. File S1 refers to the
Mathematica notebook, which is also provided in freely ac-
cessible forms (e.g., PDF). Supplemental material available at
figshare: https://doi.org/10.25386/genetics.12284324.

Results
Rescue from standing genetic variation

We first consider rescue arising from genetic variation that is
present at the time of the environmental change and ignore
further mutations and migration. To avoid complicating the
presentation, we assume the initial number of beneficial

alleles is given; treating the initial number as a random vari-
able requires conditioning the distribution on a successful
sweep (Hermisson and Pennings 2017).

The probability of rescue and soft selective sweeps: Given
there are initially k < N(0) copies of the beneficial allele, the
number that establish is roughly binomially distributed with
K trials and success probability P.g;.. The probability of rescue
is the probability that at least one establishes (cf. equation
2 in Orr and Unckless 2014),

Prsecé}:/ue =1- (1_PeSt)K' (10)
Conditioning on rescue, the expected number of establishing

copies is

SGV KPest
Nyescue = pSGV_-
rescue

(1D

Note that when the unconditioned expected number of estab-
lishing copies, kPeg, is small, the probability of rescue is
roughly kPes. Equation 11 then implies that we expect only
one of the initial copies to establish, i.e., we expect a hard
sweep. For larger values of kP, rescue will often occur by a
soft selective sweep (Hermisson and Pennings 2005), where
multiple initial copies establish. The probability that multiple
copies establish is the probability of rescue minus the proba-
bility of a hard sweep, PSSV . — kPest(1—Pes:)* . Given res-
cue occurs, the probability it is due to a soft sweep can
therefore be written as
SGV

PSGV —1- SGV 1- Prescue
soft|rescue — rescue | _ p .
est

12)
As expected, the probability of a soft sweep given rescue is
0 when we start with a single copy, k = 1, and approaches 1 as
the number of copies becomes large. Between these two ex-
tremes, we find that Equation 12 provides reasonable esti-
mates for small d or large s but underestimates the probability
of a soft sweep otherwise (Figure 1A), when beneficial alleles
can persist at low numbers long enough to establish with
some non-negligible probability of experiencing some selec-
tion as homozygotes (thus increasing their probability of
establishment). Using the probability of establishment ob-
served in the simulations corrects this error (see File S1).
Because the expected number of copies that establishes given
rescue (Equation 11) is nearly independent of P, (as long as
it is small), Equation 11 more closely matches simulations
(Figure 1B).

Effective initial allele frequency and the backward-time
dynamics: As each of the nS8Y . expected establishing
copies given rescue is expected to rapidly reach 1/Peg
copies (see section Effective initial allele frequency), it is
as if the sweep began deterministically (Equation 1) with
initial frequency (cf. equation S1.4 in Orr and Unckless

2014)
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Lineages remaining at fixation

0 20 40 60 80 100
Initial number of beneficial alleles

Figure 1 Soft sweeps from standing genetic variation. (A) The probability
that more than one initial copy of the beneficial allele has descendants at
the time of fixation in rescue (blue; d = 0.05) or in a population of
roughly constant size (red; d = 0) as a function of the initial number of
copies of the beneficial allele, k. (B) The expected number of initial copies
of the beneficial allele that have descendants at the time of fixation. The
curves are Equation 12 (A) and Equation 11 (B). Each point is based on
100 replicate simulations where a sweep (and population recovery) was
observed. Error bars in (B) are standard errors. Parameters: N(O) = 10%.

SGV 1
pSGV — Mrescue _ K
Olrescue ™ ON'(0)Pest ~ 2N(0) PSSY,

rescue

(13)

This same conditioning applies in a population of constant size
(ie.,d = 0).Asthe decline rate, d, increases, the probability
a copy establishes, P, and, hence, the probability of rescue,
PSSV ., declines, making the conditioning stronger (i.e., in-
creasing the difference between the effective and true initial
allele frequencies). This causes selective sweeps to get
started faster as d increases, implying that, all else equal,
rescue sweeps are expected to be shorter than those in pop-
ulations of constant size.

