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Abstract
Arterial thrombosis is in part contributed by excessive 
platelet aggregation, which can lead to blood clotting and 
subsequent heart attack and stroke. Platelets are sensitive 
to the haemodynamic environment. Rapid haemodynamcis 
and disturbed blood flow, which occur in vessels with 
growing thrombi and atherosclerotic plaques or is caused 
by medical device implantation and intervention, promotes 
platelet aggregation and thrombus formation. In such 
situations, conventional antiplatelet drugs often have 
suboptimal efficacy and a serious side effect of excessive 
bleeding. Investigating the mechanisms of platelet 
biomechanical activation provides insights distinct from 
the classic views of agonist-stimulated platelet thrombus 
formation. In this work, we review the recent discoveries 
underlying haemodynamic force-reinforced platelet binding 
and mechanosensing primarily mediated by three platelet 
receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/
IIIa) and glycoprotein VI (GPVI), and their implications for 
development of antithrombotic ‘mechano-medicine’ .

Introduction
Thrombotic diseases, which include the 
acute coronary syndromes, ischaemic stroke 
and peripheral vascular disease, remain the 
leading causes of death and disability world-
wide.1 2 Platelets play a central role in the 
pathogenesis of arterial thrombosis. However, 
despite intensive investigations over the last 
40 years into the discovery and development 
of antiplatelet therapies, the impact of these 
therapies on the mortality rate remains disap-
pointingly low: <1 in 6 patients taking anti-
platelet therapies avoided a fatal thrombotic 
event.1 This situation is likely to worsen in the 
next few decades due to the rapidly growing 
incidence of obesity, diabetes and metabolic 
syndrome, which all enhance the resistance 
of arterial thrombosis to conventional anti-
platelet drugs.3

The development of more effective anti-
thrombotic approaches requires a better 
understanding of the molecular events under-
lying platelet hyperactivity and excessive 
thrombus growth. To date, most of the Food 
and Drug Administration (FDA) approved 
antithrombotic agents target agonist pathways 
of platelet activation, including the purinergic 

P2Y12 receptor antagonists (clopidogrel, pras-
ugrel, ticagrelor), inhibitors of thromboxane 
A2 (TxA2) generation (aspirin, triflusal) or 
protease-activated receptor 1 (PAR1) antag-
onists (vorapaxar).1 Increasing the dose of 
these agents, especially aspirin and clopi-
dogrel, has been employed to dampen the 
platelet thrombotic functions. However, this 
also increases the risk of excessive bleeding.4 
It has long been recognized that arterial 
thrombosis is regulated by biomechanical 
factors, particularly pathological shear stress 
and flow disturbance associated with vessel 
stenosis induced by atherosclerotic plaques 
or medical device implants.1 5 These varia-
tions in blood haemodynamics can be sensed 
by platelets, upregulating platelet adhesive 
functions and inducing platelet activation via 
a process called ‘mechanosensing’.6 7 Recent 
technology advancements in microfluidics, 
molecular imaging and live-cell dynamic 
force spectroscopy enabled the investigation 
of platelet mechanosensing at single-cellular 
and single-molecular levels. These studies 
looked into how platelets sense and react 
to the extracellular haemodynamic forces, 
and defined the mechanosensing functions 
of receptors GPIb, GPIIb/IIIa and possibly 
GPVI, in mediating shear-dependent platelet 
adhesion,8–10 spreading11 and aggregation.5 12 
These insights provided new targets for the 
next-generation antithrombotic strategies.

Biomechanical versus biochemical activation in 
platelet adhesion and aggregation
Thrombosis requires platelet adhesion, but 
also heavily relies on platelet aggregation to 
form occlusive thrombi. Platelet adhesion and 
aggregation are both complex processes that 
involve the binding between multiple recep-
tor–ligand pairs.13 In veins where shear rates 
are low (300–800 s–1), initial platelet adhesion 
is mainly mediated by GPVI interaction with 
collagen and GPIIb/IIIa with fibrinogen in 
subendothelium (figure  1). The subsequent 
platelet aggregation is primarily mediated 
by the GPIIb/IIIa binding to divalent or 
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Figure 1  Illustration of VWF mechanoactivation (inset) and the step-by-step process of GPIb-mediated platelet 
mechanosensing. VWF is activated by shear flow in two steps: it is first globally elongated from a globular to an extended 
conformation, followed by the relief of its A1 domain autoinhibition that enables binding to platelet GPIbα. Once VWF is bound 
to a platelet, force from the shear flow transmits from VWF to GPIbα and triggers a series of GPIbα conformational changes 
and allosteric effects. These events would result in the reinforcement of VWF–GPIb interaction as well as the initiation of a 
mechanosignaling pathway that eventually leads to intracellular calcium release and GPIIb/IIIa activation. Note: platelet GPVI 
and its interaction with collagen are also depicted in this graph. Agents and drugs that have the potential to inhibit arterial 
thrombosis by targeting GPIb-mediated or GPVI-mediated platelet binding and mechanosensing, and their respective targets, 
are indicated, corresponding to table 1.

