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Abstract

Early language environment plays a critical role in child language development. The Language 

ENvironment Analysis (LENA™) system allows researchers and clinicians to collect daylong 

recordings and obtain automated measures to characterize a child’s language environment. This 

meta-analysis evaluates the predictability of LENA’s automated measures for language skills in 

young children. We systematically searched reports for associations between LENA’s automated 

measures, specifically, adult word count (AWC), conversational turn count (CTC), and child 

vocalization count (CVC), and language skills in children younger than 48 months. Using robust 

variance estimation, we calculated weighted mean effect sizes and conducted moderator analyses 

exploring the factors that might affect this relationship. The results revealed an overall medium 

effect size for the correlation between LENA’s automated measures and language skills. This 

relationship was largely consistent regardless of child developmental status, publication status, 

language assessment modality and method, or the age at which the LENA recording was taken; 

however, the effect was weakly moderated by the gap between LENA recordings and language 

measures taken. Among the three measures, there were medium associations between CTC and 

CVC and language, whereas there was a small-to-medium association between AWC and 

language. These findings extend beyond validation work conducted by the LENA Research 

Foundation and suggest certain predictive strength of LENA’s automated measures for child 

language. We discussed possible mechanisms underlying the observed associations, as well as the 

theoretical, methodological, and clinical implications of these findings.
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Early language environment plays a critical role in child language and cognitive 

development that is related to later personal, academic, and social achievements (e.g., 
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Gilkerson et al., 2018; Hart & Risley, 1995; Huttenlocher, Vasilyeva, Cymerman, & Levine, 

2002; Topping, Dekhinet, & Zeedyk, 2011). In the landmark longitudinal study, Hart and 

Risley (1995) examined the amount of language that children heard from 42 Kansas families 

of various socioeconomic status. They recorded monthly hour-long interactions between 

caregivers and their children from age 7 months to 3 years, and calculated the number of 

words caregivers produced. Based on these calculation, it was estimated that by 4 years of 

age, children from low-income families were exposed to 30 million fewer words (known as 

the 30-million Word Gap) than children from professional families. More importantly, the 

amount of caregiver speech to children also significantly predicted child language and 

cognitive development later in life. Much subsequent research has extended this work and 

examined the properties of early language environment and their relationships 

developmental outcomes (Greenwood, Thiemann-Bourque, Walker, Buzhardt, & Gilkerson, 

2011; Hoff & Naigles, 2002; Romeo et al., 2018; Rowe, 2012; Weisleder & Fernald, 2013; 

Weizman & Snow, 2001). Collectively, this body of work provides strong evidence that early 

language experience is related to various aspects of development.

While naturalistic language input recorded from the home environment provides 

spontaneous speech material, the form of data collection and analysis used in Hart and 

Risley (1995)’s and subsequent work required extensive time. For example, In Hart and 

Risley (1995)’s work, 1-hour recording samples required 8 to 10 hours’ of human 

transcription, which was very labor-intensive and time-consuming. The costs and challenges 

associated with methodologies for analyzing a massive amount of language input have 

apparently been proven a major barrier for conducting large-scale studies examining the 

naturalistic language environment. Therefore, most studies examining child language 

experience thus far were conducted in laboratory settings, with short audiovisual recordings 

and often with experimenters present moderating the recording sessions. This form of data 

collection, while practical and valuable, may not be representative of children’s authentic 

language environment and thus may not be generalizable. Indeed, recently, Sperry, Sperry, 

and Miller (2019) criticized that Hart and Risley (1995)’s study only included a subset of the 

total number of words spoken to the children, which did not reflect children’s full language 

environment. Therefore, gathering and analyzing naturalistic speech samples from the home 

environment for a longer period than was previously practical would be an important next 

step for the field.

With the development of automatic speech processing (ASP) technologies, new tools were 

designed and invented that allowed for automated analysis of speech data. The Language 

Environment Analysis (LENA™, the LENA Research Foundation, Boulder, CO) system is 

the first ASP device that was designed to automatically analyze speech occurring in the 

naturalistic home environment (Christakis et al., 2009; Xu, Yapanel, & Gray, 2009; 

Zimmerman et al., 2009). The initial goal of the LENA Research Foundation into developing 

the LENA system was to provide an automatic estimate of Hart and Risley’s indices of the 

amount of language occurring in the home environment, and thus informing and guiding 

parents and clinicians seeking solutions to close the Word Gap. Since the advent of the 

LENA system, researchers and clinicians have been using it to measure various aspects of 

the child language environment, including the quantity of speech and interactions with 

caregivers in the home. Moreover, LENA has also been used to examine whether these 
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measures contribute to explaining variabilities in children’s linguistic and cognitive 

outcomes (Adams et al., 2018; Ambrose, VanDam, & Moeller, 2014; Gilkerson et al., 2018; 

VanDam, Ambrose, & Moeller, 2012; Weisleder & Fernald, 2013). The primary purpose of 

the present study was to explore this latter line of work and examine the predictive validity 

of LENA’s automatically generated metrics for child language skills using systematic review 

and meta-analysis methodology.

The LENA system

The LENA system consists of a digital recorder and software that automatically processes 

the audio. The LENA recorder is a compact wearable digital language processor (DLP) 

which collects daylong recordings of a child’s early language environment. It measures 

approximately 3–3/8” x 2–3/16” x 1/2”, and weighs about three ounces. The LENA DLP is 

secured in a pocket on a specially designed vest or clothes worn by the target child; it allows 

for up to 16 hours of continuous recording of speech data collected in the vicinity of the 

target child. Once the data collection is completed, the LENA DLP is connected to a 

computer; the LENA software automatically uploads and analyzes the auditory data using a 

series of iterative modeling algorithms developed by the LENA Research Foundation. It then 

segments the daylong recordings based on acoustic energy and generates three measures that 

are related to Hart and Risley’s indices. These measures include adult word count (AWC; the 

total number of adult words spoken near the target child who wears the device), 

conversational turn count (CTC; the total number of conversational interactions the child 

engages in with an adult in which one speaker initiates and the other responds within five 

seconds), and child vocalization count (CVC; the total number of speech-like utterances 

produced by child). The LENA software also generates other classifications, including 

overlapping speech, TV and media, background noise, and silence to characterize different 

aspects of the child auditory environment.

