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Abstract

In this work, we revisit the scaling analysis and commonly accepted conditions for the validity of 

the standard, reverse and total quasi-steady-state approximations through the lens of dimensional 

Tikhonov–Fenichel parameters and their respective critical manifolds. By combining Tikhonov–

Fenichel parameters with scaling analysis and energy methods, we derive improved upper bounds 

on the approximation error for the standard, reverse and total quasi-steady-state approximations. 

Furthermore, previous analyses suggest that the reverse quasi-steady-state approximation is only 

valid when initial enzyme concentrations greatly exceed initial substrate concentrations. However, 

our results indicate that this approximation can be valid when initial enzyme and substrate 

concentrations are of equal magnitude. Using energy methods, we find that the condition for the 

validity of the reverse quasi-steady-state approximation is far less restrictive than was previously 

assumed, and we derive a new “small” parameter that determines the validity of this 

approximation. In doing so, we extend the established domain of validity for the reverse quasi-

steady-state approximation. Consequently, this opens up the possibility of utilizing the reverse 

quasi-steady-state approximation to model enzyme catalyzed reactions and estimate kinetic 

parameters in enzymatic assays at much lower enzyme to substrate ratios than was previously 

thought. Moreover, we show for the first time that the critical manifold of the reverse quasi-steady-

state approximation contains a singular point where normal hyperbolicity is lost. Associated with 

this singularity is a transcritical bifurcation, and the corresponding normal form of this bifurcation 

is recovered through scaling analysis.
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1. Introduction

Perhaps the most well-known reaction in biochemistry is the Michaelis-Menten (MM) 

reaction mechanism, (1), which describes the catalytic conversation of a substrate, S, into a 

product, P. Catalysis is achieved through means of an enzyme, E, that reversibly binds with 

the substrate, forming an intermediate complex, C. In turn, C irreversibly disassociates into 

enzyme and product molecules:

S + E
k−1

k1 C
k2 E + P . (1)

For theorists and applied mathematicians, whose aim is to mathematically describe the 

dynamics of chemical networks and metabolic pathways [1, 2], the MM reaction mechanism 

serves as a building block to these more complex systems. In general, there are two ways to 

mathematically model enzyme catalyzed reactions. At low concentrations of chemical 

species stochastic models are generally favorable since they describe the seemingly random 

collisions of reactant molecules in intracellular environments [3, 4]. In contrast, when 

concentrations are high and the chemical species are well-mixed, the MM mechanism can be 

appropriately modeled as a set of nonlinear ordinary differential equations. Although one 

can argue that deterministic models are in some sense more manageable than stochastic 

models, nonlinear deterministic models rarely admit closed form solutions, and therefore 

model reduction techniques must be employed in order to simplify the model equations so 

that approximate solutions can obtained and analyzed. Typically, model reduction is 

synonymous with approximating the model dynamics on an invariant manifold, and the 

advent of powerful computer algebra systems aids in the systematic reduction of high-

dimensional or even infinite-dimensional (i.e., partial differential equations and delay 

differential equations) dynamical systems. Not surprisingly, there is a large body of literature 

that clearly illustrates how model reduction can uncover, quantify, and explain the various 

nonlinear phenomena arising not only in chemistry, but also in biology [5, 6, 7] and physics 

[8, 9, 10, 11].

Historically, the most widely-utilized reduction technique in deterministic enzyme kinetics 

has been the singular perturbation method [12], in which a reduced model is constructed by 

approximating the flow of the model equations on a slow invariant manifold (SIM). Since 

the dimension of the SIM is less than the dimension of the phase-space, approximation of 

the dynamics on the SIM permits a reduction in the dimension of the problem. The singular 

perturbation method exploits the presence of disparate fast and slow timescales; the work of 

Tikhonov [13] and Gradshtein [14] provides the necessary rigorous foundation for the 

construction of a reduced model. Briefly, when fast and slow timescales are present, the 
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differential equations that model the MM reaction with a timescale separation can be 

expressed in the form

x. = f(x, y; ε), (2a)

εy. = g(x, y; ε), (2b)

where 0 < ε ≪ 1. Setting ε = 0 yields a differential-algebraic-equation

x. = f(x, y; 0), (3a)

0 = g(x, y; 0), (3b)

and, according to Tikhonov’s theorem, equations (3a)-(3b) provide a very good 

approximation to the dynamics of (2a)-(2b) when ε is sufficiently small. The reduced system 

(3a)-(3b) provides a simpler, and often times more tractable, reduced mathematical model 

that is commonly referred to as a quasi-steady-state approximation (QSSA).

The hope is that the condition that supports the validity of (3a)-(3b) (i.e., ε ≪ 1) is easy to 

implement in enzymatic assays, so that precise and accurate measurements of the kinetic 

parameters pertinent to the reaction can be made by fitting the QSSA model to experimental 

time course data [15, 16]. Due to the necessity of disparate timescales, slow manifold 

reduction may not be possible in every physical scenario. Therefore, the challenge for 

theorists is not only to derive a reduced model that has suitable utility, but also to determine 

the unique physical and chemical conditions that permit the validity of the associated 

reduction. Thus, an important task of the theoretician is determine the exact conditions for 

which the reduced model is valid [17]. Mathematically, this translates to determining “ε,” a 

(typically) dimensionless parameter that may not be unique. The non-uniqueness of “ε” adds 

complication, since some “epsilons” are better than others. The best-known example of the 

“non-uniqueness dilemma” resides the history of the derivation of the Michaelis–Menten 

(MM) equation

v = V s
KM + s, (4)

which is obtained by applying the QSSA to the MM reaction mechanism (1). In (4), v is the 

velocity of product formation in the reaction, V is the limiting rate of the reaction, KM is the 

Michaelis constant, and s is the free substrate concentration for the reaction. Alternatively, 

the MM equation is often referred to as the standard quasi-steady-state approximation 

(sQSSA). In 1967, Heineken et al. [18] formally applied, for the first time, the standard 

QSSA to the nonlinear differential equations governing the MM reaction mechanism (1) via 

singular perturbation analysis. Based on the findings of Laidler [19], a pioneer in chemical 

kinetics and authority on the physical chemistry of enzymes, Heineken et al. [18] introduced 

a consistent “ε” for the MM reaction mechanism through scaling analysis. A more rigorous 

analysis of the sQSSA was introduced by Reich and Sel’kov [20] and Schauer and Heinrich 

[21], from which other “epsilons” where determined by proposing conditions that minimized 
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the errors in the implementation of the sQSSA. In 1988, Lee A. Segel [22] derived the 

widely accepted criterion for the validity of the sQSSA and the derivation of the MM 

equation (4) by estimating the slow and fast timescales of the reaction. Segel [22] illustrated 

that prior physico-chemical knowledge about the reaction dynamic is instrumental in 

deriving the fast and slow timescales and uncovering the most general criteria for the 

validity of the sQSSA. As a direct result of Segel’s scaling method, the conditions for the 

validity of the sQSSA were derived for suicide substrates [23, 24], alternative substrates 

[25], fully competitive enzyme reactions [26], zymogen activation [27], and coupled enzyme 

assays [28, 29]. Segel’s scaling approach was also applied to the analysis of the MM 

reaction mechanism (1) to extend the validity of the QSSA in different regions of the initial 

enzyme and substrate concentration parameter space via the reverse QSSA (rQSSA) [30, 

31], and the total QSSA (tQSSA) [32, 33, 34].

Despite the power of Segel’s scaling and simplification analysis for the MM reaction 

mechanism (1), there is still a fundamental challenge with its implementation via the 

rQSSA: there has never been a small parameter (i.e., a specific “ε”), analogous to the one 

obtained by Segel [22] for the sQSSA, that is as effective at determining when the rQSSA is 

valid. Unfortunately, estimating the fast timescale associated with the rQSSA is difficult, and 

there have been fundamental disagreements in the reported estimates [31]. Thus, timescale 

estimation continues to be the “Achilles’ heel” of the rQSSA. This raises the obvious 

question of whether or not timescale estimation is truly the best approach towards resolving 

this problem.

Recently, Walcher and his collaborators [35, 36, 37] demonstrated that identifying a 

Tikhonov–Fenichel parameter (TFP) is an effective way to determine a priori conditions that 

suggest the validity of the QSSA. Essentially, a TFP is a dimensional parameter – such as a 

rate constant or initial concentration of a species – that, when identically zero, ensures the 

existence of a manifold of equilibrium points. Such manifolds are central to geometric 
singular perturbation theory (GSPT) and, as a result of Fenichel [38], it is well-understood 

that when certain conditions hold, the existence of a critical manifold of equilibria ensures 

the existence of a SIM once the TFP is small but non-zero. In this sense the origin of the 

SIM can be linked to the vanishing of a specific dimensional parameter, and a sufficiently 

small TFP ensures the existence of a SIM and the corresponding validity of a QSSA. 

However, the identification of a TFP does not diminish the importance of the asymptotic 

small parameter ε, since it is essential to define what physically constitutes “small” when a 

parameter is non-zero. In other words, we must still answer the question: how small should 

Tikhonov–Fenichel parameters be in comparison to other dimensional parameters in order to 

yield an accurate reduced model?

In this paper, our primary objective is to determine a specific small parameter that 

determines the validity of the rQSSA to the MM reaction mechanism (1), but also to convey 

subject matter that can be quite technical in a language capable over reaching a wider 

audience that is not limited to applied mathematicians and physical chemists. In Section 2, 

we review the conditions for the validity of the various quasi-steady-state approximations 

that are commonly employed to approximate the long-time dynamics of the MM reaction 

mechanism (1): namely, the sQSSA, the rQSSA, and tQSSA. In Section 3, we assess the 
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validity of specific QSS reductions by employing geometric singular perturbation theory, 

and illustrate how assumptions about the validity of the sQSSA based on Segel’s timescale 

separation can lead to erroneous conclusions. In Section 4, we introduce two methods that 

do not rely on scaling or timescale separation: Tikhonov–Fenichel parameters and energy 

methods, both of which can be employed to determine the validity of the QSSA. In Section 

5, we analyze the validity of the rQSSA using the methods discussed in Section 4, and in 

Section 6, we discuss timescale separation and the hierarchy of small parameters that 

support the justification of the sQSSA, rQSSA, and the tQSSA. Finally, in our discussion 

(Section 7), we summarize our results and critique some of the conclusions drawn about the 

validity of the sQSSA and the rQSSA in the previous analyses of Segel and Slemrod [30], 

and Schnell and Maini [31], respectively. We also discuss the impact our results will have on 

experimental assays, and how the methods we utilize can be employed to analyze more 

complicated reactions and experimental assays.

2. Applying the Quasi-Steady-State Approximations to the Michaelis–

Menten reaction mechanism: Scaling and simplification approaches

In this section we review the application of the different versions of the QSSA for the MM 

reaction mechanism (1), and the mathematical justification for the application of each 

approximation. We also present the timescales and criterion for the validity of the QSSA 

originally derived by Segel [22] and Segel and Slemrod [30].

2.1. Heuristic estimation of fast and slow timescales using the standard Quasi-Steady-
State Approximation

The mathematical model that describes (deterministically) the reaction mechanism (1) is a 

set of nonlinear ordinary differential equations,

s. = − k1(e0 − c)s + k−1c, (5a)

c. = k1(e0 − c)s − (k−1 + k2)c, (5b)

p. = k2c . (5c)

The lowercase s, c and p denote concentrations of S, C and P, respectively, and “· ” denotes 

differentiation with respect to time. The equation that models the time evolution of the 

enzyme concentration, e, has been eliminated via the enzyme conservation law, e+c = e0, 

and note that adding together (5a)-(5c) yields the substrate conservation law, s+c+p = s0. 

From the model equations (5a)-(5c), we see that the MM reaction mechanism (1) is 

parametrically controlled by the initial substrate concentration, s0, the initial enzyme 

concentration, e0, and the magnitudes of the rate constants k1, k−1 and k2.

Since the model equations (5a)-(5c) are nonlinear, closed form solutions are intractable. 

However, it is well-established that whenever the quantity, εSS, is very small,
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εSS = e0
KM + s0

≪ 1, (6)

equations (5a)-(5c) can be approximated by the system of differential-algebraic equations:

s. ∼ − V s
KM + s ∼ − p., c ∼ e0s

KM + s . (7)

Here the Michaelis constant is defined as KM ≡ (k−1 + k2)/k1, and the limiting rate is V ≡ 
k2e0. Formally, the equations (7) are collectively referred to as the sQSSA, and condition (6) 

is known as the reactant-stationary-assumption (RSA) [39]. When the RSA holds, and the 

sQSSA (7) is valid, the intermediate complex reaches its maximum value very quickly. By 

comparison, the conversion of S to P is slow, and the MM reaction mechanism (1) is 

characterized (temporally) by the two disparate timescales, tC and tD, that respectively 

quantify the approximate amount of time it takes c to become maximal, and for s to 

significantly deplete. Thus, when the RSA holds, the reaction consists of a fast timescale, tC, 

and a slow timescale, tD. Both timescales depend on the rate constants, as well as the initial 

substrate and enzyme concentrations:

tC = 1
k1(s0 + KM) , (8a)

tD = KM + s0
V . (8b)

Segel [22] first derived tC and tD using heuristic methods. To estimate tC, Segel noted, no 

doubt from the earlier work of Heineken, Tsuchiya, and Aris [18], that if e0 ≪ s0, then c 
should reach its maximum value very quickly, and there should be correspondingly very 

little substrate depletion during the initial accumulation of c. Consequently, one can assume 

s ≈ s0 during the initial accumulation of c. To obtain an equation that models the initial 

increase in c, we set s = s0 in (5b), which gives rise to a linear ordinary differential equation 

for c:

c. ∼ k1(e0 − c)s0 − (k−1 + k2)c . (9)

Since (9) is linear, its solution is easily attainable, and is given by:

c(t) ∼ εSSs0(1 − e−t ∕ tC) . (10)

Thus, tC is the characteristic timescale of the initial fast transient, and it is valid as long as s 
is approximately constant during the initial accumulation of c. The reader should be aware 

of the fact that (9) is only valid for timescales on the order of tC. Hence, the solution (10) is 
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only an initial, temporary approximation to the kinetics of (1) when the RSA is valid. As 

such, it is often referred to as an initial layer.