multivalent ligands for crosslinking. These include von 
Willebrand factor (VWF), which adopts a structure of 
a colloid concatemer,14–16 and fibrinogen, which has a 
total of six motifs to interact with GPIIb/IIIa.17–19 In addi-
tion, fibronectins can attach to two ends of a fibrinogen 
molecule and crosslink platelet GPIIb/IIIa as well.20–22 In 
arteries and arterioles where shear rate is relatively high 
(>800 s–1), both GPIb and GPIIb/IIIa serve as the primary 
mediators of platelet adhesion23 24 and aggregation.5 25 In 
particular, at pathologically high shear rates (>5000 s–1) 
that occur in arteries with severe stenosis, the GPIb–VWF 
interaction alone can achieve large-scale platelet aggre-
gation independent of integrin and platelet activation.26

Platelet adhesion and aggregation are heavily depen-
dent on platelet activation, mainly due to the fact that 
platelet activation primes GPIIb/IIIa to achieve stronger 
binding capacity.13 23 Additionally, platelet activation also 
results in platelet spreading and granule release to allow 
ligand deposition as well as surface expression of extra 
receptors for binding.11 27–29 Platelets can be activated by 

soluble agonists via G protein-coupled receptor (GPCR) 
signaling pathways. For instance, ADP (by binding to P2Y1 
and P2Y12),30 31 thromboxane A2 (by binding to throm-
boxane A2 receptor)32 and thrombin (by binding to 
PAR1 and PAR4)33 can induce GPIIb/IIIa inside-out acti-
vation at various levels to trigger cytoskeletal remodelling, 
granule release, degranulation and cell death,1 34 35 while 
the inhibition of these interactions or their subsequent 
signaling pathways has been employed to develop anti-
thrombotic drugs like clopidogrel,36 aspirin,37 warfarin38 
and heparin.39 In parallel, platelets can be biomechan-
ically activated via binding to its extracellular ligands 
under shear.7 In this process, force pulling on a platelet 
receptor triggers ‘mechanosignals’ across the membrane 
and results in intracellular signal transduction.6 Platelet 
GPIb and GPIIb/IIIa together form an important mech-
anosensing axis.40 GPIb initiates platelet mechanosig-
naling by binding to immobilised VWF under force, 
which is followed by the mechanosignaling of GPIIb/IIIa 
while binding to its own ligands, eventually allowing rapid 
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shear-dependent thrombus formation.12 Importantly, the 
intensity and timing of GPIb mechanosignaling is quanti-
tatively correlated with the level of subsequent GPIIb/IIIa 
activation in both affinity and avidity,12 which highlights 
the role of GPIb as a mechanosensor in shear-dependent 
platelet thrombus formation.

The role of VWF–GPIb axis in platelet binding and 
mechanosensing
VWF contains binding sites for both platelet GPIb and 
GPIIb/IIIa, respectively, in its A1 and C4 domains.41 The 
VWF molecule itself is mechanosensitive, which under-
goes conformational activation under shear force. The 
inactive form of VWF in plasma adopts a globular, irreg-
ularly coiled shape, with its functional epitopes buried. 
In particular, its A1 domain is autoinhibited by the 
adjacent N-terminal D′D3 domain42 and C-terminal A2 
domain,43 44 which prevents the accessibility of VWF-A1 
to GPIb. Under high-shear laminar flow or high-shear 
gradient disturbed flow, VWF is mechanically extended 
by shear force to expose its platelet-binding epitopes.41 45 
Further exertion of force on the extended VWF unmasks 
its A1 domain and relieves the autoinhibition of its GPIb-
binding site, thereby allowing platelet GPIb binding46–49 
(figure 1). Besides, shear can facilitate the self-association 
of VWF into fibres, which further enhances platelet adhe-
sion and activation.50 51

The VWF A1 domain autoinhibition was suggested to 
be controlled by the C1669–C1670 disulfide bond plug 
in the A2 domain.52 Three different redox forms of this 
disulfide plug were discovered to exist in circulating 
human VWF: reduced, glutathionylated and oxidized. 
The oxidized form has high affinity for platelet GPIb, 
whereas the reduced and glutathionylated forms have low 
affinity. Clinically, most of heart failure patients who have 
received extracorporeal membrane oxygenation (ECMO) 
support have markedly more oxidized VWF in the circula-
tion,53 which seems to result from the dysregulated blood 
shear associated with the device but not the disease or 
therapy variations.52 This result explains the thrombotic 
complications associated with ECMO device, and suggests 
that reducing this disulfide plug might provide protec-
tion to patients against thrombosis.

