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Abstract

We developed a deep learning architecture based on Inception V3 to predict visual field

using optical coherence tomography (OCT) imaging and evaluated its performance. Two

OCT images, macular ganglion cell-inner plexiform layer (mGCIPL) and peripapillary retinal

nerve fibre layer (pRNFL) thicknesses, were acquired and combined. A convolutional neural

network architecture was constructed to predict visual field using this combined OCT image.

The root mean square error (RMSE) between the actual and predicted visual fields was cal-

culated to evaluate the performance. Globally (the entire visual field area), the RMSE for all

patients was 4.79 ± 2.56 dB, with 3.27 dB and 5.27 dB for the normal and glaucoma groups,

respectively. The RMSE of the macular region (4.40 dB) was higher than that of the periph-

eral region (4.29 dB) for all subjects. In normal subjects, the RMSE of the macular region

(2.45 dB) was significantly lower than that of the peripheral region (3.11 dB), whereas in

glaucoma subjects, the RMSE was higher (5.62 dB versus 5.03 dB, respectively). The deep

learning method effectively predicted the visual field 24–2 using the combined OCT image.

This method may help clinicians determine visual fields, particularly for patients who are

unable to undergo a physical visual field exam.

Introduction

Glaucoma is one of the leading causes of blindness in the world [1,2]. It is a widespread

chronic, irreversible optic neuropathy characterised by the progressive and permanent loss of

retinal ganglion cells (RGCs) and their axons. It is associated with visual field abnormalities,

the loss of which can greatly impact the quality of life [3,4]. In practice, monitoring visual field

examination is an important process in preventing vision loss.

However, visual field exams are very subjective tests and depend largely on patient compli-

ance. They inherently involve several random errors and fluctuations, which can be affected by

various factors, that result in a low signal-to-noise ratio [5]. The fluctuations are more severe

in glaucomatous patients than in normal subjects [6,7]. It is often thought that a visual field

exam is difficult to perform as several factors can affect the quality of the exam, some of which
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include patient attention, fatigue, artefacts such as ptosis, lens rim defects, and incorrect refrac-

tive error correction. Despite attempts to minimise or control the influence of all these factors,

a patient’s learning curve may also affect the outcome of the visual field exam [8,9].

In contrast to the visual field exam, optical coherence tomography (OCT) is an objective

test and its reproducibility is known to be excellent [10–15]. Patients show evidence of struc-

tural changes, including optic nerve head (ONH) damage and retinal nerve fibre layer (RNFL)

thinning, before functional loss is detected by standard automated perimetry [16,17]. It is reli-

able when performed on both normal and glaucoma patients [18]. Structural changes mea-

sured by OCT are closely related to the functional changes in the visual field [19]. The pattern

of correlation and corresponding locations between structure and function have been investi-

gated by several previous studies [20–25]. Taken together, this suggests that it may be possible

to deduce a visual field test from OCT images, which would be very helpful in monitoring

patients who are unable to undergo visual field testing, including children, the elderly, and

those with dementia. There have been previous attempts to predict visual fields using OCT

images [26–28]; however, they used a pointwise numerical regression method.

More recently, computer technology has tremendously improved and with the aid of GPUs

(graphic processing units), parallel processing capability, which is important in neural network

computation, is also greatly advanced. Artificial intelligence algorithms have also improved

and recently, ‘deep learning algorithms’ have emerged, performing at levels almost comparable

to that of humans [29–31]. The biggest advantage of deep learning algorithm is that it is an

end-to-end learning algorithm, i.e. a precise mechanism does not need to be provided to

resolve complex problems; rather, such mechanisms are learnt during training. Structure-

function relationship is a complex and non-linear problem with many unpredictable errors

and large variations among patients. Neural network computation may be a good choice to

deal with these types of complex problems.

The purpose of this study was to construct a deep learning architecture to predict visual

fields using OCT images and evaluate its performance. We built a model using a state-of-the-

art convolutional neural network (CNN) architecture and tested its accuracy globally and

regionally. We also attempted to identify various factors which affected visual field prediction.

Materials and methods

This retrospective study was performed in accordance with the tenets of the Declaration of

Helsinki. The study was approved by the institutional review board (IRB) of Pusan National

University Hospital, South Korea. The requirement for patient consent was waived by the IRB

due to the retrospective nature of the study.

All training and test data were obtained from subjects who had visited the glaucoma clinic

at Pusan National University Hospital from 2013 to 2018. The demographic characteristics of

the training group are summarised in Table 1. The training dataset consisted of 2,811 eyes

from 1,529 subjects and was not labelled by diagnosis. Therefore, normal fundus images, as

well as data from subjects with glaucoma and other optic neuropathies, were included. How-

ever, eyes with retinal disease or severe media opacity (such as cataracts) were excluded. The

mean ± standard deviation (SD) age of the test group was 62.1 ± 16.6 years. A total of 2,811

records from the training dataset was randomly split into training and validation data at a

ratio of 9:1. Validation data were used to check the current fitness of the neural network during

training to prevent overfitting.