In this meta-analysis, we focused on measures of AWC, CTC, and CVC out of both 

theoretical and methodological considerations. From a theoretical perspective, these 

measures are the most relevant to Hart and Risley’s indices to characterize the child 

language environment. One may argue that CVC is a measure of child’s own linguistic 

productions, but not necessarily a measure of child language environment. We included 

CVC out of two considerations. First, according to auditory feedback models, hearing one’s 

own voice is required for vocal learning as it allows for an evaluation of the auditory 

feedback relative to the adult template (Brainard & Doupe, 2000). Second, research has 

shown that child vocal development reflects the adult language model and is driven by 

interaction with other social entities (Moeller et al., 2007). Measures of AWC, CTC, and 

CVC may not be independent of each other, as both theoretical and empirical evidence 

indicates a dynamic, reciprocal, and contingent vocal interactions between caregivers and 

their infants (Goldstein, King, & West, 2003; Pretzer, Lopez, Walle, & Warlaumont, 2019; 

Sameroff, 1975). That is, a larger number of AWC may accompany larger numbers of CVC 

and CTC. From a methodological perspective, there are not enough studies that have 

reported data on other measures to be included in the meta-analysis. According to recent 

reviews on the research using the LENA system, research thus far has focused primarily on 

AWC along with CTC and CVC, whereas research that has included other automated 
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measures is very limited (Ganek & Eriks-Brophy, 2018; Greenwood, Schnitz, Irvin, Tsai, & 

Carta, 2018). For example, in a most recent review article on the use of the LENA system, 

Greenwood et al. (2018) showed that whereas 39 reports included AWC, 32 included CTC, 

and 31 included CVC, only 4 reports examined TV and electronic sounds, and 2 included 

analyses of background noise.

LENA accuracy and reliability

Although LENA removes the most central barrier in analyzing massive-scale naturalistic 

speech and has been adopted in a variety of settings by researchers, clinicians, educators, 

and parents, questions remain about the validity of the LENA system in quantifying the 

language environment. Before we discuss LENA’s predictability strength, we first overview 

the research that has assessed LENA’s validity (Gilkerson, Coulter, & Richards, 2008; 

VanDam & Silbert, 2016; Xu et al., 2009).

The first accuracy and reliability of LENA’s automated analyses were assessed by the LENA 

Research Foundation through comparisons between LENA’s automated measures to human 

transcription. They collected 70 12-hour long audio files from children 2 to 36 months and 

transcribed one hour of each file. These data were also included as part of the Natural 

Language Study (NLS), the LENA Research Foundation’s normative study (Gilkerson et al., 

2008; Gilkerson et al., 2018). The results showed that the segmentation agreement 

percentages between LENA software and human transcribers were 82%, 76%, 71%, and 

76% for adult, child, TV, and other speech, respectively (Xu et al., 2009). Moreover, the 

Pearson correlation between LENA and human-based AWC estimates was high, r = .92; 

however, correlations between LENA output and human-based transcription for the 

measures of CTC and CVC were not reported.

Subsequent research has also compared LENA’s automated measures with human 

transcriptions (Busch, Sangen, Vanpoucke, & van Wieringen, 2018; Gilkerson et al., 2015; 

Soderstrom & Wittebolle, 2013; VanDam & Silbert, 2016). For example, Soderstrom and 

Wittebolle (2013) examined AWC and CVC from 183 5-minute speech samples from 11–

20-month-old English-speaking children recorded at home and daycare settings. The 

Pearson correlation coefficients between the LENA and human-coded data were r = .76 and 

r = .69 for AWC and CVC, respectively. Gilkerson et al. (2015) assessed LENA AWC and 

CTC estimates for the Chinese Shanghai dialect and Mandarin languages. They selected 5-

minute speech samples from 22 children between the ages of 3 and 23 months. The results 

showed a correlation coefficient of r = .72 between LENA generated and human transcribed 

measures for AWC. However, the Pearson correlation coefficient for CTC was very low, r 
= .22. They explained that the low correlation coefficient for CTC was mainly due to the 

three outliers that they identified; after excluding the three outliers, the results yielded a 

correlation of r = .72 for CTC. Moreover, Busch et al. (2018) selected samples from 8 

daylong recordings of 6 Dutch-speaking children between 2 and 5 years of age. The 

correlation coefficients were r = .87 for AWC, r = .52 for CTC, and r = .77 for CTC. 

Recently, Cristia, Bulgarelli, and Bergelson (2020) conducted a meta-analysis comparing 

LENA’s automated measures to human transcription. The findings showed a mean 

correlation coefficient of r = .79 for AWC (based on 13 reports), r = .36 for CTC (based on 6 
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reports; note that the low correlation for CVC was largely pulled by the three outliers in 

Gilkerson et al. (2015)’s study), and r = .77 for CVC (based on 5 reports). In sum, the 

above-mentioned small number of studies that have compared LENA’s automated measures 

with human transcriptions mainly focused on AWC, with less emphasis on CTC, and CVC. 

Findings from this research suggested a relatively reliable correlation between LENA’s 

automated measures and human transcription for AWC and CVC, but less reliable 

correlation for CTC.

In spite of these findings, it should be noted that most validation work tended to assume that 

human coders were often accurate, and any inconsistency between LENA automated output 

and human transcriptions was due to LENA’s error. However, we should acknowledge that 

humans also make errors in transcription (Stolcke & Droppo, 2017; Xiong et al., 2017). For 

example, Xiong et al. (2017) measured human error rate in a speech recognition task. They 

found that the professional transcribers had error rates of 5.9% and 11.3%, which was 

slightly higher than the automated speech transcription system that had the error rates of 

5.8% and 11.0%. Among the studies which compared LENA automated and human coded 

measures, very few have reported inter-coder reliability for human coders. For example, 

Soderstrom and Wittebolle (2013) compared two human coders’ transcriptions and reported 

an inter-coder agreement of 76% based on the results from 216 5-minute segments. 

Furthermore, validation studies have been limited to the examination of a small sample of 

speech out of practical considerations; therefore, it is still unclear whether LENA’s 

reliability would change as a function of sampling size/duration, that is, it is possible that the 

correlations between LENA’s automated measures and human transcriptions will be higher 

when longer samples of LENA data are transcribed and compared. Therefore, the majority 

of validation studies, which transcribed 5- or 10-minutes randomly sampled segments, may 

not have best reflected LENA’s accuracy. Regardless, it is important to continue evaluating 

LENA’s accuracy and reliability using a variety of methodologies, sampling methods, and 

analyses. Results from this line of work are likely to improve the LENA algorithms and 

procedures to generate more accurate outputs in the future.