The VWF–GPIb interaction features fast bond asso-
ciation and dissociation, which plays a primary role in 
platelet recruitment from rapid blood circulation.54–56 
A counterintuitive phenomenon was discovered in this 
interaction: increasing the shear rate would enhance, 
rather than reduce, platelet adhesion onto a VWF-
coated surface.23 55 57 Using single-cell force spectrosco-
pies, this phenomenon was explained by a ‘catch bond’ 
behaviour55 57 and a force-induced unfolding of the GPIb 
leucine rich repeat (LRR) domain,58 in both of which 
mechanical force reinforces VWF–GPIb bond strength 
(figure  1). Taken together, the mechanosensitivity of 
VWF and the force reinforcement of VWF–GPIb interac-
tion work cooperatively to allow platelets to resist high-
shear forces in the arteries while being recruited to the 

vascular injury site. However, they also promote thrombus 
development under pathological shear conditions59: as 
shear rate increases to 5000 s–1, the VWF–GPIb interac-
tion starts to mediate large platelet aggregate formation 
(>100 µm2), and this effect becomes more pronounced as 
the shear rate increases to 10 000 s–1 and above.26

VWF–GPIb interaction not only mediates platelet 
binding but also triggers the outside-in mechanosignals 
of platelets independent of other receptors, leading to 
intraplatelet calcium flux60 and GPIIb/IIIa activation.8 10 
Inhibition of the GPIb-triggered Ca2+ prevents platelet 
firm adhesion, suggesting that Ca2+ is an obligatory 
signaling molecule on the pathway to GPIIb/IIIa activa-
tion.8 9 61 62 Although how the transmission of the mechan-
ical signal across the membrane and its transduction into 
cytoplasmic chemical signals are fulfilled remains elusive, 
a juxtamembrane mechanosensitive domain (MSD) in the 
GPIbα subunit was found to correlate with intraplatelet 
Ca2+ triggering (figure 1): force-induced MSD unfolding 
is well correlated with an α-type Ca2+ signal8 9 and the 
subsequent GPIIb/IIIa intermediate activation, whereas 
failing to unfold MSD will most likely result in β-type 
or null-type Ca2+ signals and limit GPIIb/IIIa activa-
tion.60 63 Intracellularly, a scaffold protein that binds to 
GPIb cytoplasmic tail, 14-3-3ζ, was also found to play a 
pivotal role in GPIb mechanosignaling (figure 1), as the 
inhibition of 14-3-3ζ–GPIb association strongly inhibited 
GPIb-triggered Ca2+ flux and subsequent GPIIb/IIIa acti-
vation.60 64 Filamin A, another cytoplasmic protein that 
links GPIb with the cytoskeleton, was also speculated to 
participate in GPIb mechanosignaling65 (figure 1). At the 
downstream of this signal transduction pathway, the phos-
phorylation of kinases (including Akt and focal adhesion 
kinase (FAK)) is required, which involves the Src family 
kinases66 as well as the activation of several signaling path-
ways including the phosphoinositide 3-kinase (PI3K)-Akt 
and cGMP-dependent protein kinase pathway, mitogen-
activated protein kinase (ERK1/2 and p38) pathway and 
LIM kinase 1 pathway.67