Since tC was derived under the presupposition of a negligible depletion of s during the initial 

accumulation if c, how then, can we determine a dimensionless parameter that must be small 

in order to ensure the depletion of s is in fact negligible over tC? Segel [22] reasoned that 

since the maximum rate of depletion of s is identically −k1e0s0, it suffices to demand that

{max ∣ s. ∣ ⋅ tC ≪ s0} ≡ {εSS ≪ 1} (11)

hold in order to justify the use of (9). Thus, the RSA (6) ensures that the approximation (9) 

is valid.

After c reaches its maximum value, the QSS phase of the reaction ensues, and c starts to 

slowly deplete. During the depletion phase c. is very small but non-zero, and thus we say that 

c evolves in a QSS or is “slaved” by s since, according to the system (7), the approximate 

concentration of c is parametrically determined by the concentration of s. To estimate the 

depletion timescale, Segel [22] assumed that the sQSSA (7) was valid once tC ≲ t, and that 

the rate of depletion of substrate was approximately

s. ∼ − V s
KM + s ≤ 0 . (12)

Since s ≈ s0 for t ≲ tC, it stands to reason that the sQSSA (12) can be supplied with the 

boundary condition s(tC) = s0, and thus the maximum rate of depletion in the QSS phase of 

the reaction is approximately

max ∣ s. ∣ ≈ V s0
KM + s0

. (13)

Finally, to calculate the depletion timescale, Segel [22] divided the total change in substrate 

over the course of the reaction, Δs = s0, by the maximum rate of depletion in the QSS phase 

(13):

tD = ∣ Δs ∣
max ∣ s. ∣ = s0

V s0
KM + s0

= KM + s0
V .

(14)

As noted in the introduction, the effective use of the singular perturbation method relies on 

separation of fast and slow timescales, and the question that naturally arises from the 

heuristic line of reasoning arises is: Does the RSA (6) ensure separation of timescales? That 

is, does it hold that tC ≪ tD whenever εSS ≪ 1 ? The answer is yes: the RSA not only 

ensures that there is negligible formation of product (or depletion of substrate) for t ≲ tC, it 

also ensures that the timescales, tC and tD, are widely separated:
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tC
tD

≡ ϵ = εSS

1 + k−1
k2

1 + s0
KM

≤ εSS .
(15)

Thus, the RSA (i.e., the condition that εSS ≪ 1) induces the separation of fast and slow 

timescales. Consequently, the RSA is understood to be a sufficient condition for the validity 

of the sQSSA (7), and the separation of fast and slow timescales (i.e., ϵ ≪ 1) is a necessary 

(but not sufficient) condition for the sQSSA.

When the RSA is valid, the trajectories in the (s, c)-plane have a very recognizable form: 

during fast transient phase, the trajectories move almost vertically towards the c-nullcline, 

given by the curve {(s, c) ∈ ℝ2: c − e0s ∕ (KM + s) = 0}, on which c. = 0. The intermediate 

complex c reaches its maximum value once the trajectory reaches the c-nullcline, at which 

point the QSS phase begins and the sQSSA is valid. After c reaches its maximum value, the 

trajectory closely follows the c-nullcline towards the equilibrium point (s, c) = (0, 0) (see 

FIGURE 1).

The fact that the phase-plane trajectory follows the c-nullcline on the slow timescale, and 

approaches the c-nullcline in vertical fashion over the fast timescale is the hallmark of the 

sQSSA. While the trajectory in FIGURE 1 appears as though it is on the c-nullcline, it is 

important to note that it is not. In fact, the trajectory approaches an invariant manifold, ℳε, 

that lies just above the c-nullcline. However, since ℳε and the c-nullcline are very close 

together when (6) holds, the c-nullcline is used to approximate ℳε (again, see figure 1 for a 

detailed explanation and illustration). The accuracy of using the c-nullcline as an 

approximation is assessed asymptotically through scaling and non-dimensionalization 

methods, and we review these methods in the subsection that follows.

2.2. Asymptotic justification for the sQSSA: Scaling and non-dimensionalization

The identification of the small parameter (6) as an appropriate condition for the validity of 

the standard QSSA is justified through scaling and non-dimensionalization. Introducing the 

dimensionless variables τ ≡ t ∕ tC, s̄ ≡ s ∕ s0 and c̄ ≡ c ∕ εSSs0 yields

ds̄
dτ = εSS[μc̄s̄ − s̄ + αβc̄], (16a)

dc̄
dτ = s̄ − μc̄s̄ − βc̄, (16b)

where β ≡ 1/(1 + σ), σ ≡ s0/KM, κ ≡ k−1/k2, μ ≡ 1 − β and α ≡ κ/(1 + κ). Thus, we see from 

(16a) and (16b) that if εSS ≪ 1, then s ≈ s0 during the transient phase. Over the slow 

timescale, T ≡ εSSτ, we obtain

ds̄
dT = μc̄s̄ − s̄ + αβc̄, (17a)
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εSS
dc̄
dT = s̄ − μc̄s̄ − βc̄ . (17b)

Formally, the standard QSSA is an asymptotic approximation of the dynamics on the slow 

timescale obtained by setting εSS = 0 in (17b) and solving for c in terms of s. Thus, the 

standard QSSA is the zeroth-order approximation to (17a)-(17b) and, when εSS ≪ 1, we 

refer to s as a slow variable, and c as a fast variable.

In summary, we have two takeaways from this subsection:

i. The RSA is synonymous with εSS ≪ 1, and guarantees that there is a negligible 

loss of substrate during the transient (fast) phase of the reaction. When the RSA 

is valid, the QSSA system (7) is an appropriate asymptotic approximation to 

(5a)-(5c).

ii. Timescale separation is synonymous with ϵ ≡ tC ∕ tD ≪ 1.

While (i) certainly implies (ii), the converse does not hold, which begs the question: What 

happens when ϵ ≪ 1 but εSS ~ 1? We discuss this special case in the subsection that follows.

2.3. The extended Quasi-Steady-State Approximation

The RSA and timescale separation provide two different small parameters: εSS and 

ϵ ≡ tC ∕ tD. While εSS ≪ 1 ensures that ϵ ≪ 1, the converse is not true. The obvious question 

is: Do QSS dynamics still prevail when εSS ~ 1 but tC ∕ tD ≪ 1? Segel and Slemrod [30] 

proposed that the sQSSA (7) should still be valid at some point in the time course of the 

reaction as long as tC ≪ tD, even if εSS ~ 1. Rescaling the mass action equations (5a)-(5b) 

with respect to T̄ = t ∕ tD yields

νβ ds̄
dT̄ = μc̄s̄ − s̄ + αβc̄, (18a)

νβεSS
dc̄
dT̄ = s̄ − μc̄s̄ − βc̄, (18b)

where again, ν = k2/(k−1 + k2), and β = KM/(KM + s0). If εSS = 1, then setting ν = 0 (which 

implies α = 1) in (18a)-(18b) yields a (dimensional) manifold:

c = e0s
KS + s, (19)

where Ks = k−1/k1 is the enzyme-substrate dissociation constant. Interestingly, the manifold 

(19) is identical to the s-nullcline. However, since the c-nullcline and the s-nullcline are 

indistinguishable in the limiting case that corresponds to k2 = 0, it stand to reason that 

trajectories should closely follow both the s- and c-nullcline when k2 is incredibly small, but 

non-zero. Numerical simulations confirm that phase-plane trajectories closely follow the c-

nullcline after a brief transient (see, Figure 2).
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The c-nullcline “following” that occurs when ν ≪ 1 and εSS, β ~ 1 is defined by Segel and 

Slemrod [30] as the extended QSSA. One obvious difference between the sQSSA and the 

extended QSSA is that there is a noticeable amount of substrate depletion when ν ≪ 1 but 

εSS ~ 1. Segel and Slemrod [30] proposed that the QSSA system (7) should still hold after 

the transient, but that the primary difference between the sQSSA and the extended QSSA 

was that one could not take s = s0 at the onset of the QSS phase in the case of the extended 

QSSA. Thus, Segel and Slemrod [30] proposed that, when the extended QSSA is valid but 

the RSA is invalid, the approximation

s. ∼ − V s
KM + s, (20)

must be supplied with a boundary condition “s0
e” that is less than s0. They employed a 

graphical method to estimate s0
e in their original manuscript [30], and found that when β = ε 

=1, s0
e ≈ ( 2 − 1)s0. Thus, they concluded that the QSS phase of the reaction could be 

approximated with the initial value problem:

s. ∼ − V s
KM + s, s(0) = ( 2 − 1)s0 . (21)

Moreover, they found that s0
e 0 as β increases, and determined that the parameter regime 

where νβ ≪ 1 but εSS ~ 1 results in a rather “uninteresting” domain of applicability for 

extended QSSA2. Hence, the extended QSSA is formally defined to be the case when ν ≪ 
1, but εSS, β ~ 1. Up to this point, we have two dynamical regimes of interest:

i. The RSA, in which εSS ≪ 1 and (7) holds.

ii. The extended QSSA, in which ν ≪ 1, but εSS, β ~ 1 and possibly (21) holds.

As a final remark of this subsection, we note that while the extended QSSA seems 

reasonable, there are a few technical deficiencies that engulf the validity of the 

approximation. First, setting ν = 0 results in the coalescence of the s- and c-nullclines, 

which implies that s and c are in some sense both in a QSS after the fast transient. Second, 

there is no scaling justification for (21). Consequently, other than the observation that the 

phase–plane trajectory follows the c-nullcline after the transient phase, there is really no 

rigorous justification for (21). We will return to these observations and discuss them in more 

detail in a later section.

2.4. The reverse Quasi-Steady-State Approximation

In contrast to the intermediate complex evolving in a QSS after the fast transient, the rQSSA 

occurs when the substrate evolves in QSS after the initial fast transient. Nguyen and Fraser 

2Segel and Slemrod [30] did not take into account product formation, and assumed that the complete depletion of substrate was 
synonymous with the completion of the reaction. Unfortunately, this assumption is false. For more details, we invite the reader to 
consult [29].
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[40] observed that the rQSSA corresponds to trajectories closely following the s-nullcline 

instead of the c-nullcline in the s–c phase-plane (see Figure 3).

To formulate an approximation to (5a)-(5c), it is assumed that virtually all of the initial 

substrate will deplete during the initial transient phase, in which case

dc
dt + dp

dt = 0 (22)

approximately holds during the QSS phase. It also assumed that there is negligible formation 

of product during the transient phase. Thus, in the rQSSA, the underlying assumption is that 

there is a preliminary transient phase in which nearly all of the substrate is depleted, but a 

negligible amount of product is generated. As a consequence of this assumption, (22) admits 

an approximate conservation law, s0 ~ c + p, that implies

dp
dt = k2(s0 − p) (23)

is the leading order approximation to p. in the QSS phase of the reaction. The above 

expression governs the production formation under the rQSSA or rapid equilibrium 
approximation [41, 42]. Equation (23) is linear and admits a closed-form solution

p(t) = s0(1 − e−k2t), (24)

as well as a corresponding slow timescale: T̃ = k2t.

Is there a small parameter homologous to εSS for the rQSSA that justifies the validity of 

(23)? Typically, less-than-rigorous heuristic arguments are employed to determine 

conditions for the validity of (23). By utilizing timescale and geometrical arguments, Segel 

and Slemrod [30] indirectly proposed3

ε∗ ≡ KM
e0

= η−1 ≪ 1 (25)

as a necessary condition for the validity of the rQSSA. However, there are several problems 

with labeling (25) as a sufficient condition. First, as Schnell and Maini [31] point out, ε* ≪ 
1 does not ensure that ds/dt vanishes after the initial transient, since KM ≪ e0 ≪ s0 would 

seem to imply the validity of the QSSA, and Segel and Slemrod [30] only considered cases 

where e0 ≫ s0 in their analysis of the rQSSA. Schnell and Maini [31] suggested that there 

should be both a negligible loss of enzyme concentration and a maximal depletion of free 

substrate over the fast transient; they proposed

εSM ≡ η−1 + s0
e0

= 1
εSS

≪ 1 (26)

3They directly proposed that KS/e0 ≪ 1, but noted that k2 ≈ k−1, which implies KM/e0 ≪ 1.
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as an appropriate qualifier for the validity of the rQSSA. The condition (26) suggests that 

since e is in excess with respect to s, the majority of the substrate should vanish over the fast 

transient. Second, from a more technical perspective, Goeke et al. [43] remark that Ks/e0 ≪ 
1 is not sufficient for the validity of the rQSSA; we will say more about Goeke’s observation 

in the section that follows. For now we note that, heuristically, if 1/k2 is a slow timescale, 

then it stands to reason that k2 should also be small in some sense.

In short, most of the conditions in the literature basically imply that εSS ≫ 1 in order for the 

rQSSA to be valid. In this work, the question we want to address through our analysis is: 

How small should k−1 and k2 be in comparison to other variables to ensure the validity of the 

rQSSA (i.e., what is the equivalent of εSS in this case)? Clearly, it must hold that ε* ≪ 1, but 

how does the initial concentration of substrate, s0, impact the accuracy of the approximation 

(23)? This is still an open problem and, using non-scaling methods, we will close it in a later 

section.

2.5. The total Quasi-Steady-State Approximation

The tQSSA provides an approximation that is valid over a broader parameter domain. 