In addition to the training dataset, a separate test dataset was prepared with 290 eyes from

290 subjects, with no patient overlap between datasets. For all subjects in the test group, a ret-

rospective review of the detailed results of ophthalmic examinations was performed, including
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best corrected visual acuity (BCVA), Goldmann applanation tonometry (GAT), slit-lamp

examination, funduscopy, biometry using the IOLMaster (Carl Zeiss Meditec, Dublin, CA,

USA), Humphrey visual field test (Carl Zeiss Meditec), central corneal thickness (CCT) using

ultrasonic pachymetry (Pachmate; DGH Technology, Exton, PA, USA), keratometry using the

Auto Kerato-Refractometer (ARK-510A; NIDEK, Hiroshi, Japan), and Cirrus high definition

optical coherence tomography (HD-OCT; Carl Zeiss Meditec). Glaucomatous optic neuropa-

thy was defined if one or more of the following criteria were met: focal or diffuse neuroretinal

rim thinning, localised notching, cup-to-disc ratio asymmetry�0.2, and the presence of reti-

nal nerve fibre layer (RNFL) defects congruent with visual field defects [32]. Normal subjects

were defined as those with no history of ocular disease, an intraocular pressure <21 mm Hg,

an absence of a glaucomatous optic disc appearance, and a normal visual field. To ensure

representation of the full range of disease, normal subjects also included those who were clini-

cally suspected of having glaucoma, based on optic disc or RNFL appearance, or elevated intra-

ocular pressure, but had normal visual field. Patients with corneal or ocular media opacity, a

refractive error�±6.0 dioptres, optic neuropathies other than glaucoma, or recent ocular sur-

gery or trauma were excluded.

Spectral Domain Optical Coherence Tomography (SD-OCT)

The Cirrus spectral domain (SD)-OCT instrument (Carl Zeiss Meditec) was used to acquire

macular ganglion cell-inner plexiform layer (mGCIPL) and peripapillary retinal nerve fibre

layer (pRNFL) thickness maps. Two consecutive OCT exams, 6 mm × 6 mm macular cube

scan 200 × 200 protocol and 6 mm x 6 mm optic disc cube 200 × 200 scan, were performed at

the same time to obtain both mGCIPL and pRNFL thickness maps. Following pupil dilation

using 0.5% tropicamide and 0.5% phenylephrine, the subject was seated and properly aligned.

The eye was then brought into view using the mouse-driven alignment system and the line

scanning image was focused by adjusting for refractive error. The macular centre or ONH was

shown at the centre of the live image and, further centring (Z-offset) and enhancement were

optimised. The laser scanned over a 6 mm x 6 mm square area, capturing a cube of data con-

sisting of 200 × 200 A-scans to make B-scans (40,000 points) in about 1.5 seconds (27,000 A-

scans/sec). The ganglion cell analysis algorithm automatically segmented the GCIPL and then

calculated the thickness of the mGCIPL within a 6 mm x 6 mm square area centred on the

fovea. The RNFL analysis algorithm automatically segmented the peripapillary RNFL layer

and calculated its thickness within a 6 mm x 6 mm square area centred at the ONH centre. For

quality control, only good quality scans defined as having a minimum signal strength of 6, no

Table 1. Demographic characteristics of the training group.

Values

Total number of eyes 2811

Total number of patients 1529

Age (years; mean ± SD) 62.1 ± 16.6

Number of eyes binned by visual field mean deviation (MD)

MD > –3 dB 1019 (36.2%)

–3 dB�MD > –6 dB 656 (23.3%)

–6 dB�MD > –9 dB 328 (11.7%)

–9 dB�MD > –12 dB 180 (6.4%)

–12 dB�MD 628 (22.3%)

SD: standard deviation.

https://doi.org/10.1371/journal.pone.0234902.t001
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involuntary eye movements, blinking artefacts, or being without misalignment or segmenta-

tion failures were used for analysis.

Input image generation and visual field region definition

We developed a custom software to generate a combined image of mGCIPL and pRNFL thick-

ness maps. In Fig 1, an example of the combined OCT image is shown on top of the neural net-

work architecture. Our custom software utilised two report images exported from Cirrus

OCT: 1) Ganglion Cell OU Analysis: Macular Cube 200 × 200, and 2) ONH and RNFL OU

Analysis: Optic Disc Cube 200 × 200 protocol. The mGCIPL and pRNFL thickness maps from

both eyes were present in the report image. The custom software automatically detected the

location of these blue-toned thickness maps by searching for the rectangular boundary of the

blue image, starting from a predefined location, and cropped and combined them (mGCIPL

map on the left, ONH map on the right). All left eye images were flipped horizontally to match

the format of the right eye.