Targeting VWF–GPIb axis as a novel antithrombotic strategy
Many works have explored the potential of inhibiting 
VWF–GPIb interaction to reduce arterial thrombosis.68 
For instance, Chen et al discovered a ‘hot spot’ residue 
R1326 on murine VWF-A1.69 Mutating this residue to 
histidine weakens both the association and endurance 
of VWF–GPIb binding, thereby diminishing thrombus 
formation in arterioles in a laser-injury thrombosis 
model.70 The autoinhibitory effect of the N-terminal 
sequence Q1238-E1260 of VWF-A1 on its own binding 
to platelet GPIb inspires another potential antithrom-
botic approach: the soluble polypeptide Lp of the same 
sequence was shown to inhibit platelet binding to VWF 
under shear.57 A humanized anti-VWF-A1 blocking 
nanobody named ALX-0081 (caplacizumab) inhibited 
acute thrombosis without compromising haemostasis in 
baboons,71 and induced the reperfusion of a thrombus-
occluded cerebral artery without provoking cerebral 
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bleeding in guinea pigs.72 Besides, an inhibitory mono-
clonal antibody against VWF-A1, NMC4,73 a recombinant 
mimetics of human GPIbα, GPG-290,74 and an anti-VWF 
aptamer, ARC1779,75 were also found to inhibit throm-
bosis (table 1; figure 1). Similarly, the inhibition of GPIb 
binding by monoclonal antibodies H6B476 and p0p/B,77 
or by chemicals purified from snake venom like agkistin78 
and anfibatide,79 were found to reduce platelet aggre-
gation and thrombus formation under arterial shear 
conditions (table  1; figure  1). The anti-GPIb blockade 
has displayed a strong protective effect in the mouse 
stroke models without inducing significant intracranial 
bleeding.77 80 Notably, unpublished phase IIa human 
clinical trials have shown the promise of anfibatide as a 
novel antiplatelet agent without significantly affecting 
haemostasis in patients with non-ST segment elevation 
myocardial infarction (MI).81 Additionally, anfibatide was 
also shown as a promising candidate to treat ischaemic 
stroke and spontaneous or bacterial shigatoxin-induced 
acquired thrombotic thrombocytopenic purpura (TTP) 
in experimental animal models.82 83

Nonetheless, due to the indispensable role of VWF–
GPIb interaction in initiating platelet haemostatic func-
tions, inhibiting this axis can easily trigger a strong side 
effect of excessive bleeding. Historically, this has caused 
the failure of several clinical trials.4 84 For instance, 
although a phase II trial demonstrated that ARC1779 
reduced cerebral thromboembolism after carotid endar-
terectomy, two-thirds of patients receiving ARC1779 
experienced haemorrhagic complications.85 As another 
example, caplacizumab was trialled in combination with 
aspirin, clopidogrel and heparin in high-risk patients with 
acute MI undergoing percutaneous coronary interven-
tion (PCI).86 However, its development was discontinued 
in 2011 because of a severe bleeding profile.84 Instead, it 
received FDA approval following phase III HERCULES 
trials for the treatment of acute episode of acquired TTP 
in adult patients in combination with plasma exchange 
and immunosuppressive therapy.87 We argue that similar 
outcome may hold true for other drug candidates that 
generally inhibit VWF–GPIb interaction, which deserve 
careful consideration and further investigation.

On a separate note, considering the distinct haemo-
dynamic conditions associated with arterial thrombosis 
and haemostasis, a potential strategy to selectively inhibit 
arterial thrombosis without compromising haemostasis 
is to target the biomechanical activation of VWF and/or 
the biomechanical reinforcement of VWF–GPIb interac-
tion. For instance, inhibiting the LRR domain unfolding 
of GPIbα may serve to suppress VWF–GPIb interaction 
under high forces,58 thereby hampering thrombosis in 
stenosed arteries where shear rate is pathologically high. 
As another example, shear force unfolds the A2 domain 
of ultra-large VWF to allow its cleavage by ADAMTS13 
into normal sizes.88 It was found that under pathologically 
high-shear flow, shear force becomes sufficiently large to 
trigger cleavage of normal-sized VWF by ADAMTS13 in 
a growing thrombus, thereby inhibiting thrombosis.88 89 

This makes recombinant ADAMTS13 (BAX 930) a prom-
ising antithrombotic agent90 (table 1; figure 1): in preclin-
ical tests, infusing recombinant ADAMTS13 before 
reperfusion significantly reduced the infarct volume and 
other stroke effects.91 Moreover, the mechanoredox regu-
lation of VWF reactivity suggests that using antioxidative 
agents or more specific disulfide isomerases to reverse 
plasma VWF from oxidized to its reduced form can reduce 
platelet binding and thereby suppress thrombosis.52

Since GPIb mechanosignaling leads to GPIIb/IIIa acti-
vation,12 the GPIb signaling pathway serves as another 
target to inhibit thrombosis. However, blocking house-
keeping cytoplasmic adaptors and signaling kinases 
would most likely affects physiological functions of other 
cell types. Considering this, targeting certain steps of the 
GPIb mechanosignaling process seems more promising 
due to higher specificity. Previous works have identified 
that a small peptide, MPαC, which inhibits the association 
of 14-3-3ζ with GPIb, suppresses mouse arterial throm-
bosis with minor consequences of bleeding92 93 (table 1; 
figure  1). Inhibiting the unfolding of MSD should also 
suppress the mechanosignaling of GPIb. The current 
development of bispecific antibody technology94 provides 
a possible approach to achieve this: by making a bispecific 
antibody with two antigen binding fragments respectively 
targeting the two ends of MSD, it can potentially constrain 
MSD in its folded conformation even under force pulling.