Using pgﬁ‘e’sme as po in Equations 4 and 5 gives our semi-
deterministic prediction of the backward-time dynamics. As
shown in Figure 2, this does a reasonably good job of de-
scribing the simulation results. Looking closer, we find that
our predictions do an excellent job of approximating the
mean allele frequency as it departs from 1, but typically begin
to underestimate the mean allele frequency as frequencies
drop lower (see File S1 for more detail). Consequently, we
tend to underestimate the mean time to fixation (compare
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arrows and stars in Figure 2) and overestimate mean popu-
lation size. This error arises even under a true branching pro-
cess (e.g., under clonal reproduction) in a population of
constant size, and becomes worse as selection becomes
weaker (see File S1). The reason for this error is that
one minus the effective final allele frequency, 1 —ps = gy
is exponentially distributed with expectation 1/(2N(0)P_,)
(Martin and Lambert 2015), where P, is the backward-time
establishment probability of the heterozygote in a population
of mutant homozygotes and we have assumed fixation occurs
when the population size is N(0) (which is expected to be
true in all of our numerical examples). The variance in the
effective final allele frequency therefore increases like
1/ (Pe’st)2 ~ 1/s? as s declines, meaning that, under weaker
selection, there is much more variance in the time spent in the
stochastic phase near fixation. Combining this distribution of
waiting times to leave the stochastic phase with the nonlin-
earities of the subsequent deterministic phase causes our
semideterministic approximation to generally underestimate
allele frequency. Despite this error, we forge ahead and use
our simple semideterministic approximations in the struc-
tured coalescent (Equations 6 and 7).

Before moving on to the coalescent, however, a number of
biological insights can be gleaned from Figure 2 that will help
explain downstream results: (1) the backward-time allele
frequency dynamics are the same in rescue as they are in
populations of constant size, since they depend only on the
effective final allele frequency, ps, which does not depend on
d (Equation 3), (2) fixation times are shorter in rescue as,
forward-in-time, those sweeps tend to get started faster (i.e.,
the effective initial frequency increases with d; Equation 13),
(3) weaker selection causes larger population bottlenecks as
the deterministic portion of the sweep is then slower and a
given frequency change has less impact on population mean
fitness (Equation 1), and (4) both the allele frequency and
population size dynamics depend only weakly on the initial
number of mutants, despite large differences in the probabil-
ity of rescue, because sweeps that are less likely to occur get
started faster (Equation 13).

The structured coalescent: For a linked neutral allele in a
sample of size 2, Figure 3 compares the predicted probability
of recombination off the selective sweep (opaque dashed
curves) and coalescence on the beneficial background (opa-
que solid curves) with the mean probabilities given the allele
frequency and population size dynamics observed in simula-
tions (transparent curves). We find that our approximations
do relatively well near fixation, where our predictions of al-
lele frequency are better (Figure 2), but that our underesti-
mates of allele frequency at later times cause us to generally
overestimate rates of recombination and coalescence on the
beneficial background near the beginning of the sweep. De-
spite this error, we capture the qualitative dynamics and can
draw out a number of interesting biological consequences:
(1) the timing of the bottleneck during rescue pushes coales-
cent times toward the present, so that the distributions of
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coalescence and recombination times overlap more than in
populations of constant size, (2) the bottleneck also increases
the overall probability of coalescence in rescue, which re-
duces the probability of recombination off the sweep (com-
pare areas under dashed curves), and (3) the difference in
the structured coalescent between rescue and a population of
constant size is larger under weaker selection. This latter

point nicely illustrates the coupling between demography
and evolution in rescue; while weaker selection creates a
slower sweep, and, hence, more time for recombination off
the beneficial background, it also slows population recovery,
leading to longer and deeper bottlenecks that increase co-
alescence enough to counteract the additional time provided
for recombination.
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remain polymorphic).

Genetic diversity: Figure 4 compares our predictions of rel-
ative pairwise diversity, [E[]/E[m|unlinked] (Equations 8
and 9), against simulations, /7. Despite the errors in the
predictions of the dynamics above (Figure 2 and Figure 3),
our approximations capture the relative rates of recombina-
tion and coalescence. Two main conclusions emerge: (1) res-
cue tends to deepen dips in diversity when soft sweeps are
possible, i.e., it hardens soft sweeps because the bottleneck
increases the probability of coalescence [decreasing Py (2, T)
at the selected site, r = 0; Equation 9], and (2) rescue gen-
erally produces wider dips in diversity due to excess, and
earlier, coalescence as well shorter sweeps (the magnitude
and timing of the bottleneck, as well as lower establishment
probabilities, decreases Py (2, T) at a given r > 0; Equation
9). Note that when the probability of rescue is very small
(Figure 4D), we predict the diversity at the selected site to
actually be higher under rescue than in a population of con-
stant size. This is driven by our prediction of fixation time;
low probabilities of rescue imply high effective initial allele
frequencies, leaving less time for coalescence to occur (com-
pare solid curves in Figure 3D). This is prediction is not,
however, borne out in the observed simulations, as we tend
to overestimate coalescence in populations of constant size
and underestimate it in rescue (Figure 3D).