Utilizing the conservation law, s0 = s + c + p, and replacing s = s0 − (c + p) in (5b) yields

c. = k1(e0 − c)(s0 − c − p) − k1KMc, (27a)

p. = k2c . (27b)

Setting the left hand side of (27a) to zero and solving for c gives

c = 1
2(e0 + KM + s0 − p) ± 1

2 (e0 + KM + s0 − p)2 − 4e0(s0 − p) . (28)

Of the two possible roots given in (28), only the “–” root is physical. Taking

c ≈ 1
2(e0 + KM + s0 − p) − 1

2 (e0 + KM + s0 − p)2 − 4e0(s0 − p) ≡ c0(p), (29)

and inserting it into (29) yields the tQSSA:

p. ≈ k2c0(p) . (30)

Thus, the complex is taken to be the fast variable that evolves in a QSS after a brief 

transient, and p, rather than s, is the corresponding slow variable. Due to the fact that p is the 

designated slow variable, the tQSSA is valid over much larger domain than either the 

sQSSA or the rQSSA. As a result of the more recent work of Borghans et al. [32], the term 

s0 – p is usually replaced by sT = s + c in the literature (see, for example, [33, 44, 45, 46, 47, 

48, 16]), where sT is a lumped variable that denotes the “total” substrate. Consequently, the 

equations
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c. = k1(e0 − c)(sT − c) − k1KMc, (31a)

s.T = − k2c, (31b)

are more commonly employed than (27a)-(27b). Either way, as Pedersen [49] points out, the 

coordinate systems (sT, c) and (p, c) are merely “two sides of the same coin”. We will 

employ the (p, c) coordinate system, and avoid the lumped variable “sT” in this paper as it is 

not a uniquely distinguishable physical variable in experimental assays.

The validity of the tQSSA was first analyzed in the (p, c) coordinate system by Laidler [19], 

and later by Borghans et al. [32]. However, the accepted condition for the validity of the 

tQSSA was derived by Tzafriri [34]. Briefly, Tzafriri noted that if there is zero formation of 

product during the initial transient, then the formation of c during the transient phase can be 

approximated by the Riccati equation

c. = k1(e0 − c)(s0 − c) − k1KMc . (32)

The solution to (32) admits a natural fast timescale:

tC∗ = 1
k1 (e0 + KM + s0)2 − 4e0s0

. (33)

The corresponding slow timescale, tP, is calculated from the method of Segel [22]

tP = ∣ Δp ∣
max ∣ k2c0(p) ∣ = 2s0

(e0 + KM + s0) − (e0 + KM + s0)2 − 4e0s0
, (34)

and the separation of tC∗  and tP is the accepted condition for validity of the tQSSA:

εT ≡ tC∗
tP

= (e0 + KM + s0) − (e0 + KM + s0)2 − 4e0s0

2s0k1 (e0 + KM + s0)2 − 4e0s0
≪ 1 . (35)

Several scaling analyses have been carried out that justify the asymptotic validity of the 

tQSSA, and we refer the reader to Schnell and Maini [33] and Dell’Acqua and Bersani [47] 

for detailed perturbation analyses, and Bersani et al. [50] for a thorough review of the topic. 

Since the tQSSA is valid whenever there is negligible formation of product during the fast 

transient, the validity of the sQSSA, as well as the rQSSA and extended QSSA, implies the 

validity of the tQSSA. In this sense, the tQSSA contains both the standard QSSA and the 

rQSSA. Thus, εSS, ν ≪ 1 ⇒ εT ≪ 1, but 1 ≪ εSS also implies εT ≪ 1 (again, see [32]).

It is worth noting that the fast and slow timescales derived by Tzafriri are valid whenever 

there is negligible product formation during the fast transient. Thus, they are valid in both 

the sQSSA and rQSSA regimes. Additionally, the upper bound on c is easily obtained:
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sup c ≡ λ = c0(0) = 1
2(e0 + KM + s0) − 1

2 (e0 + KM + s0)2 − 4e0s0 . (36)

Consequently, we obtain universal timescales as well an upper bound on c from the tQSSA 

formulation. At first glance the timescales tC∗  and tP, as well as the upper bound λ, appear 

quite complicated, and their utility in the context of scaling analysis appears limited. 

However, when we introduce non-scaling methods, we will show that in fact these 

“ingredients” are quite useful.

The tQSSA wraps up our introduction to each “QSSA” (i.e., the sQSSA, rQSSA, and 

tQSSA) that is employed as a reduced model in enzyme kinetics. In summary, we have:

i. The RSA is valid when εSS ≪ 1, and the corresponding QSSA is given by (7).

ii. The extended QSSA is valid when when ν ≪ 1, but (εSS ~ 1 and β ~ 1). The 

corresponding QSSA is possibly given by equation (21).

iii. The rQSSA is at least valid when 1 ≪ εSS, and the corresponding QSSA is given 

by (23).

iv. The tQSSA is valid whenever εT ≪ 1, and the corresponding QSSA is given by 

(30).

3. Applying the Quasi-Steady State Approximations with geometric 

singular perturbation theory

The work of Fenichel [38] consists of a group of theorems that warrant the existence of a 

slow invariant manifold, ℳ, in fast/slow systems of the form of (2a)-(2b). In Section 3.1, we 

give a basic introduction to the results obtained by Fenichel and introduce relevant 

terminology for our paper. For a more detailed introduction, we refer the reader to [51, 52] 

and [53]. In Section 3, we apply Geometric Singular Perturbation Theory (GSPT) to 

(5a)-(5c) under the assumption that the RSA is valid. In Section 3.3, we apply GSPT to 

(5a)-(5c) in the parameter-space region where the extended QSSA is valid, and we show 

how GSPT can be used to prove that Segel and Slemrod’s conclusion that the approximation 

given (21) is valid after the initial transient is incorrect.

3.1. The invariance equation

The sQSSA, rQSSA, and the tQSSA are, formally, zeroth-order approximations to the 

reaction dynamics on the corresponding slow timescale. However, there is much more to the 

story. Whenever the tQSSA is valid, trajectories are attracted to a slow invariant manifold 

(SIM). The rigorous study of SIMs is referred to as geometric singular perturbation theory 

(GSPT). Briefly, given a system of the form

x. = f(x, y; ε), (37a)
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εy. = g(x, y; ε), (37b)

where x is a slow variable and y is a fast variable, one can approximate the slow manifold by 

first assuming that the fast variable is expressible in terms of the slow variable as y = h(x)4, 

where h is a function that is to be determined. Typically, the curve y = h(x) is denoted as ℳε, 

and we will use this notation from here on. Since the slow manifold is invariant, it must 

satisfy the differential equation (37a)-(37b). Hence, y = h(x) must satisfy

dℎ
dx ⋅ f(x, ℎ(x); ε) = 1

εg(x, ℎ(x); ε), (38)

which is known as the invariance equation. The power of the invariance equation is that, 

given a scaled equation and an appropriate small parameter, it allows us to systematically 

determine the higher-order asymptotic approximations to the SIM. The function h(x) admits 

a unique asymptotic expansion in terms of ε:

ℎ(x) = ℎ0(x) + εℎ1(x) + ε2ℎ2(x) + O(ε3), (39)

where h0(x) satisfies g(y, h0(x); 0) = 0. Thus, when g(x, y) is not explicitly dependent on ε, 

the nullcline associated with the fast variable commonly serves as a zeroth-order 

approximation to the slow manifold, ℳ0
ε = {(x, y) ∈ ℝ2 :y = ℎ0(x)}, and formally the 

asymptotic approximation to the slow manifold can be expressed as:

ℳε = ℳ0
ε + εℳ1

ε + ε2ℳ2
ε + … + O(εN) + … (40)

The terms ε0, ε1, ε2,.. in (40) are called gauge functions, and the terms ℳ0
ε, ℳ1

ε,… are the 

coefficients that accompany the gauge functions. Generally speaking, the slow manifold is 

not necessarily unique, meaning there can be slow manifolds. However, they are separated 

by a distance that is O(e−K ∕ ε) where K is O(1) [53].

In addition to the slow manifold, the work of Fenichel also guarantees the existence of fast 

fibers, ℱε, p, which can be utilized to approximate the dynamics during the transient stage as 

the trajectory rapidly approaches the slow manifold.5 The zeroth-order fiber, ℱ0
ε, p, which is 

the zeroth-order approximation to the fibers ℱε, p, is the solution to the fast subsystem:

x′ = 0, (41a)

y′ = f(x, y; 0) . (41b)

4The underlying assumption here is that the slow manifold can be expressed in terms of a global coordinate chart. More complicated 
manifolds, such as an n-dimensional torus, may require an atlas and a collection of transition maps.
5In contrast to the critical manifold, the individual zeroth-order fast fibers to not perturb to individual invariant fibers when ε is non-

zero. However, the collective family of fast fibers, ⋃pℱε, p, is invariant in a certain way. For more details, we invite the reader to 

consult [54].
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The fast subsystem contains a continuous branch of equilibrium points given by the curve y 
= h0(x), which is referred to in this context as the critical manifold. Thus, each zeroth-order 

fiber links an initial condition (x0, y0) to a unique base point (equilibrium point) p ∈ ℳ0
ε, and 

the superscript p in ℱε, p is a reference to the unique base point, p. Since we are only 

interested in the zeroth-order approximation to ℱε, p, we will henceforth drop the superscript 

p for convenience, and use “ℱ0
ε” to denote an individual zeroth-order fiber. We will say more 

about fast fibers and the perspective of the slow manifold from the context of the fast 

subsystem when we introduce the idea of Tikhonov-Fenichel parameters in Section 4.2. 

However, for now we will just associate the zeroth-order fast fiber as being the solution to 

(41a)-(41b).

3.2. Standard Quasi-Steady-State dynamics: Geometric singular perturbation theory 
when εSS ≪ 1.

The RSA ensures negligible depletion of substrate during the fast transient, and suggests6 

that the zeroth-order fast fiber, ℱ0
εSS, is a straight line that connects the initial condition 

(s̄, c̄) = (1, 0) to the base point (s̄, c̄) = (1, 1):

ℱ0
εSS = {(s̄, c̄) ∈ ℝ2 : s̄ = 1, 0 ≤ c̄ ≤ 1} . (42)

If 0 < εSS ≪ 1, then the time it takes the phase-plane trajectory to reach a O(εSS)-
neighborhood of the slow manifold is τεSS ~ ∣ln εSS∣ or, in dimensional time t ~ tC∣ln εSS∣. 

Moreover, there exists an invariant manifold, ℳεSS, that is O(εSS) from the critical 

manifold, and admits a unique expansion in powers of εSS in the form of (40), where ℳ0
εSS

is identically the c̄-nullcline. These terms are straightforward to compute by constructing an 

asymptotic solution to the invariance equation:

1
εSS

g(ℳεSS, s̄) = Ds̄ℳεSSf(ℳεSS, s̄), (43)

and by inserting (40) into (43), it is easy to recover

ℳ0
εSS = {(s̄, c̄) ∈ ℝ+

2 : c̄ − s̄(1 + σ) ∕ (1 + s̄σ) = 0} . (44)

Finally, inserting the expression for ℳ0
εSS into (17a) yields, in dimensional variables, the 

MM equation

ds
dt ∼ − V s

KM + s, (45)

6This is, of course, a violation of the conservation law for substrate in the MM reaction mechanism (1), but we will proceed as if it 
were permissible, and discuss this observation in more detail in section 4.
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which approximates the long-time dynamics of the mass action equations when the RSA is 

valid.

3.3. Extended Quasi-Steady-State dynamics: Geometric singular perturbation theory 
when ν ≪ 1, β ~ 1 and ε ~ 1.

Now let us consider the case of the extended QSSA. The problem can be reformulated in the 

(p, c) coordinate system so that it is of the form (37a)-(37b) (see, for example, [18, 55]). 

However, we will work out the solution in the (s, c) coordinate system. In this case, we can 

guess the asymptotic expansion of the slow manifold in this coordinate system, and assume 

it takes the form

c = ℳν = s̄
αβ + μs̄ + νℳ1

ν + O(ν 2), ν ≡ 1 ∕ κ = k2 ∕ k−1, (46)

where the curve

c̄ = s̄
αβ + μs̄ , (47)

is the dimensionless form of the s-nullcline (19). Taking just the zeroth-order expansion of 

(46) (i.e., (47)) and inserting it into equation (18a) while zeroing all terms of order ν or 

higher yields

ds̄
dT = 0 . (48)

Since the c̄- and s̄-nullclines coalesce when k2 = 0, the zeroth-order approximation to the 

dynamics on the slow manifold results in the flow being infinitely slow (i.e., an equilibrium 

solution). Consequently, we must go to first-order in ν  to determine the QSS approximation 

to the dynamics on the slow manifold. Solving for ℳ1
ν  by approximating the solution to the 

invariance equation7

g(ℳν , s̄) = Ds̄ℳνf(ℳν , s̄) (49)

in powers of ν , we recover

ds̄
dT = ν ((s̄ − 1)θ + 1)(θ − 1)s̄

(s̄ − 1)2θ2 + (2s̄ − 2ε − 1)θ + ε + 1
+ O(ν 2), θ = σ

α + σ < 1, (50)

by inserting ℳ1
ν  into (18a), which is the leading-order non-trivial solution to the dynamics 

on the slow manifold. Thus, the QSS approximation for s (50) is different when ν ≪ 1 

versus when εSS ≪ 1. In dimensional variables, (50) translates to,

7Ds̄ denotes differentiation with respect to s̄.
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ds
dt ∼ − V s(s + KS)

e0KS + (s + KS)2 , KS ≡ k−1 ∕ k1 . (51)

The result (51) is not new, and the approximation that can be found in several papers [56, 57, 

58, 43, 55]. The point is that by utilizing the invariance equation, we have shown that in fact 

Segel and Slemrod’s extended QSS approximation (21) is invalid. The difference between 

the QSS approximations for s when ν ≪ 1 versus when εSS ≪ 1 has a nice history, and 

Roussel [55] recently published a thorough explanation of the different QSS approximations 

through the lens of Tikhonov’s Theorem and geometric singular perturbation theory.

In addition to the change in leading-order dynamics on the slow manifold when ν ≪ 1 

instead of εSS ≪ 1, the zeroth-order approximation to the fast fiber, ℱ0
ν, will also change. 