Using LENA’s automated measures for predicting language outcomes

Since the introduction of the LENA system, a growing body of work has examined whether 

LENA’s automatically generated metrics, (e.g., AWC, CTC, and CVC), contributed to 

explaining variability in child language and cognitive development. These studies involved 

infants and children with diverse developmental status, including typically-developing (TD) 

infants (Gilkerson et al., 2018; Greenwood et al., 2011), preterm infants (Caskey, Stephens, 

Tucker, & Vohr, 2014), infants with autism spectrum disorder (ASD) (Patterson, 2010), and 

infants with hearing loss (HL) (Ambrose et al., 2014; VanDam et al., 2012), and from 

different language backgrounds, including infants learning English (Gilkerson et al., 2018; 

Greenwood et al., 2011), Finnish (Elo, 2016), and Mandarin (Xu, Zhang, Mao, Xin, & Xiao, 

2012).

For example, Ambrose et al. (2014) collected daylong recordings of the auditory 

environment from 28 children with mild-to-severe hearing loss within 6 months of their 

second birthday. On average, the children received approximately 1400 AWC per hour and 
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participated in 60 conversational blocks per hour, although there was a considerable within-

group variability of the AWC and CTC. Furthermore, they showed that CTC, but not AWC, 

significantly predicted children’s communication outcomes measured at 2 and 3 years of 

age. Similarly, Caskey et al. (2014) collected recordings from 36 preterm infants in the 

NICU at 32 and 36 weeks’ postnatal menstrual age. They collected language and cognitive 

scores when the infants were 7 and 8 months of age. The findings showed that AWC in the 

NICU was positively correlated with later language and cognitive scores. In a recent large-

scale longitudinal study conducted by the LENA Research Foundation, Gilkerson et al. 

(2018) collected monthly daylong recordings from 146 children (2 to 17 months, 18 to 24 

months, and ≥ 25 months). Language and cognitive assessments were taken when the 

children were 9 to 14 years of age. They found that AWC and CTC at 18 to 24 months of 

age accounted for 3% to 30% and 23% to 37% of the variance in language and cognitive 

outcomes, respectively. However, no significant correlations were found for the 2 to 17 

months and ≥ 25 months age groups.

Taken together, this body of research, in general, suggests specific associations between 

LENA’s automated measures and child language and cognitive outcomes, providing further 

evidence to support Hart and Risley’s findings that the early language environment plays a 

critical role in child language development. However, with regard to some LENA’s 

automated measures, results have been inconsistent across studies. For example, whereas 

Gilkerson et al. (2018) found a significant correlation between AWC and language outcome 

measures, Ambrose et al. (2014) did not show such an association. Moreover, whereas 

Gilkerson et al. (2018) only found significant associations between AWC and outcome 

measures during the relatively narrow developmental window of 18 to 24 months of age, 

Caskey et al. (2014) and others (Adams et al., 2018; Greenwood et al., 2011) found such 

associations during much earlier period. These contrasting findings may be due to 

differences in methodologies, experimental design, population characteristics, among others, 

which render the interpretations of the results perplexing. Therefore, quantitatively 

combining effect sizes across studies using systematic review and meta-analysis methods 

will provide more accurate population estimates of the associations between LENA’s 

automated measures and child language outcomes. In addition, given a great deal of 

variability with respect to methodologies and sample characteristics, it is relevant to test the 

moderation effects of these variables with respect to these associations between LENA’s 

automated measures and language outcomes.

Purpose of the current study

The primary objective of this systematic review and meta-analysis was to evaluate the 

predictability of LENA’s automated measures for language development in a variety of 

populations. Specifically, we asked to what extent do AWC, CTC, and CVC predict child 

language development? We predicted that these measures, in general, would significantly 

predict child language, although it is possible that some of these measures might show 

stronger predictive power. We also conducted moderator analyses to examine potential 

factors that might influence this relationship. Findings from this meta-analysis will have 

significant theoretical, methodological, and clinical significance. From a theoretical 

perspective, examining the specific measures of the early language environment that relate to 
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child language would enhance our understanding of the developmental trajectory and 

provide insights into theories of child language acquisition. From a methodological 

perspective, although the primary goal of the current research was not to assess LENA’s 

accuracy, the analysis of the predictability of LENA’s automated measures for child 

language outcomes would serve as an indirect way to evaluate LENA’s validity for 

estimating aspects of child language input, guiding the future exploration of language 

environment using LENA. The rationale was that if LENA algorithms provide reliable 

estimates of child language input, there would be a reliable predictive power of LENA’s 

automated measures for child developmental outcomes. From a clinical perspective, current 

early intervention programs have recognized the importance of family-centered early 

intervention for children who are at risk for language delays (Moeller, Carr, Seaver, Stredler-

Brown, & Holzinger, 2013). Therefore, knowledge about which measures are the most 

predictive of child language development would improve clinicians’ ability to coach and 

encourage families to provide a language environment tailored to promote their child’s 

language development.

Methods

Study database development

We followed the Preferred Reporting Items for Systematic Review and Meta-Analyses 

survey protocol (PRISMA; Moher, Liberati, Tetzlaff, & Altman, 2009) to conduct the 

analysis. Multiple methods were used to search for relevant literature. First, we put together 

a list of 20 reports based on the authors’ knowledge of the literature on LENA or 

recommendations from colleagues. Second, we conducted exhaustive searches in English 

from 2008 to 2020 when LENA became commercial available. We used various 

combinations of terms including Language ENvironment Analysis, LENA, language 

environment, Adult Word Count, AWC, Conversational Turn, CTC, Child Vocalization, 

CVC, language development, language outcomes, and vocabulary on Science Direct, 

Pubmed, and scholar.google.com. Similar keywords were also used to set up Google scholar 

alerts for sending new results matching the search. The combination of our search methods 

allowed us to avoid potential bias in reporting (Rosenthal, 1979; Rosenthal & DiMatteo, 

2001), as both published and unpublished research was included in search results from 

scholar.goole.com and Google scholar alerts. Unpublished research included dissertations 

and conference papers. We included 140 records in our database from these search methods. 