If the population was sampled both before and after the
selective sweep (or we have very good estimates of its
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mutation rate and long-term effective population size), the
absolute amount of pairwise diversity contains additional
information. In the Supplemental Material, Figure S1 com-
pares our predictions of [E[w] (Equation 9) against simula-
tions, showing that the bottleneck decreases background
levels of diversity as well. This decrease is more evident un-
der weaker selection, where bottlenecks are more pro-
nounced. While our predictions qualitatively match the
mean simulation results, our tendency to underestimate al-
lele frequencies, and, thus, overestimate harmonic mean
population sizes during rescue (Figure 2) causes us to gener-
ally overestimate background diversity in these cases. To cor-
rect for this, we can replace our prediction for background
diversity, E[7|unlinked] (Equation 8), in the rescue scenario
with the observed genome-wide average diversity (dashed
curves in Figure S1). A very similar result is achieved by using
effective population sizes observed in simulations in Equation
8 (results not shown). Using the observed mean diversity
level may be justified by the fact that genome-wide diversity
can be measured directly from data and is highly variable
across populations (Tajima 1983).

Tajima’s D: Figure 5 shows the Tajima’s D values observed in
simulations. There are two main take-aways: (1) the bottle-
neck during rescue causes positive background D and (2)
rescue sweeps tend to be harder and thus cause a greater
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decrease (or smaller increase) of D at the selected site. To-
gether, these patterns cause rescue to “stretch out” (e.g.,
panel D) or even invert (e.g., panel C) the pattern of D ob-
served in populations of constant size.

A simultaneous, but independent, bottleneck and sweep: It
will of course be much harder to differentiate rescue from a
simultaneous, but independent, bottleneck and sweep. In
A simultaneous, but independent, bottleneck and sweep from
SGV (Supplemental Material) we compare rescue, with
expected effective population size N, (from Equation 1), to
sweeps that occur in populations suddenly bottlenecked to
size N;. Because rescue has higher population sizes at the
beginning and end of the sweep the sweeps take longer,
leaving more time for coalescence, which leads to harder
sweeps and lower genome-wide diversity. To see if the
slightly different timings of recombination relative to coa-
lescence are detectable, we examine the full site frequency
spectrum as well as linkage disequilibrium. There is per-
haps a slightly more uniform spectrum across intermediate
frequency mutations at tightly linked sites under rescue,
as expected given coalescence then overlaps more with re-
combination (similar to the effect of recurrent mutation,
Pennings and Hermisson 2006b). Linkage disequilibrium

is elevated under rescue, largely mirroring the patterns we
see in absolute diversity.

Rescue by de novo mutation

The probability of rescue and soft selective sweeps: When
there are few copies of the beneficial allele at the time of
environmental change, rescue may depend on mutations
arising de novo at the selected site during population decline.
To predict the allele frequency and population size dynamics
in this scenario, we then need to derive the waiting time until
a rescue mutation successfully establishes. Ignoring unsuc-
cessful mutations, the first successful rescue mutation arrives
according to a time-inhomogeneous Poisson process with
rate, A(t) = 2N(t)uPes, where 2N(t) = 2N(0)e~ % describes
the decline in the number of copies of the ancestral allele
and u is rate at which ancestral alleles mutate to rescue al-
leles. Thus, the probability that a rescue mutation has estab-

T
lished by time Tis F(T) =1 — e_f oA Taking the limit as
time goes to infinity then gives the probability of rescue [cf.
equation 10 in Orr and Unckless (2008)]

DNM __ 1 _ ,—2N(0)uPey/d
Prescue - 1 e ( ) t/ °

(14

We can also calculate the probability of a soft sweep during
rescue from recurrent mutation. Taking into account the
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beneficial alleles present at time t, the rate at which additional
copies arise and establish is A(t) = 2N(t)q(t)uPest(t), where
2N(t)q(t) is the number of ancestral alleles at time ¢, and Peg,
(t) is the probability of establishment at time t, which
changes with allele frequency, and thus time, because allele
frequency influences the genotypes the rescue allele expe-
riences (i.e., its marginal fitness). Thus the number of mu-
tations that arise and fix is Poisson with rate [;” A(t)dt. To
gain intuition, we make a very rough approximation, as-
suming q(t) ~ 1 while mutations are arriving [i.e., while
N(t) is still large], so that Pegt(t) & Pest and we get the same
Poisson rate we derived above for the first successful mu-
tation, f0°° A(t)dt ~ 2N(0)uPest/d. The resulting probability
distribution for the number of mutations that establish is anal-
ogous to the result in a model with haploid selection [cf. equa-
tion 7 in Wilson et al. (2017)]. Dividing the expected number of
establishing mutations by the probability of rescue, the
expected number that establish given rescue is

—log(1 — Prescue)
= pwm_ 15
rescue

DNM
Tescue
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With these same approximations, the probability of a soft
selective sweep given rescue (i.e., the probability that more
than one copy establishes) is

PDNM

_ 1 _ ,DNM _ pDNM
soft\rescue_1 n (1 P )7

rescue rescue

(16)

asin ahaploid population [equation 8 in Wilson et al. (2017)].