One major difference between the transient dynamics of the sQSSA and the extended QSSA 

is that we can no longer take s ≈ s0 during the trajectory’s initial approach to the slow 

manifold. Hence, we must determine an appropriate starting point in order to “match” the 

inner and outer solutions. Locating an appropriate starting position on a slow manifold is not 

necessarily a trivial exercise. However, mathematicians have developed methods for such a 

situation (in [59], A. J. Roberts develops a clever method for estimating starting positions on 

centre manifolds). Luckily, in our case, the conservation of total substrate, s0 = s + c + p, can 

be utilized to estimate a starting point. Over the τ-timescale, the total system is given by:

ds̄
dτ = εSS[μc̄s̄ − s̄ + αβc̄], (52a)

dc̄
dτ = s̄ − μc̄s̄ − βc̄, (52b)

dp̄
dτ = εc̄ . (52c)

Since ν → 0 implies ϵ → 0, we set ϵ = 0 and α = 1 in (52c) and (52a), respectively. Setting 

the right hand side of (52c) to zero implies that the total substrate, “s̄T = s̄ + c̄,” is conserved 

over the transient timescale when ν = 0,

s̄ + c̄ = 1, (53)

and insertion of (53) into the scaled equations yields a Riccati equation for c̄:

dc̄
dτ = 1 − 2c̄ + μc̄2 . (54)

Two observations can be made. First, the correction to the duration of the fast transient when 

ν ≪ 1 (as opposed to εSS) can be found by solving the Riccati equation (54). In dimensional 
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form, the solution to (54) yields (33). Again, this timescale was originally introduced by 

Tzafriri [34], and can be taken to be characteristic of the fast transient whenever there is 

minimal product formation during the time it takes c to reach its maximum value (i.e., even 

when εSS ≪ 1).8 Second, the base point (c̄∗, s̄∗) of the zeroth-order fast fiber is given by9

c̄∗ = 2 − 4(1 − μ)
2μ , s̄∗ = 1 − c̄∗ . (55)

Consequently, if εSS = σ = 1 then, after the fast transient, we expect c̄ ≈ 2 − 2 and 

s̄ ≈ 2 − 1 (see figure 4). In dimensional variables, this corresponds to c ≈ (2 − 2) s0 and 

s = (2 − 2) s0, and we recover the original estimate given by Segel and Slemrod [30] (see 

figure 4).

GSPT, or really just the invariance equation, provides a powerful framework from which 

QSS approximations can be carefully derived. Moreover, it can help to rule out erroneous 

conclusions about specific QSS approximations such as (21). Note that the utility of the 

invariance equation still relies on direct knowledge of a suitable small parameter in order to 

construct an asymptotic expansion to the slow manifold. However, the appropriate small 

parameter that warrants the validity of the rQSSA is still an open problem. This raises the 

question: are there suitable non-scaling methods that can be employed to determine the 

validity of the rQSSA? We introduce two such methods in the section that follows.

4. Applying the Quasi-Steady-State Approximations to the 

MichaelisMenten reaction mechanism: Non-scaled approaches

In this section, we introduce non-scaling approaches to finding parameters or combinations 

of parameters that, when made very small, justify the validity of the sQSSA, the extended 

QSSA or the rQSSA. We also remark on the origins of slow manifolds, as this will be 

critical to uncovering sufficient conditions for the validity of the rQSSA in Section 5.

4.1. Geometric singular perturbation theory: The fast subsystem

Let us consider once more a fast/slow system of the form

x′ = εf(x, y; ε), (56a)

y′ = g(x, y; ε), (56b)

which we will refer to as being in Tikhonov standard form. The associated fast subsystem,

x′ = 0, (57a)

8The usage of “characteristic” is slightly abused in this context since the Riccati equation is nonlinear.
9The zeroth-order fast fiber is not a vertical line in the (s, c) phase–plane. However, it is a vertical line in the (p, c) phase–plane, since 
p is the slow variable in this case and not s.
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y′ = g(x, y; 0), (57b)

contains a branch of fixed points y = h0(x), where g(x, h0(x); 0) = 0. Again, each fixed point 

in the set y = h0(x) is called a base point, and the complete set y = h0(x), denoted hereby as 

ℳ, is said to be normally-hyperbolic provided

ℜe ∂g(x, y; 0)
∂y y = ℎ0(x) ≠ 0 . (58)

In this context, normal hyperbolicity is partially10 a statement about the linear stability 

along directions that are transverse to the critical manifold. As previously stated, the zeroth-

order fast fibers are solutions to (56a)-(56b), but they are also individual manifolds 

themselves. To see this, note that if (58) is less than zero, then ℳ is attracting, and 

trajectories that start close to ℳ move closer to ℳ as t → ∞ (see Figure 5). In contrast, if 

(58) is positive, then ℳ is repelling, and trajectories that start close to ℳ move away from 

ℳ as t → ∞. Thus, when the critical manifold is normally hyperbolic and attracting, the 

zeroth-order fast fiber is the stable manifold corresponding to the base point “p” of ℳ, and 

the stable manifold of ℳ is comprised of (foliated by) the entire union of zeroth-order fast 

fibers. Why are we interested in manifolds that are comprised of fixed points? Fenichel’s 

Theorems describe what happens to normally hyperbolic critical manifolds of fixed points 

once the vector field is perturbed. Formally, we introduce the following theorem due to 

Fenichel [38], which can be found in [53]:

Theorem 1: Let F be a Cr vector field on ℝn with r ≥ 1. Let ℳ be a compact and connected 

Cr manifold embedded in ℝn. Suppose that ℳ is normally hyperbolic and invariant under the 

flow of F. Then, given any Cr vector field Fε that is sufficiently C1–close to F, there exists a 

Cr–manifold ℳε that is invariant under the flow of Fε and diffeomorphic to ℳ.

The notation “Cr” means the vector field has at least r derivatives, all of which are 

continuous. The terms “compact” and “connected” are referring to specific topological 

properties that ℳ must be equipped with. Connected means that ℳ cannot be expressed as 

the union of two disjoint and non-empty sets, and compact means every open cover has a 

finite sub-cover. The term C1-close is a statement about the distance between F and Fε:

Definition: Let F and Fε be two C1 vectors fields on ℝn, and Λ be a compact set. F is said to 

be ϑ-close to Fε on Λ if:

sup
x ∈ Λ

‖F − Fε‖ ≤ ϑ, (59a)

sup
x ∈ Λ

‖DF − DFε‖ ≤ ϑ, (59b)

10Normally hyperbolicity provides information about the dominant directions of the flow near the critical manifold.
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where D denotes differentiation. Theorem 1 is one of several theorems that provides the 

foundation for GSPT (see [54] for a more technical survey). In a nutshell, one starts with a 

vector field that contains a critical set that consists of fixed points. Fenichel’s theorems tell 

us that if a compact subset of the critical set is normally hyperbolic and attracts nearby 

trajectories, then perturbing the vector field (i.e., allowing ε in (57a)-(57b) to be greater than 

zero) in an appropriate way results in an attracting slow manifold that is at least locally 

invariant.

Let us now discuss a specific point, “p ∈ ℳ”, where (58) fails and

∂g(x, y; 0)
∂y p ∈ ℳ

= 0 . (60)

A point that satisfies (60) is called a singular point. Singular points can indicate where a 

change in the stability of the critical manifold ℳ may occur, and can correspond to dynamic 

bifurcation points. In particular, a transcritical bifurcation occurs at a singular point where 

two normally hyperbolic submanifolds cross and undergo an exchange of stability (see 

Figure 6). This specific bifurcation will be of interest when we analyze the rQSSA.

4.2. Tikhonov-Fenichel parameters

We now want to take the idea of a critical manifold that is composed of fixed points one step 

further. Revisiting the mass action equations (5a)-(5c), we can ask the following question: 

Are there specific dimensional parameters that, when identically zero, result in the formation 

of a normally hyperbolic invariant manifold that is composed of fixed points? If so, then it 

seems reasonable to assume that these parameters should in some sense be small whenever a 

specific QSS reduction is valid. For example, let us first consider the rQSSA in the (s, p) 

phase-plane, for which the mass action equations are:

s. = − k1(e0 − (s0 − s − p))s + k−1(s0 − s − p), (61a)

p. = k2(s0 − s − p) . (61b)

We know that the rQSSA implies that s ≈ 0 during the QSS phase of the reaction. Define 

k2 = ε2k2
⋆ and k−1 = ε1k−1

⋆ , where ε1and ε2 are dimensionless and small, 0 < ε1, ε2 ≪ 1, and 

k−1
⋆ ,k2

⋆ are identically one with the same units as k−1 and k2 respectively. Expressing 

(61a)-(61b) as

s. = − k1(e0 − (s0 − s − p))s + ε1k−1
⋆ (s0 − s − p), (62a)

p. = ε2k2
⋆(s0 − s − p), (62b)
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it is clear that the curve s = 0 is filled with equilibrium points when ε1 = ε2 = 0 and e0 > s0. 

Furthermore, it is straightforward to show that the curve s = 0 is normally hyperbolic and 

attracting when s0 < e0, since

∂
∂s −k1(e0 − (s0 − s − p))s s = 0 < 0 . (63)

Consequently, we anticipate

p. ∼ k2(s0 − p) (64)

during the slow QSS phase of the reaction when 0 < ε1, ε2 ≪ 1. The takeaway message from 

this example is two-fold. First, without scaling and non-dimensionalization, we have 

predicted the validity of the rQSSA by choosing dimensional parameters (i.e., k−1 and k2) 

that, upon vanishing, give rise to an invariant manifold of equilibrium points. This is 

consistent with the notion of a normally hyperbolic critical manifold from fast/slow analysis 

and GSPT. Second, any dimensionless parameter homologous to εSS that acts as a qualifier 

for the validity of the rQSSA should vanish whenever k−1 and k2 vanish. In planar systems, a 

parameter that, upon vanishing, gives rise to a manifold of fixed points that is normally 

hyperbolic, is called a Tikhonov-Fenichel parameter (TFP); Walcher and collaborators were 

the first to conceptualize TFPs [37, 58, 35, 43]. A manifold of equilibrium points is a special 

case of a normally hyperbolic manifold; the formal definition of a normally hyperbolic 

invariant manifold can by found in [53]. The informal definition of a normally hyperbolic 

invariant manifold is that the linearized flow that is tangent to the manifold is dominated by 

the flow that is normal (transversal) to the manifold. This is more or less intuitive when it 

comes to manifolds comprised of equilibria, since the flow on such a manifold is trivial. 

Nevertheless, manifolds of equilibria can lose normal hyperbolicity and, as we will see, the 

loss can play a significant role in determining when QSS approximations are valid.

The challenging part in the direct utilization of Tikhonov-Fenichel parameters is that often 

times the perturbed mass action equations obtained by regulating a Tikhonov-Fenichel 

parameter do not necessarily result in a set of equations that are in Tikhonov standard form. 

This can make computing a QSS reduction (without resorting to scaling) less than obvious. 

For example, the parameters e0 and k1 are Tikhonov-Fenichel parameters that warrant the 

validity of the sQSSA [35]. Treating k1 as a small parameter, we can express (5a)-(5b) as

s. = − εk1
⋆(e0 − c)s − k−1c, (65a)

c. = εk1
⋆(e0 − c)s + (k−1 + k2)c . (65b)

The (s, c) phase-plane is equipped with an invariant manifold of equilibria, c = 0, when k1 = 

0. If 0 < k1 ≪ 1, then one would expect that s0 ~ s + p on the slow timescale, provided the 

curve c = 0 is normally hyperbolic and attracts nearby trajectories. However, determining a 

QSS approximation for s or c from (65a)-(65b) is not obvious without scaling, since the 
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system is not in Tikhonov standard form. Nonetheless, using algebraic methods, Walcher 

and collaborators [43, 36, 57] developed a surprisingly straightforward method for obtaining 

QSS approximations from non-standard systems such as (65a)-(65b). In so doing, they have 

circumnavigated the need for scaling analysis to justify the QSSA.

For simple planar systems, Tikhonov-Fenichel parameters provide direct insight into the 

conditions that contribute to QSS dynamics, as well the origin (i.e., the critical manifold) of 

the corresponding slow manifold, and in this sense they are invaluable. However, in order to 

determine the validity of a particular QSS reduction so that experiments can be prepared 

with the intention of determining enzyme activity, the necessary “smallness” of Tikhonov-

Fenichel parameters must be defined. For example, if s0 ≥ e0, then the critical set obtained 

by setting ε1 = ε2 = 0 in (62a)-(62b) yields

e0s − (s0 − s − p)s = 0, (66)

since the term e0 – (s0 – s – p) can vanish if e0 ≤ s0. In this situation, it is not entirely clear 

how to go about properly defining the critical manifold when s0 ≥ e0. This raises the 

question as to whether or not the rQSSA is still valid when e0 ≲ s0 and, if so, then how small 

must the parameters k−1 and k2 be in order for the approximation (64) to hold over the slow 

timescale? Obviously we expect the standard QSSA to be valid at extremely large values of 

s0, but what happens in parameter regions where s0 and e0 are the same order of magnitude? 

This question is central not only to the validity of the rQSSA, but is also central to 

understanding the validity of the sQSSA. Clearly, it seems that something more than scaling 

analysis and the identification of Tikhonov-Fenichel parameters is needed in order to 

address the validity of the rQSSA. We will introduce a method that permits a possible 

solution to the validity of the rQSSA in the subsection that follows.

4.3. Energy methods: Revisiting the sQSSA and Michaelis–Menten equation

To obtain a fundamental small parameter that ensures the validity of the sQSSA, we need to 

understand where the corresponding slow manifold comes from and, to do this, we must 

determine the associated critical manifold. One possible caveat with the traditional analysis 

of the sQSSA in the (s, c) phase–plane is that, if we are only interested in bounded 

trajectories (again, this rules out the particular case of taking s0 → ∞), then taking ε → 0 

implies that either k1 or e0 must vanish, as Walcher and his collaborators have carefully 

pointed out [43, 58, 35, 37]. In both of these cases c must vanish, but the dimensionless 

variable c̄ = c ∕ εs0 contains a zero denominator in the singular limit. According to Walcher 

and Lax [60] this is not a problem. However, in order to avoid having to deal with this, it is 

useful to write down the dimensionless equations in the (s̄, p̄) coordinate system:

ds̄
dτ = − εSSs̄ + μs̄(1 − s̄ − p̄) + αβ(1 − s̄ − p̄) (67a)

dp̄
dτ = β(1 − α)(1 − s̄ − p̄) . (67b)
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Setting εSS = 0 in (67a)-(67b) reveals the critical manifold to be p̄ = 1 − s̄, which 

corresponds to the critical manifold of the dimensional system (i.e., c = 0) obtained by 

setting k1 or e0 to zero in (65a)-(65b). Since the curve s = s0 − p implies c = 0, we avoid the 

other caveat encountered in the analysis in the (s, c) coordinate system in section 3: there is 

no violation of the substrate conservation law s0 = s + c + p along a zeroth-order fast fiber, 

since initial conditions lie on the critical manifold, c = 0. If a non-trivial c-nullcline is 

defined to be the critical manifold, then there is zero loss of substrate along the one-

dimensional zeroth-order fibers when εSS = 0, which is a violation of the substrate 

conservation law, since s + c > s0 as the trajectory approaches a base point that lies above the 

s-axis.