Third, we used the ancestral method (examining the reference section of relevant literature) 

and inspected publications listed on the LENA Research Foundation website; we identified 

an additional 11 records from this method. Together these search strategies resulted in a 

database of 171 records for further review. Among these compiled records, 8 duplicates were 

identified and were thus excluded. Figure 1 presents the PRISMA flow diagram.

Study selection criteria

Inclusion and exclusion criteria were determined based on study design, LENA 

measurements, child characteristics and age, and outcome measures.
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Inclusion Criteria

(1) Study design: Studies must report a relation between at least one LENA’s automated 

measure (AWC, CTC, CVC) and one language measure. LENA and language measures 

could be taken either concurrently or longitudinally. To maximize sample size, both 

vocabulary measures and general language measures were included. Moreover, language 

measures can be either receptive or expressive, and can be elicited from the children or 

reported by parents. See Table 1 for specific outcome measures for each study. (2) 

Population. We included children with a variety of developmental status, for example, 

typically-developing (TD), preterm, autism spectrum disorder (ASD), and hearing loss (HL). 

However, for children with HL, the LENA recording had to be taken after children received 

hearing devices. To be included, the mean or median age of child participants must be no 

greater than 48 months at the time of LENA measure, as the LENA system has not been 

validated on children older than 48 months.

Exclusion criteria—Intervention and qualitative studies were excluded. However, 

intervention studies were included if an association between LENA’s automated measure 

and language was reported prior to intervention. To avoid risk for correlated measurement 

errors, we exclude the reports if their language measures were derived from the LENA. This 

was because when the language measures also derive from the same sources, the correlation 

between these two variables will be artificially elevated (Yoder & Symons, 2010). Single 

case studies and studies with a very small sample size (N < 5) were also excluded. This was 

because correlations from groups with a small number of participants, albeit strong, are 

difficult to assess if the correlation assumptions were met. We also excluded review articles 

and other non-primary reports (sample overlapped substantially with other records). Studies 

reporting statistics in other languages were not screened. Studies that only included 

manually coded measures from LENA recordings were excluded.

Study selection—During the first selection phase (Abstract phase), the first author 

screened the report abstracts following the inclusion and exclusion criteria. The second 

author randomly selected and independently screened 25% of all the abstracts in the 

database following the same criteria. There was 94.1% agreement on the inclusion of these 

reports during the Abstract phase. The disagreements were resolved by discussion and 

reviewing of the reports. During this first selection phase, the number of reports was reduced 

from 163 to 59. For a study to be excluded during this stage, the title and the abstract had to 

clearly indicate that the study failed to meet at least one of the inclusion criteria. When the 

title or the abstract did not clearly indicate whether it met the criteria, reports were retrieved 

for full review during the second phase (Full paper phase). During the Full paper phase, the 

full-text reports were retrieved for all the 59 records that passed the Abstract phase. The 

number of records was reduced from 59 to 17 for use in the meta-analysis. Studies removed 

following application of each criterion according to PRISMA guidelines are summarized in 

Figure 1.

Study coding and data extraction

Data were extracted from the results reported in each study to allow for the calculation of the 

effect size and its variance. We created and used a data-extraction form to organize 
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bibliographic and study characteristics, including participants, methodological variables, and 

effect sizes. Participant variables included mean/median age of participants at LENA 

assessment, developing status (TD, ASD, preterm, HL, mixed, etc), gender, SES, primary 

language, age at language outcome measures. Four studies included more than one 

population but collapsed the population in the analyses; these studies were coded as mixed 

in the moderator analysis. Methodological variables included sample size, automated LENA 

measures examined, AWC/hour, CTC/hour, CVC/hour, number of LENA recordings, 

average duration of LENA recordings, duration between LENA recordings and language 

outcomes, and measures for language. For language measures, we coded both modality and 

method of language assessment. This decision was motivated by findings that expressive and 

receptive language skills may be related to different constructs and rely on different 

underlying representations (Chang, Dell, & Bock, 2006), as well as that parent report and 

direct child assessment may have different validity in evaluating child language abilities 

(Sachse & Von Suchodoletz, 2008). Language measure was coded as expressive or 

receptive; when a study employed both expressive and receptive language measures, this 

study was coded as mixed; moreover, language measure was coded as parent report or direct 

child assessment; if a study employed both parent report and direct child assessment, the 

study was coded as mixed. The complete list of reports included in the meta-analysis and the 

variables coded is shown in Table 2.

Analytical strategies

Effect size calculation—Effect sizes were computed on the basis of Pearson’s r, partial r, 
or other convertible statistics, such as ps and beta, when the correlation coefficients were not 

available (Peterson & Brown, 2005; Rosenthal & DiMatteo, 2001). When the statistics were 

not reported in the original reports, the first author contacted the corresponding authors of 

these reports for more details. Positive effect sizes indicate that the association was in the 

predicted direction, whereas negative effect sizes indicate that the association was in the 

opposite direction to the hypothesis. The interpretation of effects sizes were based on Cohen 

(1988)’s conventions: small (Pearson’s r = .1), medium (Pearson’s r = .3), or large 

(Pearson’s r = .5).

Only one effect size per independent participant group per measure was considered in 

subsequent analyses. Under the circumstances when a given study reported multiple 

correlation coefficients for a particular measure from a single participant group, the 

weighted average age at LENA recording, the weighted average age at language measures, 

and a weighted mean r was calculated, where the weight was based on the sample size in 

each correlation (Colonnesi, Stams, Koster, & Noom, 2010; Cristia, Seidl, Junge, 

Soderstrom, & Hagoort, 2014; Milligan, Astington, & Dack, 2007; Rosenthal & DiMatteo, 

2001). A couple of reports included multiple effect sizes on different samples. Consequently, 

there was not a direct correspondence between the number of reports and the number of 

effect sizes. Our meta-analysis included 17 reports with 18 samples and 40 unique effect 

sizes, 17 for AWC, 13 for CTC, and 10 for CVC.

Following current meta-analytic standards, all correlation coefficients were converted to the 

Fisher’s z scale to account for each effective size by using the formula: z = 0.5 × ln 1 + r
1 − r . 
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(Borenstein, Hedges, Higgins, & Rothstein, 2011). All analyses were performed using the z-

transformed values. Effect sizes were transformed back to r for reporting.