Both of these approximations tends to be underestimates
(Figure 6), especially when selection is weak. This is partly
because we also tend to underestimate the probability of
rescue, which is elevated by increases in the frequency of
the beneficial allele, which increases the marginal fitness
of the ancestral allele whenever h > 0 (prolonging its
persistence and, therefore, creating more opportunity
for mutation) and increases the marginal fitness of the
mutant allele (increasing the establishment probability).
However, using the observed probability of rescue in
Equations 15 and 16 still results in underestimates (see
File S1) because ignoring increases in the beneficial allele
frequency becomes less reasonable as more copies are
established.
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Effective initial allele frequency and the backward-time
dynamics: Following Orr and Unckless (2014) (see their
Text S2 and our File S1 for more detail), taking the derivative
of the cumulative distribution of waiting times for the first
successful mutation, F(T), and dividing by the probability of
rescue gives the probability distribution function for the ar-
rival time of the first establishing rescue mutation given res-
cue, f(t). As discussed above, while the first establishing
mutation is still rare it will grow exponentially at rate
€ = (1 +sh)(1 —d) — 1, and conditioned on its establishment,
will very quickly reach 1/P.y copies. Integrating over the
distribution of arrival times then gives the expected number
of copies of this successful mutation at time t since the en-
vironmental change given rescue, [, (e ¢ /Peg)f(7)d7.
Solving this integral, evaluating at t = 0, and dividing by the
total number of alleles at the time of environmental change,
2N(0), it is therefore as if the successful mutation was
present at the time of environmental change, with frequency

1 1
2N(0) Pest
y (1 —PRRM)T(1 + e/d, log(1 — PRRM.)) = T(1 + e/d)]

rescue rescue

log(1—PPNM )E/d

rescue

DNM —
p O|rescue —

)
DNM
P rescue

a7

where I'(z) is the gamma function [Equation 6.1.1 in
Abramowitz and Stegun (1972)] and I'(a,x) is the incom-
plete gamma function [equation 6.5.3 in Abramowitz and
Stegun (1972)]. The factor 1/P.y > 1 increases the effective
initial frequency, because we have conditioned on establish-
ment, while the last factor decreases the effective initial fre-
quency, because we must wait for the mutation to arise.
When the unconditioned expected number of rescue muta-
tions, —log(1 — PPNM ) = 2uN(0)Pest/d, is small, this cancels
out and the last factor in Equation 17 becomes approximately
d/(d + €), which is independent of the mutation rate (as in
the haploid case; Orr and Unckless 2014). That is, condition-
ing on unlikely rescue, rescue mutations arise earlier in pop-
ulations that decline faster.

With constant population size, the time of establishment of
the first successful mutation is irrelevant for the backward-in-
time dynamics, and, therefore, for the resulting genetic signa-
tures (in contrast, when d > 0 we need to predict the time of
establishment to predict the population size dynamics; Equation
5). For populations of constant size, we need only determine the
effective allele frequency at the time the sweep begins, which is
simply 1/(2N(0)Pes ), independent of the mutation rate.

Figure S2 compares our analytical approximations of the
dynamics (using Equations 5 and 17) against individual-
based simulations. As with rescue from standing genetic var-
iance (Figure 2), the nonlinearities of the deterministic phase
cause our semideterministic approximation to underestimate
mean allele frequencies and overestimate mean population
sizes as the allele frequency declines from fixation. We again
see that rescue sweeps tend to be shorter than those in pop-
ulations of constant size (due to lower establishment proba-
bilities) and that the bottleneck sizes and sweep times given
rescue depend little on the probability of rescue.

The structured coalescent: Figure S3 shows the timing of
coalescence, recombination, and mutation for a sample of size
two at a linked neutral locus. The patterns of coalescence and
recombination are essentially the same as observed during
sweeps from standing genetic variation (Figure 3). The timing
of mutation is qualitatively similar to that of coalescence, peak-
ing near establishment (since both depend on the inverse of
allele frequency). The main effect of the excess coalescence
during rescue is a reduced probability of mutating off the sweep
(compare areas under dotted curves), which is exacerbated by
rescue sweeps being shorter.