It is expected that trajectories will closely follow the curve p = s0–s once the perturbation is 

“turned on” and 0 < εSS ≪ 1. To get an idea of how “good” the approximation p ~ s0 – s is 

for all time, we need to compute an upper bound “M” such that11

(1 − s̄ − p̄) ≤ M . (68)

We will start with a differential equation for the energy12 ℰ2 ≡ (s0 − s − p)2. Multiplying 

both sides of the dimensional form of (67a) by “(s0 − s − p) ≡ ℰ” yields:

1
2

dℰ2

dt = k1e0sℰ − k1(s + KM)ℰ2, (69a)

≤ k1e0s0 ∣ ℰ ∣ − k1KMℰ2 . (69b)

Now we can can use Cauchy’s inequality with “δ,”

ab ≤ δa2 + b2

4δ, (70)

and expand the term k1e0s0ℰ in (69b):

k1e0s0 ∣ ℰ ∣ ≤ (k1e0s0)2

4δ + δℰ2 . (71)

Choosing δ = k1KM/2 yields

k1e0s0 ∣ ℰ ∣ ≤ (k1e0s0)2

2k1KM
+ k1KM

2 ℰ2 . (72)

11We do not need to write ∣ ℰ ∣ since 0 ≤ s0 − s − p, but later on we will consider cases where the quantity of interest can vary in sign, 
so it helps to keep the notation consistent through each procedure.
12This is the mathematical energy of a function, and should not be confused with the physical energy of a particle.
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After combining (72) with (69b) we have

dℰ2

dt ≤ (k1e0s0)2

k1KM
− k1KMℰ2, (73)

and integrating both sides of (73) yields

ℰ2(t) ≤ ℰ2(0)e−(k1KM)t + s0
2η2(1 − e−k1KMt) . (74)

Replacing “(1 – e−k1KMt)” with “1” and dividing both sides of (74) by s0
2 reveals

lim sup
t ∞

ℰ̄2 ≤ η2, ℰ̄ ≡ ℰ ∕ s0, (75)

where the limit supremum or “limsup” of a bounded function w(t) is given by:

lim sup
t ∞

w(t) = lim
T ∞

sup
t > T

w(t) . (76)

It is clear from (75) that the long-time error in the approximation is controlled by η. We can 

simplify things further: utilizing the fact that ℰ(0) = 0, and taking the square root of both 

sides yields

(1 − s̄ − p̄) ≤ η . (77)

The bound (77) obtained from the energy analysis is promising, but what we are ultimately 

after is an expression for p(t) that can be utilized for parameter estimation. In practice, the 

approximation13

dp
dt ∼ k2e0(s0 − p)

KM + (s0 − p) , (78)

is often used to estimate KM and k2; the assumption in (78) is that c is negligible and is well 

approximated by

c ≈ e0(s0 − p)
KM + s0 − p . (79)

The question that immediately follows is: how good is the approximation (79)? In order to 

assess the validity of (79), we will derive an upper bound on ∣ ℰc ∣,

13This approximation is easily justified through scaling analysis. See [16] for details.
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ℰc ≡ c − e0(s0 − p)
KM + s0 − p . (80)

To begin,

1
2

dℰc
2

dt = c − e0(s0 − p)
KM + s0 − p

dc
dt + e0KM

(KM + s0 − p)2
dp
dt , (81a)

= ℰc k1e0(s0 − p) − k1c(e0 + KM + s0 − p) + k1c2 + e0KMk2c
(KM + s0 − p)2 , (81b)

= ℰc −k1(KM + s0 − p)ℰc + k1c(c − e0) + e0KMk2c
(KM + s0 − p)2 , (81c)

= − k1(KM + s0 − p)ℰc
2 k1c(c − e0) + e0KMk2c

(KM + s0 − p)2 . (81d)

Next, we need to find an upper bound on the right and side of (81d):

1
2

dℰc
2

dt ≤ − k1KMℰc
2 + ∣ ℰc ∣ max k1c(c − e0) + e0KMk2c

(KM + s0 − p)2 , (82a)

≤ − k1KMℰc
2 + ∣ ℰc ∣ max ∣ k1c(c − e0) ∣ + ∣ ℰc ∣ max e0KMk2c

(KM + s0 − p)2 , (82b)

≤ − k1KMℰc
2 + ∣ ℰc ∣

k1e0
2

4 + e0k2λ
KM

. (82c)

Using Cauchy’s inequality with δ = k1KM/2, it follows that

dℰc
2

dt ≤ − k1KMℰc
2 + 1

k1KM

k1e0
2

4 + e0k2λ
KM

2
. (83)

Applying Gronwall’s lemma and integrating both sides of (83) yields

ℰc
2 ≤ ℰc

2(0)e−k1KMt + 1
k1

2KM
2

k1e0
2

4 + e0k2λ
KM

2
. (84)
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Although the exponential term (84) is in terms of the dimensional time, t, we expect that if 

(84) is written in terms of the slow time, T̄ = tk2εSS, then it should decay relatively quickly 

in T̄ . To do this we need to solve

k1KMt = CT̄k2εSSt (85)

for the constant, CT̄ . Solving (85) reveals CT̄ = 1 ∕ νε, and it clear that the exponential term 

in (84) will vanish rapidly in T̄  whenever εν ≪ 1. Finally, taking the square root of both 

sides while noting that x + y ≤ x + y ∀x, y ≥ 0, and dividing through by e0 produces the 

following upper bound:

∣ c − ℎ(p̄) ∣ ≤ μe−T̄ ∕ 2εSSν + η
4 + ν λ

KM
, ℎ(p̄) ≡ σ(1 − p̄)

1 + σ(1 − p̄) , (86)

where c ≡ c ∕ e0. The bound (86) is actually quite revealing. First, we immediately see that 

taking ν → 0 does not support the validity of the sQSSA (i.e., the MM equation), even 

though the exponential term decays rapidly in the slow time whenever εSSν ≪ 1, and 

“nullcline following” in (s, c) phase-plane is observed when k2 ≪ k−1. Thus, we do not 

encounter any sort of dilemma between the sQSSA and the extended QSSA when energy 

methods are appropriately employed. Second, if s0 < e0, then λ < s0, and we have

∣ c − ℎ(p̄) ∣ ≤ μe−T̄ ∕ 2εSSν + η
4 + νσ . (87)

Since σ < η when s0 < e0, it follows that η → 0 in order for the sQSSA to be valid. Third, 

note that making s0 arbitrarily large only makes the exponential term decay faster, since εSS 

→ 0 as s0 → ∞. However, large s0 has no influence on the long-time bound: only KM and 

e0 influence the long-time bound. Finally, if e0 < s0, then λ ≤ e0 and it holds that

∣ c − ℎ(p̄) ∣ ≤ μe−T̄ ∕ 2εSSν + 5
4η . (88)

In all cases the natural “small parameter” that arises from the energy analysis is η. What can 

happen if εSS ≪ 1 but η ≫ 1? The answer is that a curious situation arises: the (s, c) phase-

plane trajectory will rapidly approach the c-nullcline, and proceed to follow it closely for a 

finite amount of time. However, as the reaction progresses, the phase-plane trajectory, which 

follows the invariant manifold ℳε, will start to move away from the c-nullcline, and 

eventually follow the s-nullcline (see figure 7).

In conclusion of this section, our analysis suggests that η is the fundamental small parameter 

that justifies the validity of the sQSSA. The condition η ≪ 1 can be viewed as a special case 

of εSS ≪ 1. However, if εSS ≪ 1 and 1 ≪ η, then we observe a scenario in the (s, c) phase-

plane in which the sQSSA is initially valid after the fast transient, but steadily loses validity 

until the rQSSA becomes valid for the remainder of the reaction. It seems as though the 

situation is quite unique, since the sQSSA appears to valid over the slow timescale, but the 
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rQSSA is valid over a super-slow timescale. If we can understand the origin of the slow 

manifold in this case (i.e., its associated critical manifold), then perhaps it will be possible to 

explain why this scenario occurs. Of course, this raises the question: “Can a unique critical 

manifold be determined in this case?” The answer to this question resides in the analysis of 

the rQSSA, and we will analyze this particular approximation in great detail in section 5.

5. The reverse Quasi-Steady-State Approximation

In this section, we derive the validity of the rQSSA using a combination of scaling and 

energy methods.

5.1. Justification of the reverse Quasi-Steady-State Approximation in the (p, c) phase-
plane: Scaling and bifurcation analysis

It is straightforward to verify the validity of the rQSSA through scaling analysis. Assuming 

that s0 < e0, it is obvious that c is bounded by s0, which suggests that c = c ∕ s0 is the 

appropriate scaled variable when s0 < e0. Rescaling the mass action equations (27a)-(27b) in 

the (p, c) phase–plane yields

ε∗ν dc
dT

= (1 − ℓc)(1 − c − p̄) − ε∗c, (89a)

dp̄
dT

= c, (89b)

and the corresponding critical manifold, ℳ0, is obtained by setting ε* = 0,

ℳ0 = {(p̄, c) ∈ ℝ+
2 ∣ (1 − ℓc)(1 − c − p̄) = 0} . (90)

If s0 < e0, then (1 − ℓ c) > 0, and we can take the critical manifold to be 1 − c − p̄ = 0. 

Furthermore, the critical manifold is normally hyperbolic and attracting, since

∂
∂c (1 − lc)(1 − c − p̄) < 0 . (91)

Thus, due to the fact that the critical manifold is both normally hyperbolic and attracting, we 

expect trajectories to approach the curve c = s0 – p when s0 < e0 and 0 < ε* ≪ 1. But what 

happens when e0 ≤ s0? Let us start by setting e0 = s0, in which case ℓ = 1. The dimensionless 

equations are given by

ε∗ν dc
dT

= (1 − c)(1 − c − p̄) − ε∗c, (92a)

dp̄
dT

= c, (92b)
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and the associated critical set is

ℳ0 = {(p̄, c) ∈ ℝ+
2 ∣ (1 − c)(1 − c − p̄) = 0} . (93)

The set (93) fails to be a manifold at the point where the curves c = 1 and c = 1 − p̄ intersect, 

which is precisely the point (p̄, c) = (0, 1). Moreover, there is a loss of normal hyperbolicity at 

this point, since

∂
∂c (1 − c)(1 − c − p̄) (p̄, c) = (0, 1) = 0 . (94)

What is happening at the point where normal hyperbolicity is lost? The sub-manifolds c = 1
and p̄ = 1 − c  intersect and exchange stability at the point (p̄, c) = (0, 1) when KM = 0. To see 

this, rescale time and define τ∗ = T ∕ ε∗ν:

dc
dτ∗ = (1 − c)(1 − c − p̄) − ε∗c, (95a)

dp̄
dτ∗ = ε∗νc . (95b)

Since e0 = s0, setting ε* = 0 implies that KM = 0, and we recover

dc
dτ∗ = (1 − c)(1 − c − p̄), (96a)

dp̄
dτ∗ = 0 . (96b)

Treating p̄ as a slowly-varying parameter in the fast subsystem given by (96a)-(96b), the 

normal form of the transcritical bifurcation is recovered by making the change of variables 

u = 1 − c

du
dτ∗ = p̄u − u2 . (97)

The normal form equation (97) indicates that the critical submanifolds14 undergo an 

exchange of stability at the transcritical singularity. Clearly, this transcritical singularity 

influences the dynamics whenever KM = 0 and e0 ≤ s0 (see Figure 8).

14The transcritical bifurcation is also easily recoverable in (s, p) coordinates.
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5.2. A heuristic analysis based on timescale separation

The bifurcation analysis from the previous section gave us a global picture of what the 

phase-plane dynamics look like when KM = 0. Moreover, we can use the bifurcation 

structure to our advantage and attempt to determine a suitable “small parameter” that 

warrants the validity of the rQSSA. To begin, if e0 < s0, then there are essentially three 

stages to the reaction (see figure 9).

The first stage is the transient stage, and the phase-plane trajectory moves almost vertically 

towards the curve c = e0. The approximate duration of this stage is given by Tzafriri’s fast 

timescale, tC∗ . After the initial fast transient the differential equation for product formation is 

roughly

p. ∼ k2e0 . (98)

Integrating the above expression yields p ~ k2e0t. Since c ≈ e0 in this regime, the trajectory 

will reach the vicinity of the c-axis once p = s0 – e0, which, based on the substrate 

conservation law, would imply that s ≈ 0. Thus, the time it takes the trajectory to reach the 

curve s0 = c + p is given by tℓ:

tℓ = s0 − e0
k2e0

. (99)

Next, the trajectory can be assumed to be very close to the curve c = s0 – p and, at this point, 

the time it takes for the reaction to effectively complete is tslow = 1/k2. If the ratio of tℓ to 

tslow is small, i.e.,

0 < tℓ
tslow

= s0 − e0
e0

≪ 1, (100)

then, from a practical point of view (as opposed to a rigorous point of view), the rQSSA can 

be considered valid if s0 > e0 and KM is incredibly small.

The heuristic analysis at least partially supports the idea that parameter domain over which 

the rQSSA is valid may in fact be larger than previously assumed. However, the combined 

conditions, ε* ≪ 1 and (s0 – e0)/e0 ≪ 1, still do not explain how increasing s0 impacts the 

validity of the approximation. This is a reasonable question that has plagued theorists for 

some time now (see, for example [30] and [31]). The usual methods of scaling analysis and 

timescale estimation have not provided very satisfying answers. Consequently, this suggests 

that a new method needs to be employed to tackle this problem.