Robust variance estimation—Because most of the individual reports included more 

than one LENA’s automated measure, the effect sizes for the current analysis were not 

independent of each other. Therefore, we used robust variance estimation to address the 

dependent effect sizes issue (Hedges, Tipton, & Johnson, 2010). Accordingly, we used 

random effects models with approximately inverse variance weights. Under the random 

effects model, the true effects are assumed to vary between studies and the summary effect is 

the weighted average of the effects across different studies (Borenstein et al., 2011).

Heterogeneity analyses—We conducted chi-square tests of the Q and their ps to 

evaluate the statistical significance of heterogeneity and the magnitude of heterogeneity 

using the I2 value (Borenstein et al., 2011). Following Higgins, Thompson, Deeks, and 

Altman (2003)’s guideline, I2 is interpreted as low (.25), moderate (.50), or high (.75).

Sensitivity analyses—We conducted sensitivity analyses by assessing the impact of the 

individual effect size on the main effects by removing one effect size and while keeping the 

rest of other effect sizes constant at a point from the analysis. If results remain consistent 

across the different analyses, then the results can be considered robust and representative.

Publication bias—Publication bias is a major risk to the validity of meta-analysis. It 

occurs when the outcome of a study influences the decision of whether or not to publish it, 

and this is especially true for studies with a small sample size. Due to publication bias, 

statistically significant results are more likely to be published than those with null results 

(Rosenthal, 1979). We assessed risk for publication bias by using funnel plots and the 

Egger’s test. Funnel plots provide a visual method for evaluating whether selection/

publication bias exists. A funnel plot shows effect sizes versus a metric of standard error. It 

was calculated by using the formula: ser = 1 − r2
n − 2  , where r is the correlation coefficient, 

and n is the sample size. If there is a publication bias in the literature, we should expect 

studies to be asymmetrically distributed around the weighted average effect size, with more 

variability for less precise studies. Thus, a study with relatively low precision will have a 

larger standard error than a study with relatively high precision. We used Egger’s tests for 

funnel plot asymmetry. Non-significant asymmetry indicated that selection/publication bias 

was not found in our systematic search.

Results

Study Characteristics

Table 1 presents the characteristics of all included studies. The studies took place in 5 

countries and included speakers of 3 primary languages. The majority of the studies were 

conducted in the US (13 out of 17), and most studies included English-speaking participants 

(15 out of 17). Sample sizes ranged from 8 to 306; participant ages ranged from −1.59 

months (adjusted age for preterm infants) to 46.93 months. A total of 1,093 participants 
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were included in the final analysis. The latency between the LENA recording and language 

assessment ranged from concurrent to 140.88 months.

Meta-analytic analysis results

We conducted a random effects model meta-analysis grouped by measures (AWC, CT, CV) 

in the R environment (R Core Team, 2014). To estimate whether the overall correlation was 

statistically significant at the level of zero, effect sizes were pooled across reports to obtain a 

single meta-analytic estimate. This meta-analytic effect size can be thought of as the best 

estimate of the effect size for a phenomenon under examination.

The mean overall effect size and effect sizes for each measure are presented in Figure 2. The 

overall mean effect size for the combined correlation between LENA’s automated measures 

and language outcomes was significant, r = 0.27, 95% CI [0.22, 0.31], z = 10.77, p < .001. 

This correlation was considered medium based on Cohen’s convention. Heterogeneity was 

small, I2 = .12, Q(39) = 44.26, p = .259, suggesting that there was not significant variability 

in effect sizes between studies. To determine whether an individual effect size would 

significantly influence the overall mean effect size, for each measure, we ran a sensitivity 

analysis in which each effect size was excluded one at a time using metaif() function 

(Schwarzer & Schwarzer, 2012). Results indicated that the finding was robust to the removal 

of any individual effect size, 0.26 < r < 0.28, ps < .0001. suggesting that no single sample 

significantly influenced the overall effect size. Egger’s tests for funnel plot asymmetry were 

nonsignificant, z = .97, p = .330. Non-significant asymmetry indicated that selection/

publication bias was not found in our systematic search. Figure 3 presents the funnel plot.

We conducted further analyses to assess whether one of the three LENA’s automated 

measures differed in their predictive power for language outcomes. A test for subgroup 

differences showed a trend for differences among the three measures, Q(2) = 4.94, p = .085, 

suggesting at least one of the three measures might be better or poorer in predicting 

language outcomes. Therefore, we further examined the mean effect sizes for AWC, CTC, 

and CVC, separately. Figure 2 presents meta-analytic effect size estimates for each of the 

three measures. The mean effect size for the correlation between AWC and language 

outcomes was r = 0.21, 95% CI [0.14, .27], z = 6.11, p < .0001, indicating that AWC was 

significantly correlated with language outcomes with a small-to-medium effect size. The 

overall mean effect size for the correlation between CTC and language outcomes was r = 

0.31, 95% CI [0.21, 0.40], z = 5.98, p < .0001, suggesting that CTC was significantly 

correlated with language outcomes with a medium effect size. The overall mean effect size 

for the correlation between CVC and language outcomes was r = .32, 95% CI [0.21, 0.42], z 
= 5.34, p < .0001, suggesting that CVC was significantly correlated with language outcomes 

with a medium effect size.

Moderator analyses

An additional set of analyses was conducted to test potential factors affecting the 

relationship between LENA’s automated measures and child language outcomes using meta-

regression for continuous variables and subgroup analyses for categorical variables. 

According to Bakermans-Kranenburg, Van Ijzendoorn, and Juffer (2003)’s guideline, for 
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categorical factors, moderator analysis is appropriate only when at least two of the subsets 

consisted of at least four effect sizes. For each variable, we excluded from the analysis those 

effect sizes where the dependent measure included a mixed population group, or language 

measure that combined receptive and expressive language, or parent report and direct child 

assessment. Therefore, we conducted 6 moderator analyses that fulfilled this criterion: 2 

continuous moderators including age at LENA recording and the gap between LENA 

recording and language outcomes; 4 categorical moderators including child developmental 

status (TD, preterm, ASD, HL), publication status (published, unpublished), language test 

modality (receptive, expressive), and language test method (parent report, direct child 

assessment).