In Fig 2A, the fundus photo with Humphrey visual field 24–2 test points and two superim-

posed OCT thickness maps are shown. This image was drawn by our custom software which

precisely locates the visual field test points at their designated locations. The fundus photo was

taken with the Nidek AFC-330 camera (Hiroshi, Japan) with a 45˚ horizontal field of view.

The original fundus image had a resolution of 2438 x 2112 (width x height); however, the

actual fundus area without the margin had a resolution of 2290 x 2112 (width x height), gener-

ating a linear scaling of 51 pixels per degree. Based on this information, the custom software

located the visual field test points. A user manually overlapped the mGCIPL and pRNFL OCT

images on the fundus photos by exactly matching retinal vessels and the shape of the ONH. In

this overlapped image, we noted that the central 4 × 4 visual field test points were inside the

mGCIPL scan area. We defined this central visual field area as the ‘macular OCT scan area’

and the surrounding area as the ‘peripheral OCT scan area’ (Fig 2B). We defined another set

of regions using the Garway-Heath sectorisation [23]. It consisted of six sectoral areas on the

ONH corresponding to the visual field test points (Fig 2B).

Visual field examination

Within 6 months of the OCT exam, automated perimetry was performed on all training and

test subjects using a Humphrey Visual Field Analyzer 750i instrument (Carl Zeiss Meditec)

with the Swedish interactive threshold algorithm (SITA) 24–2 or 30–2. Of the 54 test points of

the 24–2 test pattern, 2 points of physiologic scotoma were excluded and the remaining 52 test

points of the total threshold value were used as the ground truth visual field of the training and

test sets. The 30–2 test pattern was converted to 24–2 by using overlapping test points. Reliable

visual field tests were defined as having a false-positive rate<33%, false-negative rate<33%,

and fixation loss <20%. Normal subjects were defined as those with a glaucoma hemifield test

(GHT) within the normal limits, and with a mean deviation (MD) and pattern standard devia-

tion (PSD) within 95% of the normal population. Glaucomatous visual fields were those that

met at least one of the following criteria: GHT outside the normal limits and/or PSD probabil-

ity outside of 95% of the normal population. Glaucoma severity was determined based on the

MD of the visual field test: early>–6 dB and moderate to severe�–6 dB.

Deep learning architectures and training

The open source deep learning platform, Keras library [33], running on the TensorFlowTM

backend (Google, Mountain View, CA, USA) python API r1.10, was used. Python language

version 3.5 was used with the CUDA toolkit 9.0 and cuDNN 7.0 library to utilise the GPU
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computation power. The hardware environment used for training and test runs was Intel i5-

8400 CPU, 32 GB RAM, and a GeForce Titan Volta (NVIDIA, Santa Clara, CA, USA).

The final deep neural network architecture used in this study is shown in Fig 1. A state-of-

the-art CNN architecture, Inception V3 [34] developed by Google, was used as the backbone

structure to extract global features. A bottleneck layer of the Inception V3 was removed and

replaced with one global average pooling layer followed by four consecutive densely connected

Fig 1. Deep learning architecture. The shape of the tensor (input/output) is described on the right side of each layer

box. The global average pooling layer and four fully connected network (dense) layers were connected after the

Inception V3 backbone CNN (convolutional neural network) architecture. The four dense layers used ReLu (rectified

linear unit) as the activation function.

https://doi.org/10.1371/journal.pone.0234902.g001

Fig 2. Visual field test pattern and Garway-Heath map. (A) A colour fundus photo with Humphrey 24–2 visual field

test pattern and two optical coherence tomography (OCT) images were overlapped on the fundus photo. Garway-

Heath sectorisation (white radiating line) is drawn on the optic nerve head centre. (B) Regions of visual field test points

outlined by Garway-Heath sectorisation map. The central dashed square shows the boundary of the macular OCT scan

area and the surrounding area is defined as the peripheral OCT scan area. IN: inferonasal, IT: inferotemporal, N: nasal,

SN: superonasal, ST: superotemporal, T: temporal.

https://doi.org/10.1371/journal.pone.0234902.g002
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layers. All dense layers used ReLu (rectified linear unit) as the activation function. A combined

OCT image, which had a size of 322 × 161 (width × height), was used as input data. The Incep-

tion V3 used the input image to produce a 3 × 8 × 2048 (height × width × depth) image con-

taining global features. The global average pooling layer flattened the output of Inception V3

and made averaged 2048 features. Four dense layers condensed these features into 52 final out-

put neurons which corresponded to 52 visual field threshold values (two points of physiologic

scotoma were excluded from prediction).