5.3. The reverse quasi-steady-state approximation: energy methods

In order to determine a small parameter that ensures the validity of the rQSSA, it helps to 

first consider what we expect to happen chemically when such a parameter is made 

arbitrarily small. Historically, thanks to the careful work of Nguyen and Fraser [40], the 

geometric interpretation of the rQSSA’s validity has been associated with a phase-plane 
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trajectory closely following the s-nullcline in the (s, c) phase–plane. However, instead of 

thinking about the validity of the rQSSA in terms of a trajectory’s propensity for following 

the s-nullcline, it is perhaps better to think of it in purely chemical terms: when the rQSSA is 

valid, the initial substrate concentration vanishes rapidly with respect to the timescale 

T ≡ k2t. Translated mathematically, this means that s must dissipate rapidly with respect to 

T . Thus, we want an equation that describes the dissipation of s2/2:

1
2

ds2

dt = − k1(e0 − c)s2 + k−1cs, (101a)

≤ − k1(e0 − λ)s2 + k−1sλ . (101b)

The term k−1sλ can be expanded thanks to Cauchy’s inequality

k−1sλ ≤ δs2 + k−1
2 λ2

4δ , (102)

and choosing δ = k1(e0 – λ)/2 yields

1
2

ds2

dt ≤ − 1
2k1(e0 − c)s2 + k−1

2 λ2

2k1(e0 − λ) . (103)

From Gronwall’s lemma we have15

s2(t) ≤ s0
2e−k1(e0 − λ)t + k−1

2 λ2

k1
2(e0 − λ)2 1 − e−k1(e0 − λ)t , (104a)

≤ s0
2e−k1(e0 − λ)t + k−1

2 λ2

k1
2(e0 − λ)2 . (104b)

Diving both sides by s0
2, taking the square root of both sides, and invoking the triangle 

inequality yields:

s(t) ≤ s0e−k1(e0 − λ)t ∕ 2 + k−1λ
k1(e0 − λ) . (105)

Next, re-writing (105) in terms of T ,

s̄(T ) ≤ e−T ∕ 2εν + ε λ
s0

, (106a)
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≤ e−T ∕ 2εν + ε, (106b)

reveals two small parameters:

ε ≡ KM
e0 − λ, ε ≡ KS

e0 − λ . (107)

Now we have a choice to make: which small parameter corresponds to the potential validity 

of the rQSSA? The answer to this question resides in Fenichel theory: Setting ε to zero 

results in a critical manifold of fixed points, whereas making ε = 0 by setting k−1 = 0 results 

in the manifold s0 = c + p being invariant, but it is not a manifold of equilibrium points, 

since k−1 is not a TFP (see [58] for details). Moreover, it holds that

s̄(T ) ≤ e−T ∕ 2ε + ε, (108)

since ν ≤ 1 and ε ≤ ε. Consequently, we expect s to vanish rapidly in T  whenever ε ≪ 1. 

Furthermore, note that

lim
KM 0

ε = 0 if s0 < e0, lim
KM 0

ε = s0 − e0
e0

if s0 > e0, (109)

and we recover the exact small parameter (100) that was obtained heuristically in Section 

5.1.

As a final check, we observe the influence of ε on the dynamics in the (p, c) phase-plane 

when 0 < ε ≪ 1. First note that the c-nullcline can be approximated by the curve s0 = c + p 
as KM → 0 in any region where s0 < e0. Thus, if trajectories closely follow the c-nullcline 

when KM ≪ 1 and s0 < e0, then the rQSSA should be valid. Second, one can show that

∣ c − c0(p) ∣ ≤ λe−tζT ∕ 2 + ηλ
(1 + η)(1 + κ)

KM
e0 − λ + KM

, (110)

where ζT ≡ k1(e0 −λ + KM) (we will derive this in the Section 6 using energy methods, but 

also in Section Appendix A using a method pioneered by Gradshtein [14]). Dividing both 

sides by λ and expressing (110) in terms of T  yields

∣ c̄ − c̄0(p̄) ∣ ≤ e−T ∕ 2εν + ηνε
(1 + η)(1 + ε) , (111)

from which it follows that

∣ c̄ − c̄0(p̄) ∣ ≤ e−T ∕ 2ε + ε . (112)

The upper bound (112) reveals that the phase-plane trajectory will closely follow the c-

nullcline after a brief transient. Since the c-nullcline is approximately s0 = c + p whenever s0 
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< e0 and ε ≪ 1, it holds that the rQSSA is valid under these conditions, and we take ε to be 

the small parameter that ensures its validity.

In summary of this section, we have shown that, while scaling methods or Tikhonov-

Fenichel parameters can be used to predict the presence of a singular point, more analysis is 

needed to assess the validity of the rQSSA in neighborhoods impacted by the critical 

singularity. Hence, the presence of the singular point in the critical set is what makes the 

analysis of the rQSSA challenging. As we have shown, energy methods can be easily 

employed to assess the validity of the rQSSA when initial substrate and enzyme 

concentrations are of similar magnitude. Moreover, the bound

∣ c − c0(p) ∣ ≤ λe−tζT ∕ 2 + ηλ
(1 + η)(1 + κ)

KM
e0 − λ + KM

, (113)

provides direct insight into the origin of each critical manifold, and suggests that there are 

three parameters, η, ε and ν, that, when adequately small, guarantee the long-time validity 

of the QSSA, the rQSSA and the tQSSA, respectively. We will discuss this observation in 

more detail in section 6.

6. Final remarks on timescales and small parameters

In this section we explore the relationship between the fast and slow timescales of the 

tQSSA, Tikhonov-Fenichel parameters, and the small parameters obtained from the energy 

analysis.

6.1. Timescale separation and small parameters: local versus global conditions for the 
accuracy of QSS approximations

As mentioned earlier, because the tQSSA encompasses the rQSSA and the sQSSA, the 

accepted criterion for the validity of a QSSA is separation of Tzafriri’s timescales, εT ≪ 1 

(see 35). We can express the bound on the limsup of c and c̄0(p̄) in terms of Tz = t/tP,

∣ c − c̄0(p̄) ∣ ≤ e−Tz ∕ 2εD + εL . (114)

To compute (114), we start by computing,

lim sup
t ∞

(c − ℎ−(p))2, (115)

where we will use the notation

ℎ−(p) = 1
2(e0 + s0 + KM − p) − 1

2 (e0 + s0 + KM + p)2 − 4e0(s0 − p), (116a)

ℎ+(p) = 1
2(e0 + s0 + KM − p) − 1

2 (e0 + s0 + KM + p)2 − 4e0(s0 − p), (116b)
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for convenience. Thus, the reader should identify λ = h−(0) and note that c0(p) ≡ h−(p). The 

differential equation for the energy, ℰ2 ≡ (c − ℎ−(p))2, is

1
2

dℰ2

dt = dc
dt − dℎ−

dp
dp
dt ℰ . (117)

Carefully note that the derivative for c can be factored, c. = k1(c − ℎ−(p))(c − ℎ+(p)), and thus

1
2

dℰ2

dt = k1(c − ℎ−(p))(c − ℎ+(p)) − dℎ−

dp
dp
dt ℰ (118a)

= k1ℰ(c − ℎ+(p)) − dℎ−

dp
dp
dt ℰ (118b)

≤ ℰ2k1(c − ℎ+(p)) + max dℎ−

dp sup dp
dt ∣ ℰ ∣ . (118c)

Next, the term “c − h+(p)” can be bounded above:

max c − ℎ+(p) ≤ λ − min ℎ+(p) = − k1(e0 + KM − λ) . (119)

Using the Cauchy-δ inequality with δ = k1(e0 + KM − λ)/2, we obtain

max dℎ−

dp sup dp
dt ∣ ℰ ∣ ≤ k1(e0 + KM − λ)

2 ℰ2

+
max dℎ−

dp

2
sup dp

dt
2

2k1(e0 + KM − λ) .
(120)

Inserting (120) into (118c) yields

dℰ2

dt ≤ − ℰ2k1(e0 + KM − λ) +
max dℎ−

dp

2
sup dp

dt
2

k1(e0 + KM − λ) , (121)

and from Gronwall’s Lemma and the triangle inequality we recover:

∣ ℰ(t) ∣ ≤ ∣ ℰ(0) ∣ e−k1(e0 + KM − λ)t +
max dℎ−

dp sup dp
dt

k1(e0 + KM − λ) . (122)

Calculating the “max” and “sup” on the right hand side of (122), dividing both sides by λ, 

and expressing the exponential in terms of Tz = t/tP yields (114), where εD denotes the 

“exponential ε,” and εL denotes the “long-time ε:”
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εD ≡ λ
s0

1
1 + κ

ε
1 + ε , εL ≡ η

1 + η
1

1 + κ
ε

1 + ε . (123)

As expected, εD is dependent on initial data, meaning its magnitude is influenced by the 

starting location of the trajectory within the vector field. Moreover, εD can be “factored” into 

three small parameters:

i. λ/s0: vanishes as a result of zero enzyme to substrate ratio.

ii. 1/(1 + κ) ≡ ν: vanishes in the limit of infinitely slow product formation.

iii. ε ∕ (1 + ε): vanishes at infinitely high enzyme concentration or, zero KM 

whenever s0 ≤ e0.

What is the relationship between Tzafriri’s timescales and εD and εL? Tzafriri’s fast 

timescale, tC∗ , can be written as

tC∗ = 1
k1(KM + e0 − λ + s0 − λ) . (124)

Using the identity (124), a simple calculation reveals εT ≤ εD. In fact, εT ~ εD at very high 

enzyme concentration, and εT → 0 if εD → 0. Thus, we can control timescale separation by 

controlling εD. However, εD ≪ 1 only implies that the phase-plane trajectory moves rapidly 

towards the c-nullcline; it does not ensure that the trajectory stays close to the c-nullcline as 

Tz → ∞. The long-time validity of the zeroth-order approximation is regulated by εL, and 

εD ≤ εL. Hence, εL is the fundamental small parameter, since it is independent of a 

particular choice of initial data and provides an upper bound on the lim sup:

lim sup
t ∞

(c − c0(p))2 ≤ λ2εL
2 . (125)

For example, εD can be made arbitrarily small by taking s0 to be arbitrarily large, but the 

accuracy of the approximation in regimes were s0 is large may only be temporary at best 

(see figure 10). Finally, the magnitude of εL is regulated by the TFPs. The parameter εL 

determines “how small” a TFP must be in comparison to other parameters in order to ensure 

the validity of the tQSSA. Thus, there is a fundamental “hierarchy” or “ordering” of 

parameters:

TFP ≺ εL ≺ εD ≺ εT . (126)

From the perspective of the ordering given in (126), timescale separation should be seen as 

an effect, not a cause. Segel and Slemrod [30] understood this; they were very clear in 

issuing their warning of sufficient versus necessary conditions for the validity of QSS 

reductions, and stressed the fact that timescale separation is merely a necessary condition.
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The takeaway from our analysis is that timescale separation is really a local metric when it 

comes to assessing the validity of a QSS reduction. This is primarily because timescales are 

dependent on initial conditions, and the vector field can change dramatically once the 

trajectory leaves a small neighborhood containing the initial conditions. Roussel and Fraser 

[41] seem to have been the first to really understand this in the context of the Michaelis-

Menten reaction mechanism (1), as their work focused on approximating the actual invariant 

slow manifold. In fact, to the best of the authors’ knowledge, Roussel and Fraser (see [61], 

pp. 42-47) were the first to provide a solid geometrical argument that η is in fact the 

“global” qualifier for the validity of the sQSSA instead of εSS. By approximating the slow 

manifold to a high degree of accuracy, Roussel and Fraser [62, 42] were able to demonstrate 

that η ≪ 1 is necessary for the long-time validity of the sQSSA.

6.2. Tightening the limit supremum

It is worth pointing out that a long-time bound smaller than εL can be obtained when e0 < s0. 

This is to be expected, since ε does not vanish if s0 > e0 as KM → 0. To obtain a tighter 

bound, note that the upper bound of c − h+(p) given in (119) is rather liberal. What we want 

to do is compute max(c − h+(p)) with more care. First, since c < h+(p) and 0 < h+(p), it 

follows that c − h+(p) < 0. Second, h+(p) is a decreasing function of p, which means min h+

(p) occurs when p = s0. However, if c ≠ 0, then p ≤ s0 − c. Thus, we want to maximize:

c − ℎ+(s0 − c) ≡ θ(c) < 0 . (127)

Since θ′(c) > 0 and θ(c) < 0, the maximum of θ(c) occurs when c = λ, from which it is 

straightforward to show

dℰ2

dt ≤ − ℰ2k1 ∣ θ(λ) ∣ +
max dℎ−

dp

2
sup dp

dt
2

k1 ∣ θ(λ) ∣ , (128)

where θ(λ) is given by:

θ(λ) = λ
2 − 1

2 e0 + KM + (e0 + KM + λ)2 − 4e0λ . (129)

An even tighter bound on θ(c) can be obtained by noting that λ ≤ e0, and thus θ(λ) ≤ θ(e0):

θ(c) ≤ θ(e0) = − 1
2 KM + 4e0KM + KM

2 . (130)

The application of Gronwall’s Lemma reveals

lim sup
t ∞

(c − ℎ−(p))2 ≤ λ2 η
1 + η

2 1
1 + κ

2 2KM

KM + KM
2 + 4e0KM

2

≡ λ2εLT
2 , (131)
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which vanishes as KM → 0, even if e0 < s0. Thus, the long-time bound “εLT” vanishes if e0 

→ 0, KM → 0, e0 → ∞, KM → ∞, or k2 → 0. Finally, note that

KM
e0 − λ + KM

= KM
−θ(e0) = KM

∣ θ(e0) ∣ (132)

when e0 = s0, so there is a nice “overlap” of small parameters. Note also that the rate of 

convergence as KM → 0 is O( KM /e0) when e0 ≤ s0. This is as expected. In fast/slow 

systems that contain a transcritical point, trajectories remain at a distance that is O( ε) from 

the transcritical point once 0 < ε ≪ 1 (again, see [53] for details).