The results of the moderator analyses are reported in Table 2. None of the four categorical 

moderators, child developmental status, Q(3) = 1.17, p = .759, publication status, Q(1) = .28, 

p = .595, language test modality, Q(1) = 2.56, p = .110, or language test method Q(1) = .43, 

p = .511, were significant moderators. Moreover, age at recording was not significant, Q(1) 

= .00, p = .984. These findings suggest that overall the associations between the LENA’s 

automated measures and child language skills are not necessarily influenced by these 

factors. However, the gap between the LENA recording and language assessment, although 

not significant, seemed to influence the association between LENA’s automated measures 

and child language measures, Q(1) = 2.66, p = .103. Specifically, this association weakened 

with an increase in gap, as shown in Figure 4. It should be noted that the gap between the 

LENA recording and language measures was exceptionally long in Gilkerson et al. (2015)’s 

report as compared to other included reports, which might be a potential outlier. Therefore, 

we ran an additional moderator analysis excluding Gilkerson et al. (2015)’s report. The 

results showed that the gap was a significant moderator, Q(1) = 6.96, p = .008. Taken 

together, these findings suggest that the association between LENA’s automated measures 

and child language measures decreases with an increase in the gap.

Discussion

Findings of the Meta-analysis

Early language environment plays a critical role in child language development. The advent 

of the LENA system allows for an automated measurement of various aspects of the child 

language environment. The purpose of the current study was to use meta-analytic techniques 

to assess the predictive strength of the LENA automated indices of the early language 

environment, specifically, AWC, CTC, and CVC, on child language. Overall, we found a 

medium significant association between LENA’s automated measures and child language 

outcomes across the three measures. These findings lend additional support for the 

relationship between early language environment and language outcomes. We can be 

confident in the attested relationship as our analyses showed a low magnitude of 

heterogeneity and withstood the sensitivity test. Moreover, the findings did not provide any 

evidence of publication bias, as suggested by the funnel plot and asymmetry test. Among the 

three automated measures, CTC and CVC showed medium size significant associations with 

language, whereas AWC showed a small-to-medium size significant association with 
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language. These findings are in general consistent with and supported by previous 

theoretical and empirical evidence, which we discuss below.

The positive relationship between conversational turns and language skills suggests that 

everyday interactions between caregivers and their children may be particularly important 

for language development. According to theories of social learning, language learning relies 

heavily on children’s sensitivity to joint attention and their participation in the social 

communication (Baldwin, 1995; Morales et al., 2000; Salo, Rowe, & Reeb-Sutherland, 

2018). On the one hand, conversational turns provide increased opportunities and 

multimodal cues for children to exploit in the service of language learning; the increased 

language exposure along with children’s elevated attention during the interactions with 

caregivers, lead to an overall increase in the quantity of quality of information processed. On 

the other hand, by engaging in responsive and reciprocal modes of interactions, children 

convey their preferences of communication to caregivers, who adjust and provide contingent 

real-time linguistic and pragmatic cues that could facilitate language learning. A 

considerable body of research during the past 30 years has provided empirical supporting 

evidence. For example, Tamis-LeMonda, Bornstein, and Baumwell (2001) showed that 

maternal responsiveness at 9 and 13 months significantly predicted the timing of language 

milestones.

In addition, neural evidence suggests that high-quality communications provide a positive 

social feedback loop supporting the development of brain areas involved in speech and 

language learning (Kuhl & Rivera-Gaxiola, 2008; Romeo et al., 2018). In a recent study, 

Romeo et al. (2018) examined the relationship between child natural language experience, 

neural responses during language processing, and linguistic skills. They demonstrated that 

children who experienced more conversational turns at home exhibited greater activation in 

Broca’s area during language processing, which mediated the relationship between 

children’s language exposure and language abilities.

Moreover, due to the nature of CTC, it is likely to include a high proportion of child-directed 

speech, a speech style has been shown to benefit child speech processing and language 

development (Cristia & Seidl, 2014; Drotar & Sturm, 1988; Song, Demuth, & Morgan, 

2010; Trainor, Austin, & Desjardins, 2000). Child-directed speech is characterized by slower 

speaking rate, higher pitch, wider pitch range, longer pauses, and expanded vowel space 

(Burnham, Kitamura, & Vollmer-Conna, 2002; Cristia, 2010; Fernald & Simon, 1984; 

Papoušek & Hwang, 1991; Wang, Lee, & Houston, 2016). These unique properties of child-

directed speech are shown to engage and sustain attention, allowing infants and children 

more opportunities to access, encode, and process speech. Therefore, the child-directed 

speech that accompanies caregiver-child interactions provides additional support for 

language learning. Taken together, a larger number of CTC reflects a higher degree of social 

engagement between caregivers and children, which benefits child language development 

through multiple mechanisms.

The significant correlation between child vocalization and other measures of child language 

is also in line with previous theoretical and empirical evidence (J. McDaniel, Slaboch, & 

Yoder, 2018; Moeller et al., 2007). Prior to producing meaningful utterances, infants gain 
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fundamental gross motor skills and progress through a continuum of predictable and 

universal prelinguistic vocal stages, beginning with non-speech-like vocalizations and 

transitioning to more complex and speech-like vocalizations (Nathani, Ertmer, & Stark, 

2006; Oller, 2000; Stoel-Gammon, 2011). Development of child vocalization is not an 

isolated phenomenon, but rather, is related to production patterns of early words and later 

spoken language development (Kent & Miolo, 2017; Menyuk, Liebergott, & Schultz, 2014; 

Oller, 1978; Vihman, Macken, Miller, Simmons, & Miller, 1985). For example, in a 

longitudinal study including 53 children, Menyuk et al. (2014) examined the children’s 

vocal development over the first 3 years of life. They showed that the rate at which the 

children shifted from vocalization to babbling was related to the rate at which they achieved 

the mastery of articulating consonantal sounds, which in turn, was related to the rate of word 

acquisition and morpheme development.