Genetic signatures at linked neutral loci: Figure S4 shows
relative pairwise diversity around the selected site. The pat-
terns here are nearly identical to those found after sweeps
from standing genetic variation (Figure 4), although the
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difference between rescue and the constant population size
case are larger here, perhaps due partly to the reduction in
rates of mutation off the selected sweep (and also because
our parameter choice causes the bottlenecks to be deeper
when rescue occurs by mutation). Figure S5 shows Tajima’s
D values around the selected site, which are nearly identical
to those observed after sweeps from standing genetic varia-
tion (Figure 5).

On a related note, Wilson et al. (2017) reasoned that,
because soft sweeps from recurrent mutation are expected
when rescue is likely while hard sweeps are expected when
rescue is rare (Equation 16), population bottlenecks will tend
to be more extreme when rescue occurs by a hard selective
sweep. From this they argued it might actually be easier to
detect soft sweeps from patterns at linked neutral loci, as
bottlenecks are expected to obscure the signal. Here, we
show the importance of conditioning on rescue, which
roughly equalizes bottleneck sizes across scenarios with very
different probabilities of rescue (e.g., due to differences in
mutation rate; Figure S2), potentially making harder sweeps
easier to detect due to their greater effect on local gene ge-
nealogies (Figures S3-S5).

Rescue by migrant alleles

The probability of rescue and soft selective sweeps: Rescue
can also arise from beneficial alleles that arrive via migration.
Assuming that the number of migrant alleles that replace a
resident allele each generation is Poisson with mean m, the
waiting time until the first successful migrant is exponential
with rate A= mPe,. Given the population is expected to per-
sist in the absence of beneficial alleles for log(N(0))/d gen-
erations, the probability of rescue is therefore roughly the
probability the first successful migrant arrives by then,

MIG
P rescue

=1 - N(0) ™Pes/d, (18)

Under rescue from standing variation or new mutation we
derived the probability and extent of soft selective sweeps
from the forward-time process. In contrast, under rescue from
migration we use the coalescent. In particular, Equation 6
shows that the per generation probability of migration and
coalescence depend on population size and beneficial allele
frequency in the same way. This similar form implies that the
relative rates at which lineages coalesce and migrate at the
selected site does not depend on the population size and
allele frequency. Pennings and Hermisson (2006a) used this
fact to show that, in an ideal population of constant size, the
number of unique migrant haplotypes contributing to a pre-
sent-day sample, as well as their proportions, is described by
Ewens’ sampling formula (pp. 334ff in Ewens 2004) when
we replace 6 with 2m. Powerfully, this results holds even in
nonideal populations of changing size (as briefly noted by
Pennings and Hermisson 2006a, pp. 1081-1082)—including
during evolutionary rescue—as long as the relationship
between the effective and census population sizes remains
the same [i.e., if N,(t)/N(t) is a constant; in which case we
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now replace 6 with 2mN,/N in Ewens’ sampling formula].
Thus the softness of a sweep from migration depends only
on the migration rate and variance in gamete numbers (o2,
which determines N, /N; see section Genetic drift in the simu-
lated lifecycle in the Supplemental text), and is the same during
rescue as it is in a population of constant size (i.e., it is inde-
pendent of d). The analogous result for rescue by de novo
mutation does not hold (as it does for a population of constant
size, Pennings and Hermisson 2006a), since the rate of muta-
tion is not inversely proportional to population size (Equation
6).

Here, we use just two properties of Ewens’ sampling for-
mula, the expected number of unique migrants among a sam-
ple of size n (p. 336 in Ewens 2004),

2mN, /N

MIG

Mrescue = Z T ; )
= 1+ 2mN, /N

(19)

and the probability that this is >2 (equation 10.9 in Ewens
2004),

n—1
pae 1 J[—L—— (20)
soft|rescue H] + 2mNe/N
Figure 7 shows that these formulas perform very well, even
when we sample the entire population [n = 2N(0)].

Population dynamics and the coalescent: In the section
Population dynamics and the coalescent under rescue by migra-
tion in the Supplemental text, we derive the expected back-
ward-time dynamics and structured coalescent under rescue
by migration. The results are closely analogous to rescue
from mutation. We do not explore genetic signatures at
linked neutral sites in this case as these depend on the de-
mographic history of the metapopulation. Previous work has
explored some potential signatures of migrant sweeps in pop-
ulations of constant size (e.g., Setter et al. 2019).