7. Discussion

The primary goal of this work was to illustrate how a combination of scaling and non-

scaling methods can be employed to determine the validity of the sQSSA, extended QSSA, 

rQSSA, and tQSSA. Collectively, our work provides an analysis that admits a considerably 

clearer understanding of each QSSA, its corresponding origin, and its validity. Using energy 

methods, we have recovered a clear set of associated “small parameters” that correspond to 

the three types of fast/slow dynamics considered under the QSSA: the sQSSA, the rQSSA, 

and the tQSSA (see Table 1).

The closure of the rQSSA problem for the MM reaction mechanism (1) is a testament to the 

power of using a combination of scaling and non-scaling methods, as we were able to derive 

a “small parameter” that ensures the validity of the rQSSA, ε ≡ KM(e0 − λ). In previous 

studies [30, 31], it was assumed that the rQSSA is valid only when s0 ≪ e0. The small 

parameter, ε, is a major improvement on the small parameters previously reported in the 

literature, because it quantifies and illustrates the validity of the rQSSA in regimes where e0 

≲ s0. Moreover, for the first time, we have shown that the critical manifold associated with 

the rQSSA at finite initial enzyme concentration contains a transcritical singularity that 

significantly influences the validity of the rQSSA whenever e0 < s0 and KM ≪ e0, since the 

critical (sub) manifolds undergo an exchange of stability at the singular point. On the other 

hand, this singularity is removed from the physical domain of interest if one takes e0 → ∞. 

This is the distinguishing difference between our analysis and the previous analysis of 

Schnell and Maini [31].

Our analysis has practical implications in the laboratory for the use of mathematical 

approximations under the rQSSA. Experimental assays are typically implemented to 

quantify the enzyme activity of a specific reaction. This is done by fitting experimental data 

to a particular model equation derived from a QSS reduction (i.e., either the sQSSA, the 

rQSSA, or the tQSSA). When the rQSSA is valid, progress curve experiments for p can be 

fitted to the product formation rate expression (23), which will allow the estimation of the 

catalytic rate constant, k2. In mathematical terms, the procedure of fitting experimental data 

to a mathematical model so as to estimate kinetic parameters is an inverse problem [15, 16]. 

Contrary to what has been reported, experimental assays can be carried out when initial 

substrate and enzyme ratios are of similar magnitude, and the rQSSA can be used to 

estimate k2, as long as ε ≪ 1.
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The mathematical analysis of the Michaelis-Menten reaction mechanism (1) has a long and 

rich history. We believe that our analysis has deepened the overall understanding of the 

QSSA, and that our approach provides an important improvement to the implementation of 

this approximation in enzyme kinetics. The methods we employed can be adapted to analyze 

complex enzyme catalyzed reactions, or multiscale dynamical systems. This will be the 

focus of our future work.
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Appendix A. Appendix

Here we present a detailed outline of the the method of slowly-varying Lyapunov functions 

applied to the governing equations of the Michaelis–Menten reaction mechanism as 

discussed in Section 4.3

Appendix A.1. Gronwall’s lemma

This differential version can be found in [63]. Suppose that u(t) ∈ C1 ([0, T]; ℝ0
+) satisfies16

du
dt ≤ λu + f(t), u(0) = u0 . (A.1)

Then, for λ ∈ ℝ and f(t) ∈ L1([0, T]; ℝ0
+), it holds that:

u(t) ≤ eλtu0 + eλt∫
0

t
e−λτf(τ)dτ, ∀t ∈ [0, T ] . (A.2)

Appendix A.2. The “contractivity” condition: Existence of a Lyapunov 

function

It will help to briefly review the concept of a Lyapunov function before we introduce the 

idea of a “contractivity” condition. Consider a simple dynamical system of the form

x′ = f(x), (A.3)

where “′” denotes differentiation with respect to time, t. The vector field f :ℝn ℝn

generates a flow, and any scalar-valued function of x (we will call this function L(x) :ℝn ℝ
will change with respect to time according to:

L′ = f(x) ⋅ ∇L ≡ GL, (A.4)
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where the operator “G” is known as a “generator.” Now suppose that the dynamical system 

(A.3) has an equilibrium point at x = x*, so that f(x*) = 0. Linearization is typically the 

preferred method of choice to determine the stability of x*. However, it is well-known that if

0 < L, & GL < 0, ∀x ∈ ℬ ∖ {x∗}, (A.5)

where x* is an interior point of the neighborhood (ball) ℬ, then the equilibrium point x* is 

asymptotically stable, and “L” is called a Lyapunov function.

So what does this have to do with a contraction condition? Keeping the idea of a Lyapunov 

function in mind, consider a fast/slow system:

x′ = εf(x, y), x(0) = x0 (A.6a)

y′ = g(x, y), y(0) = y0, (A.6b)

where the slow variable, x ∈ ℝn, the fast variable y ∈ ℝm, and thus f(x, y) :ℝn × ℝm ℝn and 

g(x, y) :ℝn × ℝm ℝm. The “fast subsystem” associated with (A.6a)-(A.6b) is

y′ = g(x0, y) . (A.7)

Assume the fast subsystem has an equilibrium point y* = h0(x0), where ℎ :ℝn ℝm, and 

g(x0, h0(x0)) = 0. Since x0 is a constant with respect to the fast subsystem, g can be treated 

as a map from ℝm to ℝm. Once again, the stability of y* can be found via linearization. 

However, suppose we want to determine an appropriate Lyapunov function. Generally, 

finding a Lyapunov function can be difficult, and so it is common practice to write down a 

simple polynomial function and “check” to see if it satisfies the requirements given in (A.5). 

The simplest choice is a quadratic function, L(y) = ∥y − h0(x0)∥2, which is locally positive-

definite since L(y) > 0, ∀y ≠ y* = h0(x0). The second property we need to check is whether 

or not L′ is locally negative-definite; thus, we need to show that

L′ = 2〈(y − y∗), g(x0, y)〉 < 0, ∀y ∈ ℬ ∖ {y∗}, (A.8)

where 〈,〉 denotes the usual scalar product between two vectors, and ‖v‖ = 〈v, v〉. It is not 

entirely clear how go about showing that L′ is negative definite, since g(x0, y) and (y – y*) 

can change signs. However, a little “trick” can go a long way. First, rewrite (A.8) as

2〈(y − y∗), g(x0, y)〉 = 2〈(y − y∗), g(x0, y) − g(x0, y∗)〉 . (A.9)

Now suppose we know that there is some positive number “ζ” such that

〈(y − y∗), g(x0, y) − g(x0, y∗)〉 ≤ − ζ‖y − y∗‖2 . (A.10)

If such a number “ζ” exists, then we can bound L′
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L′ = 2〈(y − y∗), g(x0, y)〉 ≤ − 2ζ‖y − y∗‖2 ≤ 0, (A.11)

and thus we have shown that L′ is locally negative-definite. Consequently, L = ∥y − y*∥2 ≡ 
∥y − h0(x0)∥2 is a Lyapunov function. Why then, do we refer to (A.10) as a “contractivity” 

condition? Well, notice that (A.11) defines a differential inequality

L′ ≤ − 2ζL, (A.12)

and integrating this inequality (courtesy of Gronwall’s lemma) yields

L ≤ L(0)e−2ζt . (A.13)

Consequently, the distance between y0 and h0(x0) decays to zero exponentially; hence, the 

distance “contracts.”

In the subsection that follows, we will investigate the growth of L = ∥y − h0(x)∥2, but we will 

allow x to change in time, since x will vary slowly in comparison to y when 0 < ε ≪ 1. 

Thus, we will be interested in finding an upper bound on

dL
dT ≡ L

.
, (A.14)

where T = εt is the slow timescale. The motivation for doing this should be obvious: we 

want to compute an estimate on how well the reduced system, x. = f(x, ℎ0(x)), approximates 

the full system. Because we will take into account the temporal variation of x, L is no longer 

a Lyapunov function. However, because x varies slowly, we have chosen to refer to L in this 

case as a slowly-varying Lyapunov function. One could also refer to this procedure as 

simply an “energy method,” since we are ultimately bounding the energy (norm) of the error 

y − h0(x).

Appendix A.3. General procedure: Estimation of bounds via energy 

methods

Let us start by estimating bounds on the enslavement of the fast variable. The calculation 

outlined below follows from the original work of Tikhonov [13] and Gradshtein [14], and 

the particular calculation we outline here can be found in [63]. This procedure will then be 

used to develop bounds for enslavement in the (p, c) coordinate system. We will express the 

procedure in terms with respect to a the fast/slow system (A.6a)-(A.6b) and, since our 

specific problem of interest is two-dimensional, we will assume x ∈ ℝ and y ∈ ℝ. However, 

the reader should keep in mind that this procedure extends to higher-dimensional problems.

With respect to the slow time, the system (A.6a)-(A.6b) is expressed in form

x. = f(x, y), (A.15a)
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εy. = g(x, y), (A.15b)

where “·” denotes differentiation with respect to the slow time, T. Let g(·, y) be contractive 

in the sense that

(g(x, y1) − g(x, y2)) ⋅ (y1 − y2) ≤ − ζ ⋅ (y1 − y2)2, (A.16)

where the “·” in (A.16) and in what follows denotes scalar multiplication. Next, suppose that 

h0(x) satisfies g(x, h0(x)) = 0. Defining y = h0(x) + z, where z = y − h0(x), it follows that

z. = y. − Dxℎ0(x) ⋅ x. .

Then, the differential equation for the energy, L ≡ z2 = (y − h0(x))2, is

1
2z.2 = 1

εz ⋅ g(x, z + ℎ0(x)) − z ⋅ Dxℎ0(x) ⋅ x. . (A.17)

Next, we want to get this expression into a useful form so that we can apply Gronwall’s 

lemma. There are essentially two “tricks” that can be utilized to manipulate this expression: 

(i.) we can “add/subtract” zero, or (ii.) we can “multiply” by one. We will choose (i). The 

term ε−1z · g(x, z + h0(x)) can be expanded by “subtracting” zero,

1
εz ⋅ g(x, z + ℎ0(x)) = 1

ε z ⋅ g(x, z + ℎ0(x)) − z ⋅ g(x, ℎ0(x)) , (A.18)

which holds since g(x, h0(x)) = 0. Thus, we obtain

1
2z.2 = 1

ε z ⋅ g(x, z + ℎ0(x)) − z ⋅ g(x, ℎ0(x)) − z ⋅ Dxℎ0(x) ⋅ x. . (A.19)

Our primary interest is not in finding an actual solution to (A.19). Instead, we want to 

compute an upper bound on the growth of z2, which means we need to convert the 

differential equation (A.19) into a differential inequality. To do this, we will take advantage 

of the “contractivity” condition. First rewrite the first term on the right hand side of (A.19) 

as:

z ⋅ g(x, z + ℎ0(x)) − z ⋅ g(x, ℎ0(x)) = g(x, z + ℎ0(x)) − g(x, ℎ0(x))
⋅ z + ℎ0(x) − ℎ0(x) . (A.20)

Let z + h0(x) denote “y1” in (A.16), and let h0(x) denote “y2” in (A.16). Then

(g(x, z + ℎ0(x)) − g(x, ℎ0(x))) ⋅ (z + ℎ0(x) − ℎ0(x)) ≤ − ζ ⋅ z2 (A.21)

It follows from (A.21) that
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1
2z.2 ≤ − ζ

εz2 − z ⋅ Dxℎ0(x) ⋅ x. . (A.22)

Maximizing the inequality (A.22) yields

1
2z.2 ≤ − ζ

εz2 + ∣ z ∣ max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ . (A.23)

In order to use Gronwall’s lemma, we want the right hand side of (A.23) to be in terms of z2 

instead of ∣z∣. To do this, let a ≡ ∣z∣ and b ≡ max ∣ Dxℎ0(x) ∣ max ∣ x. ∣. Then, from Cauchy’s 

inequality, (a · b ≤ δa2 + b2/4δ), it holds that

∣ z ∣ max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ ≤ δz2 + (max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ )2

4δ ,
∀δ > 0 .

(A.24)

Choosing δ = ζ/2ε yields

∣ z ∣ max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ ≤ ζ
2εz2 + ε(max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ )2

2ζ . (A.25)

Substitution of (A.25) into (A.23) reveals the differential inequality

z.2 ≤ − ζ
εz2 + ε(max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ )2

2ζ . (A.26)

The expression (A.26) is now in a form that be integrated directly, and it follows from 

Gronwall’s lemma that,

z2 ≤ z2(0)e−ζT ∕ ε + ε2 (max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ )2

ζ2 1 − e−ζT ∕ ε , (A.27a)

≤ z2(0)e−ζT ∕ ε + ε2 (max ∣ Dxℎ0(x) ∣ max ∣ x. ∣ )2

ζ2 . (A.27b)

Finally, from the triangle inequality, we obtain:

∣ z ∣ ≡ ∣ y − ℎ0(x) ∣ ≤ ∣ y0 − ℎ0(x0) ∣ e−ζT ∕ 2ε

+ εmax ∣ Dxℎ0(x) ∣ max ∣ x. ∣
ζ . (A.28)
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Appendix A.4. Computation of the upper bound for enslavement of c in (p, 

c) coordinates

Here we will directly calculate the constants ζ, max∣Dxh(x)∣ and max ∣ x. ∣ need for the upper 

bound. Note that the computation of ζ is calculated over the domain (p, c) ∈ Ω ≡ [0, so] × [0, 

λ], since trajectories that start on (p, c)(0) = (0, 0) are confined to this domain due to 

conservation.