Recent research exploring the mechanisms underlying vocal development has proposed that 

child vocal development is, at least in part, driven by social interaction. According to 

transactional hypotheses (Harding, 1983; Moeller et al., 2007; PapouSek, 1993), children 

learn language through bidirectional and transactional exchanges with caregivers. Children 

use vocalizations to respond to and participate in the interaction with adults, and child 

vocalizations often reflect parent word models. This dynamic reciprocal relationship also 

means that child vocalizations could elicit developmentally appropriate responses from 

caregivers, which in turn leads to greater child vocal skills that subsequently receive more 

complex language input from the caregiver. For example, infants who received contingent 

responses on their babblings showed a rapid reconstruction of their vocalizations, 

incorporating the phonological patterns from the caregivers’ responses (Goldstein & 

Schwade, 2008). Moreover, infants tend to produce more frequent speech-like vocalizations 

if they receive contingent responses from their caregivers than if they receive non-contingent 

responses (Goldstein et al., 2003).

Finally, the small-to-medium size association between AWC and language outcomes suggest 

that AWC has less predictive power for language outcomes compared to the CTC and CVC 

measures. These findings are not surprising as AWC includes both speech directed to 

children and overheard by children, and the relationship between the amount of speech to 

children and overheard by children is shown to be complementary in nature and changes as a 

function of child development (Bergelson et al., 2019). While the quantity of input is clearly 

important, and children can learn from both child-directed speech and overheard speech, 

much recent evidence suggests that child-directed speech appears to play a more important 

role in language development (Golinkoff, Hoff, Rowe, Tamis-LeMonda, & Hirsh-Pasek, 

2018; Weisleder & Fernald, 2013). Supporting this, empirical findings suggest that infants 

who experienced a larger amount of child-directed speech at home, but not a larger amount 

of overheard speech, became more efficient in lexical processing and had a larger expressive 

vocabulary by 24 months of age (Weisleder & Fernald, 2013).

Notably, the moderator analyses showed that the relationship between LENA’s automated 

measures and language skills was robust and largely consistent regardless of child 

developmental status (TD, preterm, ASD, HL), publication status (published, unpublished), 

language test modality (receptive, expressive), language test method (parent report, direct 
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child assessment), or the age at which the LENA recordings were collected. However, we 

observed a moderation effect of the gap between the time when LENA recordings were 

taken and the time when language was measured, reflecting a decrease in effect sizes as the 

gap increased. These findings may suggest that LENA’s automated measure have a less 

predictive strength on long-term language outcomes.

Theoretical, methodological, and clinical implications

These results have significant theoretical, methodological, and clinical implications. First, 

from a theoretical perspective, these findings support Hart and Risley’s and other’s findings 

that early language environment has a significant impact on child language development 

(e.g., Gilkerson et al., 2018; Hart & Risley, 1995; Weisleder & Fernald, 2013). These 

findings also extend findings from previous work which only included small samples and 

short recordings. Because LENA collects massive speech samples from home, it allows for a 

generalization of the previous findings to the naturalistic language environment.

Second, from a methodological perspective, these findings provide indirect evidence for the 

predictive validity of the LENA system to automatically analyze language environments 

with sufficient accuracy to detect individual differences that correlate with language skills. 

Moreover, the findings provide valuable information for child language researchers who 

seek to identify the best practices into integrating the LENA system into the exploration of 

child language acquisition.

From a clinical perspective, these results support using LENA as a potential tool for 

clinicians working with young children and their families. Although Hart and Risley (1995) 

showed that the early language environment plays a critical role in child development, the 

methodological limitations related to laborious transcriptions severely limited its clinical 

application. The LENA system provides an alternative to manually analyze the naturalistic 

language environment. The findings that LENA’s automated measures significantly 

predicted child language outcomes have profound implications for early intervention 

programs for identifying children who might be at risk for poor language development and 

providing appropriate services to improve the home language environment of young children 

(Suskind et al., 2016; Suskind et al., 2013).

Limitations of the LENA system

Despite the advantages and massive potentials that the LENA system offers to researchers 

and clinicians, it has several limitations that would benefit from future development. First of 

all, the LENA System is only normed for children up to 48 months of age. Although this 

does not necessarily suggest that the LENA system is not valid for children over 48 months 

of age, further evaluation is encouraged to assess whether the LENA’s reliability or accuracy 

for older children. This is important as it will allow for an examination of the change and/or 

stability of children’s auditory environment across development and explore how these 

features may be related to the growth of child language skills.

Second, LENA also makes labeling errors which changes as a function of talker gender and 

speech register (Bulgarelli & Bergelson, 2019; Gilkerson et al., 2015; Lehet, Arjmandi, 

Dilley, & Houston, under review; VanDam & Silbert, 2016; Xu et al., 2009). This could 
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affect the AWC, CTC, and CVC estimates, as these calculations might a priori depend on 

LENA’s classification accuracy of segments (Kimbrough Oller, 2010). For example, 

approximately one-third of child speech labeled by LENA were annotated as adult speech by 

human coders, especially when the female adult speakers raised their voices when talking to 

children, resulting in reduced AWC estimates in the output. In addition, the LENA system 

does not identify speakers when speech and sounds overlap (e.g., speech + speech, speech + 

noise, and noise + noise); instead, all these combinations are categorized as overlapping 

speech (OLN), which is not included in the calculation of AWC (Gilkerson et al., 2008). 

This could reduce LENA’ accuracy in analyzing AWC for the recordings taken from a busy 

household with a many family members, or classrooms with elevated noise levels and 

multiple talkers speaking at the same time. Therefore, improvement in current speech 

processing technology for extracting information from audio recordings with higher 

accuracy would greatly benefit and advance research using rich naturalistic language data.

Moreover, some research questions require more fine-grained annotations than the current 

LENA system can provide. For example, the current LENA system does not distinguish 

between the speech directed to children and the speech overhead by children; this distinction 

is critical given the significant role of IDS on language development (Weisleder & Fernald, 

2013). Moreover, the LENA system does not distinguish between canonical babbling (which 

involves well-formed syllables) and other types of speech-like vocalizations. Canonical 

babbling has been found to be significantly correlated with later speech and language 

development and to predict developmental disorders (Chapman, Hardin-Jones, & Halter, 

2003; Oller, Eilers, Steffens, Lynch, & Urbano, 1994). Another aspect of limitation is that 

the LENA system does not provide speech transcription, which is essential but probably the 

most time-consuming component, for those researchers who examine the vocabulary, 

grammatical, and syntactic structures of speech. Therefore, one important future 

development of the LENA system would be to provide more fine-grained annotations and 

transcriptions to suit broader needs.