Discussion

Here, we have explored genetic signatures of evolutionary
rescue by a selective sweep. By allowing demography to
depend on the absolute fitness of the genotypes that comprise
the population, we explicitly invoke a feedback between de-
mography and evolution. This feedback restricts the range of
dynamics, and, thus, the signatures, that one should expect to
observe. We find that, because the probability an allele with a
given selective advantage establishes is reduced in declining
populations (Equation 2; see also Otto and Whitlock 1997),
selective sweeps causing rescue are expected to be harder
than those in populations of constant size when sweeps arise
from standing genetic variance or recurrent mutation (Fig-
ures 1 and 6; consistent with Wilson et al. 2014, 2017). Fur-
ther from the selected locus, the demographic bottleneck
experienced during rescue increases the rate of coalescence



relative to mutation and recombination (Figure 3 and Figure
S3), creating wider dips in relative diversity (Figure 4 and
Figure S4) and lower absolute diversity genome-wide (Figure
S1; consistent with Innan and Kim 2004). Like absolute di-
versity, Tajima’s D captures both the hardening of the sweep
and the demographic bottleneck, causing D to often reach
both higher and lower values under rescue (Figure 5 and
Figure S5). These differences between evolutionary rescue
and standard sweeps all become larger under weaker selec-
tion (where the heterozygote has a smaller growth rate,
s/2 — d) as the slower sweeps that result imply deeper, longer
bottlenecks during rescue. If, instead, we compare rescue to
populations bottlenecked to the same effective population
size during the sweep, we find that the remaining signatures
of rescue are harder sweeps that take longer to complete,
allowing more time for coalescence, and, hence, lower ge-
nome-wide diversity and elevated linkage disequilibrium
(Figure A3). The subtle difference in the timing of recombi-
nation between the two scenarios, with recombination over-
lapping more with coalescence during rescue, may also
increase variation in the number of derived mutations at a
site (as expected following soft sweeps from recurrent muta-
tion in populations of constant size; Pennings and Hermisson
2006b), giving rise to site frequency spectra with perhaps
slightly “flatter bottoms” (Figure A2).

In contrast to standing variance or mutation, when sweeps
arise from a constant rate of migration demography has no
affect on the number of beneficial alleles that establish (as
briefly noted by Pennings and Hermisson 2006a), and, thus,
rescue has no affect on the hardness of the sweep (Figure 7).
Further, because the rates of coalescence and migration are
both inversely proportional to the number of beneficial al-
leles [N(t)p(t), Equation 6, Figure A5], the distribution of
the number and frequency of migrant haplotypes spanning
the selected site is given by Ewens’ sampling formula (Ewens
1972), with mutation replaced by migration (Pennings and
Hermisson 2006a). The signatures of rescue by migration at
linked neutral loci depend on the demographic and selective
history of the metapopulation, which we do not explore here.

Evolutionary rescue has been explored theoretically (e.g.,
Gomulkiewicz and Holt 1995; Uecker and Hermisson 2016;
Anciaux et al. 2018) and observed repeatedly in both exper-
iments (e.g., Bell and Gonzalez 2009; Lindsey et al. 2013;
Ramsayer et al. 2013) and in host-pathogen systems in na-
ture (e.g., Wei et al. 1995; Feder et al. 2016). More recently, a
number of studies have examined genetic data following pur-
ported evolutionary rescue in the wild, including bats alter-
ing hibernation to survive white-nose syndrome (Gignoux-
Wolfsohn et al. 2018), killifish deleting receptors to tolerate
pollution (Oziolor et al. 2019), and tall waterhemp evolving
herbicide resistance (Kreiner et al. 2019). In the latter two
cases, there is strong evidence of a recent selective sweep by a
very beneficial allele (in one of these cases the evidence in-
cludes reduced nucleotide diversity at the selected site;
Kreiner et al. 2019). Genetic evidence for a putatively recent
demographic bottleneck was presented in only one of these
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Figure 7 Soft sweeps from migrant alleles. (A) The probability that more
than one migrant lineage has descendants at the time of fixation in
rescue (blue; d = 0.05) or in a population of roughly constant size
(red; d = 0) as a function of the migration rate, m. (B) The expected
number of migrant lineages that have descendants at the time of fixation.
The curves are Equation 20 (A) and Equation 19 (B) usingn = 2N(0) (i.e.,
sampling the entire population). Each point is based on 100 replicate
simulations where a sweep (and population recovery) was observed. Error
bars in (B) are standard errors. Parameters: N(0) = 10%.