In the (p, c) coordinate system, the c-nullcline is given by:

ℎ(p) = 1
2 e0 + KM + s0 − p − (e0 + KM + s0 − p)2 − 4e0(s0 − p) . (A.29)

Finding max ∣h′(p)∣ is relatively straightforward. First,

d2ℎ
dp2 = − 2e0KM

((e0 + KM + s0 − p)2 − 4e0(s0 − p))3 ∕ 2 < 0, (A.30)

and therefore the derivative is monotonically decreasing on the interval p ∈ [0, s0]. Thus, we 

obtain:

max dℎ
dp = − dℎ

dp p = s0
= e0

KM + e0
. (A.31)

For contraction, we define

G(c, p) ≡ c. = k1c2 − k1(KM + e0 + s0 − p)c + k1e0(s0 − p) . (A.32)

We will use the Mean Value Theorem to find ζ. The derivative of G(c, p) is given by

∂G
∂c = − k1(e0 + s0 + KM − 2c − p) ≤ − k1(e0 + KM + s0) + sup k1(2c + p) . (A.33)

We need to find sup(2c + p). A straightforward bound is 2λ + s0. However, we want to find 

the supremum subject to the constraints: s0 = s + c + p and c ≤ λ. Employing the 

conservation law “s0 = s + c + p yields

2c + p = s0 − s + c ≤ s0 + λ . (A.34)

Consequently, since 2c + p = s0 + c − s ≤ s0 + λ, it follows that

∣ c − c0(p) ∣ ≤ λe−tζT ∕ 2 + ηλ
(1 + η)(1 + κ)

KM
e0 − λ + KM

, (A.35)

where ζT is given by
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ζT = k1(e0 − λ + KM) . (A.36)

Diving both sides of (A.35) by λ and expressing p = s0p̄ yields the dimensionless form of 

the inequality

∣ c − c̄0(p̄) ∣ ≤ e−T ∕ 2εν + ε
(1 + ε)

η
(1 + η)

1
(1 + κ) . (A.37)

Since ν ≤ 1, we obtain

∣ c − c̄0(p̄) ∣ ≤ e−T ∕ 2ε + ε . (A.38)

Furthermore, since ζT ≥ k1 Km, it holds that

∣ c − c̄0(p̄) ∣ ≤ e−T̄ ∕ 2εSS + η . (A.39)

Let us define a “long-time epsilon, εL,”

εL ≡ ε
(1 + ε)

η
(1 + η)

1
(1 + κ) . (A.40)

Expressing the exponential in terms of Tzafriri’s timescale, Tz = k2λt/s0, we obtain:

∣ c − c̄0(p̄) ∣ ≤ e−s0Tz ∕ 2λεν + εL . (A.41)

Moreover, we can define a “decay epsilon,” εD ≡ s0
−1λεν, and write

∣ c − c̄0(p̄) ∣ ≤ e−Tz ∕ 2εD + εL, (A.42)

where εD ≤ εL.

Appendix A.5. The tQSSA as used in practice

The c-nullcline is rarely used for parameter estimation in progress curve experiments. 

Typically, at high enzyme concentrations, one uses

c ≈ e0(s0 − p)
e0 + KM + s0 − p (A.43)

in order to employ
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dp
dt ≈ k2e0(s0 − p)

e0 + KM + s0 − p (A.44)

for parameter estimation (see [16] for a good discussion on the tQSSA and parameter 

estimation). Calculating an upper bound on

∣ ℰT ∣ ≡ c − e0(s0 − p)
e0 + KM + s0 − p (A.45)

is done using the methods previously. First,

1
2

dℰT
2

dt = − k1(e0 + KM + s0 − p)ℰT
2 + k1c2 + k2ce0(e0 + KM)

(e0 + KM + s0 − p)2 ℰT , (A.46a)

≤ − k1(e0 + KM)ℰT
2 + k1λ2 + k2λe0

e0 + KM
∣ ℰT ∣ . (A.46b)

Applying the Cauchy-δ inequality with δ = k1(e0 + KM)/2, followed by integration, yields

ℰT
2 ≤ ℰT

2 (0)e−k1(KM + e0)t + 1
(k1(e0 + KM))2 k1λ2 + k2λe0

e0 + KM

2
. (A.47)

Finally, after scaling and algebraic simplification, it holds that:

∣ ℰT ∣ ≤ ∣ ℰT(0) ∣ e−k1(KM + e0)t ∕ 2 + λ λ
e0 + KM

+ ν e0
e0 + KM

KM
e0 + KM

. (A.48)

In terms of Tz, the inequality (A.48) is

∣ ℰ̄T ∣ ≤ ∣ ℰ̄T(0) ∣ e−s0Tz ∕ 2λϵ + η(1 + νϵ )
1 + η , if e0 ≤ s0, (A.49a)

∣ ℰ̄T ∣ ≤ ∣ ℰ̄T(0) ∣ e−s0Tz ∕ 2λϵ + λ
e0 + KM

+ ηνϵ , if s0 < e0 (A.49b)

where ℰ̄T = λ−1ℰT  and ϵ ≡ KM ∕ (e0 + KM). Thus, the tQSSA as used in practice is valid at 

very low e0 as well as very high e0.
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Highlights

• A non-scaling method is utilized to derive conditions for the quasi-steady- 

state approximations.

• A parameter determining the validity of the reverse quasi-steady-state 

approximation is derived

• A dynamical transcritical bifurcation is shown to occur in the phase-plane of 

the model

• Our analysis provides a deeper understanding of the quasi-steady-state 

approximation
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Figure 1: The RSA ensures the validity of the sQSSA: Fast/slow dynamics occur when εSS ≪ 1 
for the MM reaction mechanism (1).
This figure is an illustration of the phase-plane dynamics when εSS ≪ 1 and the sQSSA is 

valid; it serves to convey conceptual aspects of the phase-plane when the RSA is valid. The 

red dashed curve is the c-nullcline. The black curve the lies just above the c-nullcline is the 

invariant slow manifold. The thin lines with double arrows are illustrative of typical phase-

plane trajectories when εSS ≪ 1: trajectories starting on the s-axis approach the c-nullcline 

almost vertically. Once the trajectory reaches the c-nullcline it closely follows ℳε during the 

QSS phase of the reaction. Double arrows indicate fast dynamics, and single arrows 

represent slow dynamics. The reader should bear in mind that, slightly contrary to what is 

illustrated, the tangent vector to the trajectory is perfectly horizontal when it intercepts the c-

nullcline, since its vertical velocity component vanishes at the point of interception.
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Figure 2: The extended QSSA: Fast/slow dynamics still occur when εSS ~ 1, but ν ≪ 1 for the 
MM reaction mechanism (1).
The solid black curves are the numerical solutions to the mass action equations (5a)-(5c), 

and the dashed/dotted red curve is the c-nullcline. In this simulation, k1 = k−1 = 10, k2 = 

0.01 with κ ≡ k−1/k2 = 100, ν = 1/101, and εSS = 1 in arbitrary units for illustrative 

purposes. Note that the trajectory is not a vertical straight line during the initial phase of the 

reaction. As a consequence, the RSA does not hold [30, 39], and there is noticeable 

depletion of substrate during the transient phase. However, the trajectory still follows the c-

nullcline after a brief transient and achieves the slow QSS dynamics. The double arrows 

indicate fast dynamics, and single arrows indicate slow dynamics.
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Figure 3: In the rQSSA, the substrate concentration is in a QSS phase in the MM reaction 
mechanism (1).
This figure is an illustration of the rQSSA. The thick black curve is an illustration of the 

slow manifold; the dashed red curve in the c-nullcline, and the dotted blue curve is the s-

nullcline. The thin black curve illustrates a typical trajectory when the rQSSA is valid. 

During the transient phase, the complex concentration rapidly reaches it maximum value, 

and the initial substrate concentration nearly vanishes. After the transient phase, the 

trajectory follows the slow manifold, ℳε, during which time s remains in a QSS phase. 

Double arrows represent fast dynamics, and single arrows represent slow dynamics.
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Figure 4: The extended QSSA equation (21) proposed by Segel and Slemrod [30] is invalid when 
ν ≪ 1 but εSS = σ = 1.
In both panels, the solid black curve is the numerical solutions to the mass action equations 

(5a)-(5c), and the dashed/dotted red curve is the c-nullcline. LEFT: In this panel, s0 = 20, e0 = 

1, k2 = k−1 = 10, k1 = 0.1, and the sQSSA is valid, and the trajectory moves almost vertically 

towards the c-nullcline, which is the hallmark of the sQSSA in the (s, c) phase-plane. RIGHT: 

This panel is illustrates the path of a trajectory when k2 ≪ k−1 but εSS = 1. The parameters 

utilized in the numerical simulation are: k1 = k−1 = 1, k2 = 0.01 with κ = 100 and σ = 1. 

Notice the trajectory is no longer vertical during the initial phase of the reaction as there is 

substantial loss of substrate during the fast transient. Once the trajectory reaches the c-

nullcline, the approximation given by (51) is valid, and can be equipped with the initial 

condition ( 2 − 1)s0 if εSS = σ = 1. Although the sQSSA looks valid in both panels based on 

the proximity of the trajectory to the c-nullcline, GSPT indicates it is only valid in the left 

panel. In this figure, double arrows represent fast dynamics, and single arrows represent 

slow dynamics. All units are arbitrary.
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Figure 5: Illustration of a normally hyperbolic and invariant critical manifold, ℳ.
The black lines with arrows and fixed points represent trajectories within the unperturbed 

vector field field; the red dashed lines represent trajectories in the perturbed vector field. The 

straight black lines with double arrowheads represent trajectories moving towards the fixed 

points (filled black circles) that lie on the normally hyperbolic, attracting and invariant 

manifold ℳ, depicted by the thick black line. The flow on ℳ is trivial. However, once ε is 

non-zero and the vector field is smoothly perturbed, an invariant manifold ℳε emerges (red), 

on which the flow is slow, but no longer trivial. Trajectories that start off of ℳε quickly 

approach it, then follow it tangentially. Obviously, the fixed points drawn on this manifold 

are isolated, so the reader should bear in mind that ℳ is filled with non-isolated fixed points.
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Figure 6: The transcritical bifurcation point corresponds to a loss of normal hyperbolicity and 
an exchange of stability.
Here we illustrate a transcritical bifurcation. Thick dashed lines corresponds to unstable 

fixed points in which (58) is greater than zero. Thick solid lines represent stable branches of 

fixed points for which (58) is negative. Two manifolds, ℳ1 and ℳ2, cross at a singular point. 

At the crossing point (i.e, the point of intersection), normal hyperbolicity is lost, and (58) 

fails to hold. Each manifold undergoes a change in stability at the point of intersection (i.e., 

the singular point delimits the point at which the stability of each of the manifolds changes 

from attractive to repulsive or vice-versa).
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Figure 7: Near the origin, the slow manifold lies close to the s-nullcline in the (s, c) phase–plane 
when 1 ≪ η.
This figure is an illustration and is meant to convey conceptual features that occur in the 

phase–plane when η ≫ 1. The solid black curve is the slow manifold; the dotted blue curve 

is the s-nullcline, and the dashed red curve is the c-nullcline. When η is sufficiently large, 

the slow manifold lies very close to the s-nullcline at sufficiently small s. Comparing with 

figure 3, this is exactly the condition we need in order to apply the rQSSA
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Figure 8: The critical set of the rQSSA when e0 < s0 and KM = 0.
This figure provides a visualization of the invariant set recovered by setting e0 < s0 and k−1 = 

k2 =0. LEFT: The critical set contains two transversely intersecting branches of fixed points. 

Thick solid curves correspond to non-isolated stable fixed points, and thick dashed lines 

correspond to unstable fixed points. The horizontal curve corresponds to the critical set 

c = 1, and the diagonal curve corresponds to the critical set p̄ + c = 1. The trajectory rapidly 

approaches the curve c = 1, then reaches the curve 1 = c + p̄ once t ~ tℓ, and begins 

descending towards the origin. Clearly, each set constitutes a normally hyperbolic manifold 

everywhere except where the branches intersect, which corresponds to a transcritical 

singularity. RIGHT: A typical trajectory (red solid curve) closely follows the attracting critical 

submanifolds once the perturbation is turned on.
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Figure 9: There are three stages in the dynamics of the MM reaction mechanism (1) when e0 < s0 
and KM ≈ 0.
The red arrows demarcate the approximate path of a typical trajectory during each stage. 

Stage one is the fast transient: the trajectory rapidly approaches the curve c = e0, and the 

duration of this stage is roughly tC∗ . During the second stage, the trajectory closely follows 

the curve c = e0; the duration of this stage is roughly tℓ. The final stage corresponds to the the 

rQSSA, as the trajectory follows the curve c = s0 − p. The timescale corresponding to stage 

three is tslow = 1/k2. If tC∗ ≪ tℓ ≪ 1 ∕ k2, then the rQSSA is at least heuristically valid.

Eilertsen and Schnell Page 58

Math Biosci. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: The tQSSA can worsen as t → ∞ if εL is not sufficiently small.
In both panels, the numerical solution is obtained with parameter values: e0 = 10, s0 = 1000, 

k1 = 20, k−1 = 10, k2 = 10. Thus, εT ~ 10−6, but εL ≈ 0.45. TOP PANEL: The log10 of the 

relative error between the numerical solution to the mass action equations (27a)-(27b) for c, 

and the numerical solution to the asymptotic approximation (29), denotes cεT, is demarcated 

by the dashed-dotted line. BOTTOM PANEL: The dashed-dotted line demarcates the log10 of the 

relative error between the numerical solution to the mass action equations (27a)-(27b) for p, 

and the numerical solution to the asymptotic approximation (30), denoted pεT. Even though 

timescale separation is quite large, there are regions in the numerically-obtained time course 

data where cεT approximates c only to within one digit of accuracy. While the loss in 

accuracy may not be outright disastrous in terms of parameter estimation, it is an 

observation that is worth pointing out in order to gain a deeper quantitative understanding of 
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the various QSS approximations utilized for Michaelis–Menten reaction mechanism (1). The 

parameters have been assigned arbitrary units for illustrative purposes.
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Table 1:
Small parameters and critical sets for the standard, reverse, and total QSSA.

Each of the critical manifolds that appear when either η, ε or ν are identically zero correspond to zero product 

formation. Hence, the tQSSA is valid in all three cases. The notation c̄0(p̄; KS) denotes the c-nullcline with KM 

replaced with KS, which occurs when k2 = 0.

Parameter Approximation Critical Manifold (Set)

η sQSSA 1 − s̄ − p̄ = 0

ε rQSSA {(c, p̄) ∈ ℝ+ ∣ (1 − c)(1 − c − p̄) = 0}
ν tQSSA c̄0(p̄; KS)
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