The role of GPIIb/IIIa in platelet binding and mechanosensing
A good amount of works have substantially character-
ized GPIIb/IIIa as a platelet receptor in structure,95–100 
binding activity101–103 and signaling.8 9 11 62 104 105 GPIIb/IIIa 
regulates its ligand-binding affinity with conformational 
changes.106–108 Inactive GPIIb/IIIa adopts a bent confor-
mation (B) with closed headpiece (C) (or called hybrid 
domain swung-in); its ligand binding site is inactive and 
barely binds any ligand. On activation, the GPIIb/IIIa 
extends its ectodomain to achieve an extended-closed 
(EC) conformation, followed by headpiece opening to 
reach extended-open (EO)95 98 109–112 (figure 2A). The EO 
conformation of GPIIb/IIIa is extensively correlated with 
active ligand binding,98 113 whereas the EC conformation 
was recently found to be associated with an intermediate 
affinity state.12

GPIIb/IIIa plays critical roles in platelet adhesion, 
activation and aggregation, which altogether define it 
as the primary mediator of both thrombosis and haemo-
stasis.114–117 As first observed in mouse stenosed blood 
vessels and in varied arterial injury models, GPIIb/IIIa 
can mediate platelet aggregation in a biomechanical 
pathway,25 where the platelets mainly remain discoid.5 In 
the biomechanical platelet aggregation, the interaction 
between GPIb and VWF initiates platelet mechanosensing 
and results in the EC conformation, intermediate affinity 
activation of GPIIb/IIIa.8 9 12 60 Once upregulated to this 
intermediate state, GPIIb/IIIa starts to receive mechano-
signals to undergo outside-in signaling, which leads to its 
own activation to the high affinity, EO state (figure 2A) 
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Figure 2  GPIIb/IIIa mediated platelet mechanosensing. (A) The extended-close (EC) GPIIb/IIIa receives mechanosignals from 
its bound ligand and mediates outside-in signaling, which can subsequently upregulate GPIIb/IIIa themselves towards the active 
state with an extended-open (EO) conformation. During the process, the adaptor protein talin that is originally associated with 
the cytoplasmic tail of GPIIIa will detach and be replaced by a Gα13 molecule, which will be ensued by a second wave of talin 
attachment to in turn replace Gα13 (not depicted here). (B) Redox regulation of GPIIb/IIIa binding via ERp5, PSI and PDI. Force 
pulling on the GPIIb/IIIa headpiece via a bound Arg-Gly-Asp (RGD)-bearing ligand can facilitate ERp5 to reduce the C177–C184 
disulfide bond in the βI domain, which in turn accelerates ligand dissociation from GPIIb/IIIa. PSI domain has endogenous thiol 
isomerase function, which reinforces GPIIb/IIIa binding. Extracellular PDI can also induce thiol-disulfide exchange in GPIIb/IIIa 
and enhances its binding capacity. (C) In the resting bent-closed (BC) state, GPIIb/IIIa binding to fibronectin manifests a slip 
bond (a small catch bond if against fibrinogen). Once upregulated to the intermediate extended-closed (EC) state, GPIIb/IIIa 
binding to both ligands will adopt a strong catch bond, which will become even stronger when the integrin is further activated 
to the EO state. Agents and drugs (green: preclinical phase; blue: undergoing clinical trials; red: FDA approved) that have the 
potential to inhibit arterial thrombosis by targeting GPIIb/IIIa mechanosensing, and their respective targets, are indicated, 
corresponding to table 1. ‘Anti-PSI’ represents antibodies PSI A1, PSI B1, PSI C1 and PSI E1. ERp5, endoplasmic reticulum 5; 
PDI, protein disulfide isomerase.

as well as platelet spreading, extracellular Ca2+ influx and 
granule secretion.8 12 27 104 118 119 Remarkably, the above 
process does not require the external supplement of 
soluble agonists. Therefore, the activation of GPIIb/IIIa 
via this pathway was named ‘mechanical affinity matu-
ration’.12 Likely serving as a self-inhibitory mechanism 
to avoid overly activation of platelets, only the interme-
diate state, but not inactive state GPIIb/IIIa can undergo 
outside-in mechanosignaling.12 Importantly, the biome-
chanically driven activation (via sequential GPIb and 
GPIIb/IIIa mechanosignaling) and agonist-stimulated 
activation (via stimulation of soluble agonists) of GPIIb/
IIIa are essentially distinctive and probably via differential 
signaling pathways.12