studies (Oziolor et al. 2019), being detected from genome-
wide reductions in nucleotide diversity and increases in Taji-
ma’s D relative to populations that did not experience the
same environmental change. Developing a statistical model
to fit our theory to such data in a more quantitative way could
lead to parameter estimates, which could then inform how
likely rescue may have been (or if persistence was assured
regardless, d ~ 0). To do so one would also have to incorpo-
rate the time since fixation, as the site frequency spectra and
linkage disequilibrium will begin a return to their neutral
expectations following the sweep and bottleneck (e.g., the
sweep signatures in Tajima’s D and linkage disequilibrium
decay within ~ 2N, generations; Przeworski 2002). Ignoring
the time since fixation would therefore cause underestimates
of s and d, making rescue look more like a weaker sweep in a
constant population. In contrast, the deeper and wider dips in
genetic diversity observed under rescue would likely inflate
estimates of selection if demography was ignored.

A lingering question that helped motivate this study is
whether one could ever infer evolutionary rescue from genetic
data alone. Such a possibility would greatly help assess the
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relevance of rescue in nature. In the empirical examples just
discussed, we implied that evidence for a sweep and a bot-
tleneck is consistent with rescue. Yet stronger support for
rescue would come from inferring the coincident timing of the
sweep and bottleneck. Our analysis suggests that detecting
coincident sweeps and bottlenecks from site frequency spectra
and linkage disequilibrium will be difficult as the relative
timing of coalescence and recombination leaves only subtle
signatures. Consistent with this, explicit estimates of the
timing of a sweep (e.g., Ormond et al. 2016) or a bottleneck
(reviewed in Beichman et al. 2018) given a genetic sample
collected from a single time point come with relatively large
amounts of uncertainty. Sampling before and after the poten-
tial rescue event may provide one way forward, as it would
help tighten the bounds on the timing of the bottleneck and
sweep. However, it should be noted that, even if the sweep
and bottleneck appear to have co-occurred, this correlation in
timing does not imply it was caused by a feedback between
demography and evolution. It is, of course, difficult to say in
any case—without observing replicate populations go extinct
or performing experiments—whether extinction would have
occurred (or will occur) without adaptive evolution, as re-
quired by the strict definition of evolutionary rescue. More
experiments (such as in Régo et al. 2019) that explore the
genetic consequences of verified rescue may help develop a
robust genetic signal of the feedback between demography
and evolution during rescue, or at least determine if such a
feedback can be detected in real genomes.

A strength of the above analysis is that we have explicitly
modeled a feedback between demography and evolution,
restricting the range of genetic signatures we consequently
expect to observe. To take a recent example, Harris et al.
(2018) have claimed that the lower reductions in genetic
diversity within HIV populations adapting to less efficient
drugs (as observed by Feder et al. 2016) could be due to
weaker bottlenecks or slower sweeps rather than sweeps be-
ing softer, i.e., arising from multiple mutations. Fortunately,
in this case genetic time-series data were available to show
that the ability of HIV to reliably adapt on a short time-scale
necessitates mutation rates and selection coefficients that
imply adaptation by soft sweeps is likely (Feder et al.
2018). Formally modeling a feedback between demography
and evolution also helps narrow the relevant parameter
range. For example, under a haploid version of the model
explored here (as is applicable to HIV) the minimum
population size during rescue by new mutations is
N(0)s(2N (O)s)fd/ */(s —d) [equation 22 in Orr and Unckless
(2014)]. Thus, for a given initial population size, N(0), and
selection coefficient, s, the smallest minimum population
size is elnS/(2s), where S =2N(0)s, implying that the
smallest minimum population size consistent with the model
is roughly proportional to 1/s. The imposed feedback be-
tween demography and evolution therefore precludes simul-
taneously slow sweeps and large bottlenecks [for example,
negating the two smallest bottleneck sizes in Figure 3A of
Harris et al. (2018) and constraining one to the upper right
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portion of Figure 3A,B in Feder et al. (2018)]. While it is very
likely in this case that soft sweeps are indeed the cause of the
pattern (Feder et al. 2018), incorporating an explicit model of
how demography and evolution interact could help focus
future debates.