These limitations require joint efforts between speech technology and research communities 

to develop more accurate and comprehensive systems in the future. Nevertheless, in the 

meantime, researchers who are in need of the information that LENA does not currently 

provide LENA may still take advantage of the LENA output and adopt integrated methods to 

obtain desired measures. For example, to calculate amount of infant-directed speech and 

overheard speech from LENA recordings, Weisleder and Fernald (2013) coded each 5-min 

segment produced by the LENA system as either predominantly infant-directed speech or 

overhead speech; based on the AWC generated by LENA for each segment, they obtained 

estimates of amount of infant-directed speech and overhead speech. To examine North 

American children’s early auditory environment, Bergelson et al. (2019) selected 20 LENA 

conversational blocks each of which contained at least 10 FAN (Female-Adult Near) or 

MAN (Male-Adult-Near) segments as annotated by LENA. They then manually tagged each 

segment for speaker gender (Female vs. Male) and addressee (Adult vs. Child) which 

allowed for a comparison of speech produced by females vs. adults, and speech directed to 

children vs. overhead speech. These integrated methods that leverage the LENA output and 

incorporate a reasonable amount of human annotations, albeit may not exact or perfect, 
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improve the accuracy of estimates and broaden the prospect of using LENA for various 

research purposes.

Limitations of the current meta-analysis

Despite the contributions of this meta-analysis to the field, we acknowledge several 

limitations of this work. First of all, as we mentioned earlier that 13 out of the 15 reports 

were conducted with English-speaking children. Due to the small number of studies with 

non-English-speaking children, we were unable to examine whether language background 

would moderate the predictability of LENA’s automated measures for language. Therefore, 

it is still inconclusive whether the LENA system would have similar predictive strength for 

language outcomes in children who speak languages other than English. Expanding the use 

of the LENA System with children from different language background is necessary to 

assess the reliability and accuracy of the LENA system across cultures.

Second, although we made an effort to exclude secondary-reports whose samples 

substantially overlapped with other included reports, the samples were not always precisely 

described in the reports; consequently, it is possible that some children were included in the 

association calculation more than once. This is a general issue in meta-analytical work, 

which would benefit from detailed descriptions and documentation of participant 

characteristics. Third, it is possible that in addition to the 5 factors we have examined in this 

analysis, other factors may also moderate the relationship between LENA’s automated 

measures and language outcomes. For example, previous research has demonstrated that the 

quantity of parental talk and interaction in the early language environment are correlated 

with SES (Hart & Risley, 1995); however, we were unable to conduct moderator analysis on 

SES because it was either not reported, or assessed by different criteria. Therefore, future 

studies should examine other potential factors that may moderate this relationship. Finally, 

due to the correlational nature of the findings, the direction of the relationship cannot be 

established. Future intervention studies with randomized control trial designs are encouraged 

to elucidate the potential causal effects of early environmental factors on child language 

development.

Future directions

In addition to the automatic processing of linguistic input, LENA also provides estimates of 

other auditory information in a child’s language environment, including overlapping noise, 

TV and media, and other noises. While past research in the past has almost exclusively 

focused on the aspects of early language input that benefit child language development, 

recent research has demonstrated that specific factors from the early auditory environment 

may have a deleterious impact on child speech processing and language outcomes. For 

example, Ambrose et al. (2014) showed that toddlers with hearing loss who were exposed to 

a larger amount of electronic media showed poorer receptive language skills. Similarly, 

Williams, Wang, Dilley, and Houston (2019) showed that the total amount of auditory chaos, 

defined by the total amount of overlapping noise, TV or media, and other noise calculated by 

LENA, was negatively correlated with child speech processing efficiency. Therefore, one of 

the important future directions is to examine the relationship between positive and negative 
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aspects of child home language environment, and how these factors may interact to explain 

variability in child language development.

Finally, using LENA as a tool for intervention is another important future direction. Given 

the important role of early language environment on child language, cognitive and social 

development, early intervention programs focusing on teaching and educating parents to 

improve their speech input to and interaction with their children is crucial. The LENA 

system offers a potential source of feedback on the magnitude of change in parents’ 

behavior. Recently, researchers have begun to explore this possibility and showed significant 

elevations in parent talk and interaction with their children using LENA feedback along with 

parent coaching in home visiting programs (Suskind et al., 2016; Suskind et al., 2013) and 

online intervention programs (Gilkerson, Richards, & Topping, 2017). Future studies 

including diverse populations and language to investigate how parent behavioral change 

might be related to child language development would provide important knowledge to 

inform evidence-based early intervention.

Conclusions

This systematic review and meta-analysis provides the first qualitative assessment of the 

predictability of LENA’s automated measures, AWC, CTC, and CVC, for child language 

outcomes. The findings extend previous LENA validity literature by documenting a 

moderate association between LENA’s automated measures and language outcomes. These 

findings confirm the predictive validity of LENA’s automated measures for child language 

development. Moreover, these findings will inform early intervention strategies that use 

LENA as a tool to engage and measure parental language input to children. Although we are 

optimistic about the use of the LENA system for both research and clinical purposes, we 

have highlighted specific areas that require future development and research areas that 

would benefit from the use of the LENA system.
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Highlights

• This research assessed the predictability of LENA’s automated measures for 

child language

• We showed a medium association between LENA’s automated measures and 

language

• Conversational turn and child vocalization showed medium associations with 

other measures of child language

• Adult word count showed a small-to-medium association with language
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Figure 1. 
Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) flow 

diagram
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Figure 2. 
Forrest plot showing the results of the 17 reports with 40 effect sizes examinig the 

assocations between LENA’s automated measures, AWC, CTC, and CVC and language 

skills. Total: weighted number of children contributed to the correlation.
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Figure 3. 
Funnel plot showing potential publication bias of the included 17 reports with 40 effect sizes 

reported. The vertical line indicates the overall pooled effect size. On the ordinate, the 

standard error of each study is shown and on the abscissa, the effect size of each study 

analyzed is shown in Fisher’s z units. The circles plot each study on the funnel plot with 

higher publication bias indicated by circles outside the “funnel.”
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Figure 4. 
Scatterplot showing the observed correlation (exponentially transformed) of individual effect 

size plotted against the quantitative predictor, the weighted gap between LENA recording 

and language test based on mixed-effects model. The radius of the points is drawn 

proportional to the inverse of the standard errors: larger/more precise studies are shown as 

larger points.
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