Before training began, Inception V3 pretrained on the ImageNet dataset was downloaded

and applied. No layer was frozen during training and all layers were fine-tuned. A total of

2,811 records were randomly aplit into training and validation datasets in a 9:1 ratio and

batches of 64 were supplied to the neural network. The optimizer was ‘rmsprop’ and the loss

function was ‘mean squared error’. Training was monitored by reference to the loss trends of

both the training and validation sets. When no further performance gain was observed over

100 epochs, training finished. To prevent overfitting, the repeated random sub-sampling cross

validation technique [35] was used. The training data were again randomly split in a 9:1 ratio,

the last trained weight file was loaded, and training resumed until no further performance gain

was evident over 100 epochs. This process was repeated five times.

Statistical analyses

The Shapiro-Wilk test was performed to check the normality of the data distribution. To com-

pare parameters between normal subjects and glaucoma patients, we used Student’s t-test or

Mann-Whitney U test depending on the normality of the data. The chi-square test was used

for categorical variables. Visual field prediction error was calculated as the root mean square

error (RMSE) using the following formula:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X52

n¼1

ðtrue THVn � predicted THVn Þ
2

52

s

n ¼ nth test point of visual field exam; THV ¼ visual field threshold value

The above formula is an example of the global RMSE calculation (i.e. includes all 52 test

points). When we calculated regional prediction error, only a select number of visual field test

points inside the target region were used. Those regions are defined in Fig 2B.

We performed correlation analysis and simple linear regression analysis to identify factors

affecting visual field prediction. Depending on data normality, Pearson’s correlation coeffi-

cient or Spearman’s rank correlation coefficient were used. Multiple linear regression analyses

with the ENTER method were also used to identify the importance of possible factors affecting

visual field prediction. For conducting statistical analyses, SPSS (version 21.0 for Windows;

SPSS, Chicago, IL, USA) and MedCalc (version 12.5 for Windows; Ostend, Belgium) were

used, and P< 0.05 (single comparison) and P< 0.017 (multiple comparisons) were consid-

ered to indicate statistical significance.

Results

A total of 290 eyes from 290 subjects were recruited for the test group, including 112 normal

subjects (60 normal, 52 suspected glaucoma), and 178 glaucoma patients (115 early stage, 63

moderate to severe glaucoma). The demographic characteristics are summarised in Table 2.

Although the visual acuity (logarithm of the minimum angle of resolution; logMAR) and

spherical equivalence were significantly different (P = 0.027, P = 0.006 respectively) between
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the normal subjects and glaucoma patients, age, gender, intraocular pressure, axial length, and

CCT were not. All visual field parameters were also significantly different between these two

groups, including average visual field MD which was -1.62 dB for normal subjects and -6.29

dB for glaucoma patients. The average OCT parameters were also significantly different with

average mGCIPL thickness measuring 79.3 μm and 69.2 μm, and average pRNFL thickness

measuring 91.0 μm and 72.5 μm, respectively.

Global and regional visual field prediction error and representative examples of prediction

are shown in Table 3 and Fig 3. Globally (the entire visual field area), the RMSE was

4.79 ± 2.56 dB including all patients and, 3.27 dB and 5.27 dB in normal subjects and glaucoma

patients, respectively. The prediction error in normal subjects was always significantly lower

than that in glaucoma patients (all P< 0.001), regardless of regions. By sector, the prediction

error of the superior visual field region was generally lower than that of the corresponding

inferior visual field region. The nasal region showed the lowest prediction error (3.50 dB) fol-

lowed by the superotemporal (3.93 dB), temporal (4.08 dB), superonasal (4.55 dB), inferotem-

poral (4.66 dB), and inferonasal (5.23 dB) regions. In comparing the OCT scan areas of all

subjects, the prediction error of the macular region (4.40 dB) was significantly higher than that

of the peripheral region (4.29 dB; P = 0.031, Mann-Whitney U test). However, in normal sub-

jects, the prediction error of the macular region (2.45 dB) was significantly lower (P< 0.001,

Mann-Whitney U test) than that of the peripheral region (3.11 dB), whereas in glaucomatous

patients, the prediction error of macular region (5.62 dB) was higher than that of the periph-

eral region (5.03 dB), though not significantly (P = 0.741, Mann-Whitney U test).

The representative example of the class activation map (CAM) is shown in Fig 4. In this

map, the red colour denoted the area where the CNN was highly activated and produced a

high sensitivity value for the visual field test point, whereas the blue colour denoted the oppo-

site. The actual visual field test result (Fig 4A) showed low sensitivity in the superonasal area

and the CAM images at the corresponding location in the collection (Fig 4C) showed low acti-

vation in the inferotemporal sectors of the ONH OCT scan image. In contrast, the inferonasal

Table 2. Demographic characteristics of the test group.

