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toward evaluating malaria transmission 
reduction strategies.
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Pool Size Selection When Testing 
for Severe Acute Respiratory 
Syndrome Coronavirus 2

To the Editor—Pooling samples has 
been proposed by multiple authors as an 

efficient way to test for severe acute res-
piratory syndrome coronavirus 2 (SARS-
CoV-2) [1–4]. In particular, Yelin et  al 
[1] showed that SARS-CoV-2 can be de-
tected in pools with up to 32 samples and 
potentially in pools of 64 samples. They 
concluded that “this pooling method can 
be applied immediately in current clinical 
testing laboratories.” However, this re-
search [1] and similar research of others 
[2, 3] missed answering a very impor-
tant question: How does one choose the 
most efficient pool size relative to SARS-
CoV-2 prevalence in samples? Without 
answering this question, laboratories 
cannot fully benefit from pooling. Here, 
we provide the answer so that labora-
tories can increase their testing capacity 
to its fullest potential.

The efficiencies from pooling samples 
occur when pools test negative. In ge-
neral, the probability of a negative pool (θ) 
is given by θ = (1 − p)s for a prevalence 
(p) and pool size (s) [5]. For example, the 
most efficient pool size is 4 samples when 
prevalence is 10% (calculation discussed 
below). This will lead to 66% of the pools 
testing negative on average, resulting in 
3 tests saved for each negative pool. On 
the other hand, choosing a pool size that 
is too large can be very inefficient. By 
changing the size to 32 samples in our ex-
ample, only 3% of the pools will test nega-
tive. We subsequently show that there are 
no benefits from using this pool size with 
this prevalence. Similar inefficiencies 
occur as well when selecting pool sizes 
that are too small.

Yelin et al [1] identified a range of pool 
sizes that appear to not compromise testing 
sensitivity. From this range, one needs to 
determine the optimal pool size to per-
form testing most efficiently. Statistical re-
search has shown, in general, that this is 
the pool size that minimizes the average 
number of tests on a per capita basis (A) 
when testing a continuous series of sam-
ples, where A is a mathematical function 
of prevalence [5–7]. Separate testing of 
each sample corresponds to A = 1, and 
pooling is more efficient when A < 1. 
Expressions for A are available [5–7], and 

the optimal pool size can be approximated 
by the next integer larger than 1/√p [8] or 
found exactly [9, 10].

Table  1 provides A for prevalences be-
tween 0.001 and 0.20. For example, a 
prevalence of 2% results in an optimal 
pool size of 8 and A = 0.27. This corres-
ponds to a 73% average reduction in tests 
from pooling. Equivalently, this can mean 
a 264% increase in testing capacity when 
compared with testing samples separately. 
Table 1 also includes A for the same pool 
sizes as investigated by Yelin et al [1]. These 
additional results illustrate the importance 
of choosing pool size relative to prevalence. 
For example, while SARS-CoV-2 can be 
detected in pools of size 32, this size is op-
timal only for the smallest prevalence. In 
fact, A > 1 for prevalences larger than 0.10, 
indicating that pooling results in more tests 
on average than separate testing.
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Table 1.  Average Number of Tests Per Capita (A ) Relative to Prevalence

Prevalence (%)

Optimal A for Specified Pool Size

Pool Size A 2 4 8 16 32 64

0.1 32 0.06 0.50 0.25 0.13 0.08 0.06 0.08

0.5 15 0.14 0.51 0.27 0.16 0.14 0.18 0.29

1 11 0.20 0.52 0.29 0.20 0.21 0.31 0.49

2 8 0.27 0.54 0.33 0.27 0.34 0.51 0.74

3 6 0.33 0.56 0.36 0.34 0.45 0.65 0.87

4 6 0.38 0.58 0.40 0.40 0.54 0.76 0.94

5 5 0.43 0.60 0.44 0.46 0.62 0.84 0.98

6 5 0.47 0.62 0.47 0.52 0.69 0.89 1.00

7 4 0.50 0.64 0.50 0.57 0.75 0.93 1.01

8 4 0.53 0.65 0.53 0.61 0.80 0.96 1.01

9 4 0.56 0.67 0.56 0.65 0.84 0.98 1.01

10 4 0.59 0.69 0.59 0.69 0.88 1.00 1.01

11 4 0.62 0.71 0.62 0.73 0.91 1.01 1.02

12 4 0.65 0.73 0.65 0.77 0.93 1.01 1.02

13 3 0.67 0.74 0.68 0.80 0.95 1.02 1.02

14 3 0.70 0.76 0.70 0.83 0.97 1.02 1.02

15 3 0.72 0.78 0.73 0.85 0.99 1.03 1.02

16 3 0.74 0.79 0.75 0.88 1.00 1.03 1.02

17 3 0.76 0.81 0.78 0.90 1.01 1.03 1.02

18 3 0.78 0.83 0.80 0.92 1.02 1.03 1.02

19 3 0.80 0.84 0.82 0.94 1.03 1.03 1.02

20 3 0.82 0.86 0.84 0.96 1.03 1.03 1.02

 Calculations are performed using the binGroup2 package [10] of the R statistical software environment. Abbreviation: A, average number of tests per capita.

COVID-19 and the 
Renin-Angiotensin-
Aldosterone System

To the Editor—I further  Hanff and 
colleagues’ [1] timely call for epidemio-
logical and clinical investigations of co-
ronavirus disease 2019  (COVID-19), 
including measurements of the renin-
angiotensin-aldosterone system (RAAS) 
components, as substudies would be in-
sightful of this pandemic. Angiotensin-
converting enzyme 2 (ACE2) participates 
in the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) cell entry. 
This infection downregulates ACE2. 
Drugs that block RAAS also affect ACE2 
expression; it is downregulated by renin 
inhibition and upregulated by ACE in-
hibitors, angiotensin receptor blockers 
[1], and mineralocorticoid receptor 

antagonists [2]. Other likely regulatory 
factors are age, type 2 diabetes, and sex 
difference [3]. These interactions would 
directly affect the balance between the 
beneficial and deleterious angiotensins 
(Angs), such as Ang (1–7) and Ang (1–9) 
vs excess Ang II. Such perturbations 
would also indirectly influence other 
RAAS components, and the coordination 
between circulating and local tissue ex-
pressions, as shown in Figure 1.

ACE2 is distributed throughout the 
body and is abundantly expressed in the 
lung, small intestine, and in blood ves-
sels of many organs including the brain, 
heart, kidney, and testis [4]. These organs 
and blood vessels are potential sites of 
infection. The downregulation of ACE2 
would reduce the production of Ang 
(1–7) and Ang (1–9), and concurrently 
prevent the reduction of Ang II, tilting 
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