Mechanoredox coupling has been unravelled as a 
new mechanism by which GPIIb/IIIa biomechanically 
regulates platelet thrombosis.120–122 Thiol isomerases, 
including protein disulfide isomerase (PDI),123 124 endo-
plasmic reticulum 5 (ERp5)121 125 and ERp57,126 127 are 
enzymes which regulate the function of platelets by 
reducing or oxidising disulfide bonds of their cell surface 
proteins, such as GPIIb/IIIa. Importantly, the regulation 
of these thiol isomerases can either strengthen or weaken 
GPIIb/IIIa binding. For example, the PSI domain of 
GPIIb/IIIa contains an endogenous thiol isomerase func-
tion, the inhibition of which suppressed platelet aggrega-
tion.128 On the other hand, another thiol isomerase ERp5 
is secreted by activated platelets and binds to GPIIIa.121 129 
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Via reducing the βI domain C177–C184 disulfide bond 
nearby the fibrinogen binding pocket of GPIIb/IIIa, ERp5 
results in the premature release of fibrinogen.125 Impor-
tantly, Passam et al identified this process to be force sensi-
tive: RGD-ligand binding to the integrin and shear force 
can facilitate ERp5 to reduce the disulfide bond, thereby 
accelerating fibrinogen dissociation125 (figure 2B). This 
intriguing finding provides a new concept on how plate-
lets harness force to balance haemostatic versus throm-
botic functions from a redox perspective.

Targeting GPIIb/IIIa as a novel antithrombotic strategy
Just like GPIb, antagonists that directly block GPIIb/
IIIa extracellular binding have been developed for 
antithrombotic use.81 130 Among them, abciximab, epti-
fibatide and tirofiban are approved by FDA for acute 
cardiac ischaemic events. However, these antagonists 
would compromise haemostasis and induce profound 
thrombocytopenia with mechanisms incompletely under-
stood.117 131 Clinicians have to heavily rely on the fine 
tuning of dosage to prevent these side effects from being 
life-threatening, which often fails.132 As a result, these 
GPIIb/IIIa inhibitors seem to be restricted to particular 
high-risk subgroups, such as MI patients undergoing PCI 
without pretreatment with a P2Y12 antagonist.133 134 In the 
case of acute/moderate ischaemic stroke, their use is not 
recommended until multicentre analyses of endovascular 
stroke therapy necessitating adjunctive GPIIb/IIIa inhibi-
tions are conducted.135

For the last decades, breakthroughs from basic 
research suggest new antithrombotic therapeutic targets 
underlying the early phases of GPIIb/IIIa intracellular 
signaling pathway.92 104 128 136 137 For instance, selectively 
targeting GPIIb/IIIa downstream signaling molecules 
PI3Kβ138 and Gα13

104 was shown to inhibit arterial throm-
bosis without affecting haemostasis under certain doses 
(table 1; figure 2A). The PI3Kβ inhibitor AZD6482, which 
suppresses GPIIb/IIIa mechanosignaling in particular, 
has completed preclinical and phase I clinical trials, and 
was demonstrated in multiple species including mice, rats, 
rabbits, dogs and humans for its good tolerance without 
prolonging skin bleeding time, even when administered 
at high doses. AZD6482 also demonstrated high efficiency 
in reducing the disturbed flow enhanced thrombotic 
response in a diabetic mouse model, which displayed 
resistance to co-administered aspirin and clopidogrel,139 
suggesting that targeting platelet mechanosensing path-
ways provides a potentially more effective antithrom-
botic approach for patients with diabetes. On the other 
hand, inhibiting the interaction between GPIIb/IIIa 
and Gα13 with a myristoylated peptide ExE peptide motif 
(mP6) selectively inhibits GPIIb/IIIa mediated platelet 
spreading but not agonist induced inside-out signaling 
or fibrinogen ligation104 (figure  2A). This peptide was 
shown to suppress occlusive arterial thrombosis without 
affecting bleeding. To explain this, our single-platelet 
analyses suggested that Gα13 binding is needed for the 
active EO state activation of GPIIb/IIIa, but not for the 

intermediate EC state activation12 (unpublished data). As 
such, preventing GPIIb/IIIa from the EC–EO transition 
might be a promising strategy to differentiate occlusive 
thrombosis from haemostasis.