The model presented here is but one model of evolutionary
rescue, which involved a number of assumptions. One of these
is that the beneficial allele acts multiplicatively with the
ancestral background, so that the absolute fitness its carriers,
(14sh)(1—d) and (1 +s)(1 — d)—and thus the probability
it establishes—are affected by the decline rate of the ances-
tral genotype, d. Meanwhile, this same assumption caused
the relative fitness of the mutants, 1 + sh and 1 + s—and
thus the allele frequency dynamics during the sweep, once
started—to be independent of the initial decline rate (Equa-
tion 1). If, instead, we made the absolute fitness of the het-
erozygote and mutant homozygote independent of the initial
decline rate, say 1 + sh and 1 + s, then the reverse would be
true; the relative fitness of the mutant would depend on the
initial rate of population decline, d, while its absolute fitness
while establishing would not. We expect these effects would,
however, largely cancel out (higher establishment probabili-
ties will cause longer sweeps and more coalescence, but
slower changes in allele frequency will allow more recombi-
nation off the sweep). In any case, because our results de-
pend primarily on the absolute and relative fitness of the
heterozygote, the alternative model just described may
closely match the model analyzed in detail here when sh is
replaced by (sh +d)/(1 —d).

We have also assumed that the beneficial allele acts addi-
tively with the ancestral allele at that locus (h = 1/2). This
assumption has been made for convenience; it yields a simple
explicit approximation of the allele frequency and population
dynamics (Equation 5) that allows closed-form solutions of
the structured coalescent (Equation 7), greatly accelerating
our computation of the coalescent and pairwise diversity
(Equation 9). Alternative forms of dominance are, however,
likely and will impact our results. At one extreme, a com-
pletely recessive beneficial allele (h = 0) is much less likely
to establish when compared to additivity, even in a constant
population [compare Equation 2 with v = 1 and € =s/2 to
equation 15 in Kimura (1962)], making rescue nearly impos-
sible in outcrossing populations (Uecker 2017). In fact, any
h <d/s will cause the heterozygote to have a negative growth
rate (i.e., be subcritical), meaning that establishment will rely
on the stochastic persistence of subcritical lineages until they
create a supercritical mutant homozygote, analogous to the
fixation of underdominant alleles or chromosomal rearrange-
ments. As it is very unlikely that such alleles will establish in
time to rescue the population (compared to supercritical het-
erozygotes), we have neglected this parameter range in order
to focus on parameter values that are more likely to be
reflected in empirical systems where rescue has occurred. It
may, however, be possible to combine our approach with that
taken for sweeps with arbitrary dominance in populations of
constant size (Ewing et al. 2011) and the probability of



establishment of underdominant alleles [e.g., equation 3 in
Lande (1979)]. At the other extreme, complete dominance (h
= 1) will greatly increase the probability of establishment
and rescue (Uecker 2017), as well as population mean fitness
and, thus, population size. All else equal, we therefore expect
rescue to have less effect on the signatures of selective sweeps
relative to those in populations of constant size when the
rescuing allele is more dominant. Given that the marginal
fitness of the beneficial allele will not depend on allele fre-
quency under complete dominance, we expect dynamics
much like the haploid model (Orr and Unckless 2014), where
simple predictions of allele frequency and population size are
more accurate.

Finally, it is of course possible to model rescue under much
more complex lifecycles and population structure (e.g., as
expected for the evolution of malarial drug resistance; Kim
et al. 2014), at least using simulations. More complex life-
cycles, such as those of parasites like Plasmodium and HIV,
could cause the bottleneck to have additional impacts on the
resulting genetic signature. For example, our populations are
obligate sexual outcrossers, meaning that the probability of
recombination does not depend on the population size (cf.
Equation 6) as everyone must mate with someone. However,
with selfing and/or facultative sex (genetic exchange), rates
of recombination could be lower at lower population densi-
ties (as expected for HIV), which would increase the impact
of bottlenecks on resulting genetic signatures.

Evolutionary rescue is only one example of myriad process-
eswhere demography and evolution feedback on one another.
Our approach—combining forward-time eco-evolutionary
models with coalescent theory to predict genetic signatures—
could be used in many other scenarios. For instance, adap-
tive colonization of new habitat (a.k.a., adaptive niche
expansion) is a closely related process for which a similar
approach has already been taken (Kim and Gulisija 2010).
As in the case of rescue, explicitly modeling the feedback
between demography and evolution in adaptive niche expan-
sion changes the expected signatures left behind by selective
sweeps as compared to (bottlenecked) Wright-Fisher popu-
lations. Such an approach is interesting from a conceptual
point of view, improving our understanding of how eco-
evolutionary dynamics affect genetic signatures. But further,
given the computational power and simulation platforms
available today, it is no longer necessary to restrict oneself
to Wright-Fisher populations—researchers may now simulate
under much more ecologically realistic models. As our mod-
els become more complex, developing simple approxima-
tions will become increasingly important for intuition.
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