Normal (n = 112) Glaucoma (n = 178) P value

Age (years) 52.5 ± 15.4 51.7 ± 14.0 0.537a

Female / male (number) 56 / 56 85 / 93 0.780b

Visual acuity (logMAR) 0.066 ± 0.112 0.093 ± 0.121 0.027a

Spherical equivalence (dioptre) –1.44 ± 2.84 –2.36 ± 3.13 0.006a

Intraocular pressure (mm Hg) 15.6 ± 3.9 15.6 ± 4.1 0.744a

Axial length (mm) 24.34 ± 1.62 24.70 ± 1.65 0.058a

Central corneal thickness (μm) 548.8 ± 37.8 548.9 ± 32.6 0.917a

Visual field test

• Mean deviation (dB) –1.62 ± 2.10 –6.29 ± 6.18 < 0.001a

• Pattern standard deviation (dB) 1.98 ± 1.11 6.12 ± 4.10 < 0.001a

• Visual field index (%) 97.8 ± 3.2 84.2 ± 18.8 < 0.001a

Optical coherence tomography

• Average mGCIPL thickness (μm) 79.3 ± 6.9 69.2 ± 9.0 < 0.001a

• Average pRNFL thickness (μm) 91.0 ± 10.2 72.5 ± 12.4 < 0.001a

Values are presented as mean ± standard deviation.

mGCIPL: macular ganglion cell-internal plexiform layer, pRNFL: peripapillary retinal nerve fibre layer.
a Mann-Whitney U test.
b χ2 test.

https://doi.org/10.1371/journal.pone.0234902.t002
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area showed high values for visual field sensitivity and the CAM images at the corresponding

location showed high activation (seen as the red colour) in the superotemporal sectors of the

ONH OCT scan image.

In each CAM image, red indicates strongly activated points yielding high threshold values;

blue (or no color) indicates the opposite. In this example, the visual field damage is principally

superonasal; the inferonasal region is relatively intact (i.e., exhibits high threshold values). The

CAM images in (C) that are numbered 27~30, 35~38, 43~46, and 49~52 are intensely red

(high visual field threshold values). Note that these activated areas in the CAM images (also

intensely red) exactly match the orange and dark grey regions in (D). In contrast, the CAM

images numbered 5, 6, 11, 12, and 19~22 are not colored (and thus not activated) and generate

low threshold visual field values. These areas match the blue and light grey regions in (D).

OCT: optical coherence tomography, ONH: optic nerve head.

Correlation analysis (Spearman’s rho) was performed to determine factors affecting visual

field prediction (Table 4). Age, sex, spherical equivalence, CCT, axial length, and macular

OCT signal strength all showed no significant correlation with visual field prediction. Visual

acuity (logMAR) positively correlated (r = 0.157, P = 0.007), and visual field MD (r = –0.543,

P< 0.001), average mGCIPL thickness (r = –0.553, P< 0.001), ONH OCT signal strength (r =

–0.126, P = 0.032), and average pRNFL thickness (r = –0.597, P< 0.001) negatively correlated

with visual field prediction.

Multiple linear regression analysis was performed to investigate the relative influence of

possible factors affecting visual field prediction (Table 5). The model was constructed using

the ENTER method and the RMSE as the outcome variable. Age, visual acuity (logMAR),

spherical equivalence, CCT, axial length, visual field MD, macular OCT signal strength, aver-

age mGCIPL thickness, ONH OCT signal strength, and average pRNFL thickness were used as

the input variables. The final model had R2 = 0.463 and P< 0.001. No multicollinearity was

found between variables (all variance inflation factors, VIFs� 3.051). Three out of 10 input

variables were significantly correlated with prediction error. The visual field MD was the most

Table 3. Global and regional root mean square error of visual field prediction.

All subjects Subject group

Normal Glaucoma P valuea

Global 4.79 ± 2.56 3.27 ± 1.50 5.75 ± 2.63 <0.001

Region by Garway-Heath sectorisation

Superotemporal 3.93 ± 3.53 2.41 ± 1.63 4.88 ± 4.04 <0.001

Temporal 4.08 ± 3.34 2.36 ± 1.36 5.16 ± 3.74 <0.001

Inferotemporal 4.66 ± 3.14 3.07 ± 1.53 5.66 ± 3.46 <0.001

Superonasal 4.55 ± 2.92 3.30 ± 1.93 5.33 ± 3.16 <0.001

Nasal 3.50 ± 2.56 2.69 ± 1.72 4.01 ± 2.86 <0.001

Inferonasal 5.23 ± 2.92 4.41 ±2.39 5.74 ± 3.10 <0.001

Region by OCT scan area

Macularb 4.40 ± 3.26 2.45 ± 1.20 5.62 ± 3.54 <0.001

Peripheralc 4.29 ± 2.20 3.11 ± 1.47 5.03 ± 2.27 <0.001

Values are presented as mean ± standard deviation.