The regulation of thiol isomerases was also suggested 
for antithrombotic application. For instance, inhibiting 
the thiol isomerase function of GPIIb/IIIa PSI domain by 
anti-PSI antibodies was demonstrated to inhibit murine 
thrombus formation without significantly affecting 
bleeding128 (figure  2B; table  1). Furthermore, inhib-
itors of PDI have been identified by high-throughput 
screening of 350 000 compounds.122 140 Isoquercetin, a 
first-generation flavonoid anti-PDI drug derived from 
this screening, demonstrated good efficacy for reducing 
venous thrombosis in cancer patients in a phase II clinical 
trial141 (figure 2B; table 1). These exciting results corrob-
orate the rationale of targeting disulfide redox states of 
GPIIb/IIIa via thiol isomerase inhibitors. Importantly, 
patients with diabetes and metabolic syndrome have 
increased thiol isomerase activity in their blood,142 143 
which raises the possibility of applying these inhibitors to 
these patients in the future.

Another promising antithrombotic strategy is to 
inhibit, but not eliminate, the ligand-binding capacity of 
GPIIb/IIIa. Catch bond mechanism was demonstrated to 
reinforce the ligand binding of activated GPIIb/IIIa12; in 
particular, compared with the EC intermediate state, the 
lifetime of EO GPIIb/IIIa is not only globally prolonged 
under all forces but also stretches its ‘catch’ regime with 
a wider force range12 (figure  2C). Such conformation-
specific binding attributes of GPIIb/IIIa leads to steady 
development of thrombi even under pathologically shear 
rates in stenosed arteries.5 Taking advantage of this, a 
potential antithrombotic approach could be to downreg-
ulate the catch bond behaviour of activated GPIIb/IIIa at 
large forces. As a proof-of-concept, we demonstrated that 
a variant (R77H) in another integrin, αMβ2, suppresses 
the integrin catch bond at 5–12 pN, but causes no effect 
to the bond lifetime at lower forces (<5 pN).144 Noting 
that R77 is located in the β-propeller domain distal 
to the ligand-binding site, this discovery highlights an 
allosteric effect in integrin binding regulation by integrin 
α-subunit, which may also be applied to platelet GPIIb/
IIIa. The conformation-specific targeting of GPIIb/
IIIa represents another promising approach to partially 
inhibit GPIIb/IIIa.145 The selective targeting of the active 
EO conformation of GPIIb/IIIa should inhibit the prop-
agation and stabilisation of thrombi, but not the forma-
tion of an initial haemostatic platelet plug on vascular 
injury—a process that relies on GPIIb/IIIa being in the 
low-activating BC/EC state.4 12 146 Indeed, this concept 
has been proven in principle where a single-chain vari-
able fragment (scFv) SCE5 directed against the active 
conformation of GPIIb/IIIa markedly inhibited throm-
bosis on both human and mouse platelets (figure 2A),145 
but did not prolong bleeding time in mouse models.145 
Moreover, conformation-specific scFvs have been used 
to deliver targeted antithrombotic agents such as the 
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ADP-hydrolysing enzyme CD39,147 the potent factor Xa 
inhibitor tick anticoagulant peptide148 and the fibrino-
lytic agent urokinase149 to the selective sites of developing 
clots, which all displayed potent antithrombotic effects in 
preclinical models without affecting haemostasis.4

One caveat of GPIIb/IIIa inhibitors is that most of them 
can potentially induce the receptor to undergo a major 
conformational change that either exposes neoepitopes 
for platelet clearance or trigger high-affinity state when 
the drug dissociates from the receptor, facilitating instead 
of inhibiting its binding to ligand.150 This could cause 
the paradoxical increase in mortality on treatment for 
MI patients. As an alternative, a small-molecule GPIIb/
IIIa antagonist, known as RUC-4, binds to the metal ion-
binding site on the GPIIb/IIIa. It inhibits ligand binding 
but does not induce GPIIb/IIIa conformational change 
or activation (figure  2A). Furthermore, in preclinical 
studies, RUC-4 showed potent antithrombotic efficacy 
(table 1).150 An interesting aspect of RUC-4 is its suitability 
for intramuscular injection, which raises the prospect 
of administration in prehospital emergency settings.150 
However, the bleeding risk profile of this agent remains 
to be evaluated.