OCT: optical coherence tomography.
a Mann-Whitney U test between normal and glaucoma group.
b Visual field test points inside the macular OCT scan area.
c Visual field test points outside the macular OCT scan area.

https://doi.org/10.1371/journal.pone.0234902.t003
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influential variable (β = –0.433, P< 0.001) followed by average pRNFL thickness (β = –0.252,

P = 0.002) and average mGCIPL thickness (β = –0.170, P = 0.028).

Fig 5 shows the relationship between prediction error ratio and the visual field MD using a

scatter plot. The prediction error was defined as the ratio of average prediction error inside the

macular OCT scan area (Fig 2) divided by the prediction error in the peripheral scan area (i.e.

outside the macular OCT scan area). In linear regression analysis, the prediction error ratio

was negatively associated with the visual field MD and its slope was –0.020 (P< 0.001). In

other words, as the MD decreased, the macular prediction error became greater than the

peripheral prediction error.

Discussion

The main objective of this study was to develop a deep learning architecture to predict Hum-

phrey visual field 24–2 threshold values from macular and ONH OCT imaging. We evaluated

the performance of visual field prediction globally and regionally, and tried to identify the fac-

tors that affected prediction. Globally, the RMSE of the deep learning algorithm was

4.70 ± 2.56 dB for all test subjects. In glaucoma subjects, the prediction error was significantly

higher than that of normal subjects (5.75 dB versus 3.27 dB, respectively). Visual field MD was

the most influential factor for prediction, followed by average pRNFL and mGCIPL thickness.

In the ophthalmology field, this study is the first to use OCT and a deep learning algorithm to

predict Humphrey visual field 24–2.

Retinal ganglion cells and their nerve fibre layer are closely related to the glaucomatous

visual field defect. This structure-function relationship has been investigated extensively. Woll-

stein et al. [20] studied the relationship between OCT-measured macular retinal thickness,

pRNFL thickness, and visual field. In their report, macular retinal thickness was able to detect

glaucomatous visual field damage and also correlated with pRNFL thickness. Sato et al. [21]

reported that GCIPL thickness, measured by Cirrus HD-OCT, was significantly correlated

with the central visual field. Similarly, Raza et al. [22] showed that GCIPL thickness was well

correlated with visual field loss within 7.2˚ of the fovea. Kim et al. [36] noted that both macular

ganglion cell complex (GCC) thickness and pRNFL thickness showed similar diagnostic per-

formance in detecting glaucoma. In our previous study [25], we found that the macular OCT

scan area mostly overlapped with visual field 10–2 test points and closely correlated with each

other. Wu et al. [37] reported that localised pRNFL thinning measured by SD-OCT was well

correlated with localised glaucomatous visual field defects. Garway-Heath et al. [23] mapped

visual field locations to the ONH sectors derived by overlapping visual field test points on

RNFL photographs. Gardiner et al. [24] also showed a topographical map between visual field

locations and ONH sectors. In those previous reports, mGCIPL thickness was more related to

the central visual field whereas pRNFL thickness was related to gross glaucomatous change.

Therefore, we could theorise that these two OCT exams may have complementary roles in pre-

dicting visual field.

Although attempts to use machine learning algorithms for structure-function relationships

in glaucoma are not novel [38–40], there have been few studies that predict visual field using

OCT imaging. In a recent study similar to ours, Christopher et al. [41] used a deep learning

Fig 3. Representative cases of visual field prediction. (A) The combined OCT images, which were input into the

deep learning architecture, are shown on the left column. The actual threshold values of visual field exams are shown

in the (B) middle panel and the threshold values predicted by Inception V3 based deep learning architecture are shown

on the (C) right panel. The colour reference for the threshold values are shown at the bottom. Despite the artificial

intelligence having never seen the actual visual field, the predicted visual field looked very similar to the actual visual

field exam.

https://doi.org/10.1371/journal.pone.0234902.g003
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Fig 4. Representative example of Class Activation Map (CAM). The figure shows (A) the actual threshold values and (B) the predicted threshold values of the

visual field examination. (C) Fifty-two CAMs were placed at individual visual field test points. Each CAM image is numbered at the top left. (D) Structure-

function mapping between the combined OCT image (left) and the visual field (right). The macular scan in the combined OCT image corresponds to the dashed

rectangle in the visual field. Color-coded Garway-Heath sectors are superimposed on the ONH scan of the combined OCT image and the corresponding visual

field regions are similarly colored. The numbers in the visual field image are the same as those in the CAM images of (C).

https://doi.org/10.1371/journal.pone.0234902.g004
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method to predict glaucomatous visual fields from OCT images. The deep learning architec-

ture employed to predict visual field global indices was ResNet and the inputs were Spectralis

SD-OCT ONH images. Various image types (RNFL thickness maps, RNFL en-face images,

and confocal scanning laser ophthalmoscopic images) were input and the predictions using

each type were compared. Unlike our deep learning method, which predicts the entire visual

field from both macular and ONH images, the method of Christopher et al. uses only ONH

image as input and predicts visual field global indices including the mean deviation (MD), the

pattern standard deviation (PSD), and the mean sectoral pattern deviation. The best mean

absolute errors, between the real and predicted values, were 2.5 dB (MD) and 1.5 dB (PSD).

Zhu et al. [42] introduced a method akin to the neural network with a radial basis function

customised under a Bayesian framework (BRBF), to predict visual field from pRNFL thickness.

In their report, the mean absolute error of the BRBF was 2.9 dB, which was better than the

Table 4. Correlation coefficients and simple linear regression analyses between visual field prediction error and various factors.

Correlation coefficients Simple linear regression analysis

Spearman’s rho P value Slope Intercept R2 P value

Age –0.003 0.957 0.011 4.230 0.004 0.301

Sex –0.018 0.756 –0.108 4.842 <0.001 0.722

Visual acuity (logMAR) 0.157 0.007 2.803 4.556 0.017 0.028

Spherical equivalence –0.018 0.765 0.015 4.818 <0.001 0.766

Central corneal thickness –0.051 0.404 –0.003 6.705 0.002 0.452

Axial length 0.071 0.257 0.015 4.399 <0.001 0.878

Visual field MD –0.543 <0.001 –0.296 3.463 0.403 <0.001

Macular OCT signal strength –0.039 0.510 –0.103 5.625 0.002 0.410

Average mGCIPL thickness –0.553 <0.001 –0.145 15.415 0.296 <0.001

ONH OCT signal strength –0.126 0.032 –0.303 7.280 0.019 0.020

Average pRNFL thickness –0.597 <0.001 –0.102 12.896 0.338 <0.001

MD: mean deviation, mGCIPL: macular ganglion cell-internal plexiform layer, OCT: optical coherence tomography, ONH: optic nerve head, pRNFL: peripapillary

retinal nerve fibre layer.

https://doi.org/10.1371/journal.pone.0234902.t004

Table 5. Multiple linear regression analyses between visual field prediction error and various factors.

Adjusted β P value VIF

Age –0.081 0.216 1.983

Visual acuity (logMAR) –0.059 0.253 1.204

Spherical equivalence 0.130 0.081 2.558

Central corneal thickness –0.007 0.889 1.065

Axial length 0.020 0.772 2.159

Visual field MD –0.433 0.000 1.846

Macular OCT signal strength 0.097 0.127 1.849

Average mGCIPL thickness –0.170 0.028 2.731

ONH OCT signal strength 0.040 0.540 1.914

Average pRNFL thickness –0.252 0.002 3.051

Final model: Outcome = root mean square error (RMSE) of prediction. Adjusted R2 = 0.463, P < 0.001, ENTER

method used. No multicollinearity was found between variables (all VIFs� 3.051).

MD: mean deviation, mGCIPL: macular ganglion cell-internal plexiform layer, OCT: optical coherence tomography,

ONH: optic nerve head, pRNFL: peripapillary retinal nerve fibre layer, VIF: variance inflation factors.

https://doi.org/10.1371/journal.pone.0234902.t005
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classical linear regression model (4.9 dB). Though their result showed better performance than

that noted in our study (4.70 dB), absolute comparison was not possible as the performance

metric used in their study was mean absolute error and their test dataset (Blue Mountains Eye

Study [BMES] data) largely consisted of healthy subjects (230 healthy subjects and 76 glau-

coma patients). Considering that the prediction error was worse in glaucoma patients than

normal subjects, the large proportion of healthy subjects in their study likely reduced their pre-

diction error compared to that determined in this study.

Another study using machine learning to predict visual field threshold values was con-

ducted by Guo et al. [26], who predicted visual field 24–2 from wide field composite OCT.

They used a 9-field per eye protocol which fixated the patient’s eye on a 3 × 3 grid spot pattern

to obtain a total of nine OCT images. These images were stitched together to generate a single

wide field composite OCT image. They constructed four predefined topological structure-

function maps and applied a support vector machine (SVM) algorithm to these maps to pre-

dict visual field. Among the four predefined maps, the best map showed an RMSE of 5.42 dB.

The performance of this method was excellent, but depended largely on how the structure-

function map was defined. In the different maps, the prediction error increased up to 7.24 dB.

However, our deep learning method creates a structure-function map by itself during the

training process. In Fig 4C, the CAM showed how Inception V3 based deep learning architec-

ture constructed this map and noted that it was similar to previous studies such as the Garway-

Heath map. Moreover, the deep learning algorithm not only considers a specific mapping spot

but also broad neighbouring areas as well. This likely made the prediction more accurate as a

predefined mapping spot could contain errors; however, by considering a wider area, this

error can be overcomed.