GPVI: a potential mechanosensor and antithrombotic target
Aside from GPIb and GPIIb/IIIa, many other receptors 
on platelet surface may also mediate platelet mechano-
sensing. One topical candidate is GPVI, which is exclu-
sively expressed on platelets and megakaryocytes. It is 
associated with the Fc receptor γ-chain, which contains an 
immunoreceptor tyrosine-based activation motif (ITAM). 
Its engagement with ligands, such as collagen, leads to 
ITAM-dependent signaling and potent platelet activa-
tion.81 GPVI plays an important role in haemostasis and 
thrombosis, not only via its own binding to collagen but 
also through the triggering of GPIIb/IIIa and integrin 
α2β1 activation.151 In this context, GPVI was suggested to 
play a mechanosensing role.152 However, direct evidence 
and the detailed mechanosensing mechanism are yet to 
be revealed. Recently, fibrin was identified as a new GPVI 
ligand.153 154 GPVI–fibrin interaction seems to stabilize 
thrombus formation under both low-shear and high-
shear conditions.153 Moreover, GPVI was suggested to 
co-associate with GPIbα to coordinate thrombotic output 
across these haemodynamic conditions.155 Intriguingly, 
patients and mice with GPVI deficiency only display a 
mild bleeding diathesis,155 whereas mice lacking GPVI 
are protected against arterial thrombosis and subsequent 
neointima formation156 and demonstrate an impaired 
thrombus formation under high-shear conditions.157

Platelet GPVI has been gradually recognized to play 
a role in ischaemic stroke.158–160 Platelet adhesion and 
activation enhance the infarct growth by promoting an 
inflammatory response.77 GPVI-mediated platelet activa-
tion can lead to the release of IL-1α that induces cere-
brovascular inflammation.161 Thus, GPVI may serve as 
an antithromboinflammation target.162 Currently, two 
strategies targeting GPVI have reached advanced stages 

of development. The first is the antibody Fab 9O12, 
which binds and blocks the collagen/fibrin-binding site 
of GPVI with high affinity153 163 (figure 1). This approach 
has demonstrable antithrombotic efficacy in preclinical 
models of thrombosis and seems to maintain haemo-
stasis (table  1). A humanized scFv form of 9O12 is 
being prepared to enter early phase clinical trial.164 The 
second anti-GPVI is the humanized Fc fusion protein of 
the GPVI ectodomain called revacept165 (figure  1). In 
animal models, revacept protected against thrombosis, 
ischaemia-reperfusion injury166 and stroke.167 In phase I 
clinical trials, revacept inhibited collagen-induced human 
platelet aggregation.165 Phase II trials of revacept in 
patients with carotid artery stenosis, transient ischaemic 
attack, or stroke are ongoing (table  1). Interestingly, 
this therapeutic seems to be particularly potent at inhib-
iting thrombus growth under pathological shear condi-
tions ex vivo, suggesting that its antithrombotic effects 
might be maintained at sites of atherosclerotic plaque 
rupture,168 consistent with the fact that collagens are 
highly abundant in atherosclerotic plaques. Some other 
GPVI targeted agents that are under investigation, such 
as losartan,169 have been shown to inhibit the binding of 
GPVI to collagen (table 1; figure 1).

Concluding remarks
Many FDA approved antiplatelet agents are less efficient 
in relieving arterial thrombosis in severe stenosis,170 in 
part due to that they only target agonist pathways rather 
than the biomechanical platelet aggregation mecha-
nisms. Hereby, we propose that targeting platelet mech-
anosensing pathways may represent a novel strategy to 
prevent thrombotic complications. This new strategy uses 
high-shear flow as the ‘trigger’ of effect, and therefore 
should be specific in preventing occlusive thrombosis 
in stenosed arteries. In parallel, current inhibitors of 
GPIb and GPIIb/IIIa extracellular activity were shown 
to cause adverse effect of bleeding, because they are 
unable to discriminate the haemostatic versus throm-
botic conditions.171 172 From a biomechanical perspec-
tive, we highlight that although thrombosis and haemo-
stasis share similarity in most aspects, a key difference 
is that only thrombosis heavily relies on shear-resistant 
platelet aggregation for endovascular clot growth. This 
comparison is supported by an interesting evolutionary 
perspective: the avian thrombocytes have similar adhe-
sion and signaling behaviours as mammalian platelets, 
but cannot form shear-resistant aggregates173; in conse-
quence, thrombocytes support haemostasis but cannot 
form occlusive thrombi in vivo. Therefore, inhibitors that 
weaken GPIb and GPIIb/IIIa binding under thrombotic 
haemodynamic conditions, should selectively prevent 
shear-resistant platelet aggregates towards artery occlu-
sion. The above new antithrombotic strategies, which 
are under development or yet to be tested, promise a 
‘mechano-medicine’ to solve the long lingering question 
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of how to effectively inhibit arterial thrombosis without 
causing excessive bleeding.
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