Fig 5. Scatter plot of the prediction error ratio (macular/peripheral) versus the visual field Mean Deviation (MD).

The slope was –0.020 (P < 0.001) which suggested that as the MD decreased, the macular prediction error became

higher than the peripheral prediction error. In other words, as glaucoma progressed, the peripheral prediction became

more accurate than the macular prediction.

https://doi.org/10.1371/journal.pone.0234902.g005
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Among the regions of the Garway-Heath sectorisation, we observed that the superior sec-

tors of the ONH had fewer prediction errors than the corresponding inferior sectors, suggest-

ing that the superior retina is better correlated with functional tests than the inferior retina.

This is corroborated by similar findings reported by Guo et al. [26], who found that the corre-

lation between structure and function was higher in the superior than the inferior retina. It

was suggested that this was due to the superior retina, which is responsible for the inferior

visual field, being more important for survival in nature and may be an evolutionary conse-

quence. However, we propose another possible reason for this observation. From previous

studies, glaucomatous damage is known to occur sequentially in sectors. It begins in the infer-

otemporal ONH region, and then progresses to the superotemporal sectors. [43] In our study,

as glaucoma progressed, the overall prediction error was increased. Since the inferotemporal

ONH region is the first to be damaged, its prediction error could be higher than that of the

superior region.

In regression analysis, we found that both mGCIPL and pRNFL thickness are significantly

correlated to the visual field prediction error with the pRNFL thickness being slightly more

influential than mGCIPL thickness (adjusted β = –0.170 and –0.252 for mGCIPL and pRNFL,

respectively). We suggest that this is because the mGCIPL only provides information regarding

the macular area whereas the pRNFL offers a more generalised view across all areas of the ret-

ina. However, the regional prediction errors, and macular and peripheral OCT scan areas were

different between normal and glaucoma subjects. In normal subjects, the macular OCT scan

area showed a lower prediction error than the peripheral OCT scan area, whereas in glaucoma

patients, the opposite was noted. This result is consistent with previous studies. Wollstein et al.

[20] reported that the pRNFL thickness was more sensitive to glaucomatous damage. Kim

et al. [36] reported that mean GCC thickness, instead of pRNFL thickness, was a better diag-

nostic indicator of early glaucoma cases as well as a non-glaucomatous condition. In normal

or early glaucoma patients, information provided by the mGCIPL is relatively more important

than that provided by the pRNFL which is likely to have made visual field prediction using the

macular OCT scan area more accurate. As glaucoma progressed, the information provided by

the pRNFL thickness became more influential and reversed the prediction accuracy between

the macular and peripheral OCT scan areas. This may provide an explanation for the negative

correlation of the prediction error ratio (macular versus peripheral) with visual field MD in

Fig 5.

Regression analysis also revealed that age, visual acuity, spherical equivalence, axial length,

and signal strength of OCT were not correlated with prediction error. In several previous

reports, the reproducibility of OCT imaging has been considered to be generally reliable [10–

15]. Axial length has been shown to affect the RNFL thickness measurement [44]; however,

another study has noted that both macular GCC and pRNFL thickness measurements show

good diagnostic performance in individuals with high myopia [45]. In our study, extreme

cases including spherical equivalence >6.0 dioptres and axial length >26.0 mm were excluded,

and only eyes with relatively good visual acuity, no media opacity, and no diseases other than

glaucoma were included. With these inclusion criteria, the reproducibility of OCT imaging in

predicting visual field appears to be strong and negligibly affected by the factors noted above.

Even though the quality of the OCT scan is inevitably associated with the accuracy of visual

field prediction, there was no significant correlation between OCT image quality and predic-

tion error.

This study had a few limitations. First, only those patients with glaucoma were included to

predict visual field. If patients with diseases other than glaucoma, where the visual field defect

was not altitudinal in nature, such as temporal hemianopsia, were included, the prediction

accuracy may be different than that reported in our study. Second, the training and test
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datasets were comprised of a primarily Korean population and the possibility of performance

being different in populations comprising of other ethnicities should be considered. Girkin

et al. [46] evaluated the ONH, RNFL, and macular parameters yielded by SD-OCT in terms of

age and race; all parameters varied by race. Thus, researchers must be aware that visual field

predictions derived from SD-OCT will also vary by race.

In conclusion, the deep learning method effectively predicted the visual field 24–2 using the

combined OCT image (mGCIPL and pRNFL thickness map) with a prediction error of 4.70

dB. The accuracy of the visual field prediction was not influenced by factors such as age, visual

acuity, spherical equivalence, axial length, and OCT signal strength. This may help clinicians

perform visual field testing, especially of patients who are unable to undergo real visual field

examinations (young children, dementia patients, and mentally retarded patients).
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