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Abstract

High-throughput sequencing methods have created exciting opportunities to explore the regulatory 

landscape of the entire genome. Here we introduce methods to characterize the genomic locations 

of bound proteins, open chromatin, and sites of DNA–DNA contact in Xenopus embryos. These 

methods include chromatin immunoprecipitation followed by sequencing (ChIP-seq), a 

combination of DNase I digestion and sequencing (DNase-seq), the assay for transposase-

accessible chromatin and sequencing (ATAC-seq), and the use of proximity-based DNA ligation 

followed by sequencing (Hi-C).

OVERVIEW

The epigenetic state of chromatin regulates gene expression—and hence cellular 

differentiation—by controlling the access of transcription factors to DNA. Here we 

introduce methods to explore the locations of bound proteins, open chromatin, and sites of 

DNA–DNA contact at the whole-genome level in Xenopus embryos and tissues. These 

methods of data generation are often used in conjunction with gene expression analyses, 

which we discuss in Introduction: Transcriptomics and Proteomics Methods for Xenopus 
Embryos and Tissues (Gilchrist et al. 2019).

Chromatin immunoprecipitation (ChIP) is one of the most direct ways to identify the sites of 

interaction between the genome and DNA-binding proteins (typically transcription factors 

and histones). In its most straightforward application, ChIP relies on an initial cross-linking 

stage in the intact animals or dissected tissues, followed by DNA fragmentation by 

sonication. Complexes containing DNA fragments bound to the protein of interest are 

immunoprecipitated with an antibody that recognizes the protein. After dissolution of the 

cross-linking, the DNA fragments are recovered and subjected to direct high-throughput 

sequencing (hence the abbreviation ChIP-seq).

Mapping regions of relatively open chromatin is valuable for identifying regulatory 

elements, including promoters and enhancers. Even when bound by proteins such as 

transcription factors, the DNA of the regulatory element remains accessible, rendering these 
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regions relatively sensitive to cleavage by DNaseI or Tn5 transposase. Two methods, DNase-

seq (see Protocol: DNase-seq: A High-Resolution Technique for Mapping Active Gene 

Regulatory Elements across the Genome from Mammalian Cells [Song and Crawford 2010]) 

and the assay for transposase-accessible chromatin (ATAC) and sequencing (ATAC-seq) 

(Buenrostro et al. 2013), exploit this feature to map regions of accessible DNA. In these 

methods, digested double-cut fragments of DNA are either directly amplified (as in ATAC-

seq) or amplified after purification (as in DNase-seq) and then sequenced. These approaches 

provide the ability to discover important new enhancers without having a priori knowledge 

of the location and identity of bound transcription factors.

In a rather different approach to genomic data generation, we can determine the distribution 

of DNA–DNA contacts within and between chromosomes to understand how chromosomal 

DNA is folded in the nucleus. Cross-linking is used to form bridges at the contact points, 

and after DNA fragmentation, the biotinylated loose ends of DNA fragments in the same 

complex are ligated. After removal of the cross-links and further digestion, the joined 

fragments are isolated and sequenced from both ends to identify the different genomic 

regions that were in contact. This global and relatively unbiased variant of the chromosome 

conformation capture methods is referred to as Hi-C. The sequence data contain information 

on the DNA looping structures understood to regulate transcription, and are thus rather 

different from, but highly complementary to, the data generated by ChIP-seq, DNase-seq, 

and ATAC-seq experiments.

In general, these experimental methods are not very efficient, requiring relatively large 

numbers of cells to provide a robust signal. The Xenopus system is therefore ideal for these 

types of applications because of the ability to collect large numbers of synchronously 

developing embryos after in vitro fertilization. Below we introduce ChIP-seq, DNase-seq, 

ATAC-seq, and Hi-C protocols that have been developed specifically for use in Xenopus 
embryos and tissues and provide examples of their applications.

The Xenopus community is fortunate in having two well-assembled genomes, that of the 

diploid X. tropicalis (Hellsten et al. 2010) and that of the allo-tetraploid X. laevis (Session et 

al. 2016). This is important, as the sequence fragments generated by these methods generally 

map to the intergenic and intragenic noncoding (introns) regions, and incomplete assemblies 

will cause loss of potentially valuable data. The diploid genome of X. tropicalis makes the 

high-throughput genomic data simpler to interpret when compared to data from the larger, 

partly duplicated genome of X. laevis. However, the larger X. laevis embryos may be 

preferred for ease of experimental manipulation.

PROTOCOLS

Two ChIP-seq protocols, Protocol: Mapping Chromatin Features of XenopusEmbryos 

(Gentsch and Smith 2019) and Protocol: ChIP-Sequencing in XenopusEmbryos (Hontelez et 

al. 2019), offer slightly different approaches to prepare enriched nuclei and yolk-depleted 

embryo lysate. In particular, ChIP with cleared lysates—as described in the latter protocol—

requires less starting material. ChIP-seq has been widely used in the Xenopus community to 

understand the targets of developmentally important transcription factors—for example, 
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Smad2/3 (Yoon et al. 2011); Foxh1 (Chiu et al. 2014); T-Box family proteins (Gentsch et al. 

2013); β-catenin (Nakamura et al. 2016); Otx2, Lim1/Lhx1, and Gsc (Yasuoka et al. 2014); 

Vegt and Otx1 in early embryos (Paraiso et al. 2019); and Prdm12 in developing inhibitory 

neurons important for vertebrate locomotion (Thélie et al. 2015). ChIP-seq has also been 

used to identify promoters and compare them across species (van Heeringen et al. 2011) or 

to look at the dynamic changes in genome-wide distribution of histone modifications and 

RNA polymerase II occupancy (Akkers et al. 2009; Hontelez et al. 2015).

Open chromatin is generally considered a prerequisite for binding of transcription factors, 

and two protocols can be used to study the distribution of open chromatin regions over the 

Xenopus genome: One uses DNase-seq (Protocol: DNase-seq to Study Chromatin 

Accessibility in Early Xenopus tropicalis Embryos [Cho et al. 2019]), and the other uses 

ATAC-seq (Protocol: Assay for Transposase-Accessible Chromatin-Sequencing Using 

Xenopus Embryos [Bright and Veenstra 2019]). Reads from these protocols are mapped to 

the genome and generally produce peaks or otherwise-delineated small regions of DNA. 

These regions can then be analyzed for enrichment in DNA-binding motifs to predict which 

transcription factors may be active in particular developmental stages or tissues. If enough 

sequence reads are mapped, specific transcription factor footprints can be resolved at single-

base resolution to determine how those factors contact the DNA (Boyle et al. 2011; Neph et 

al. 2012; Buenrostro et al. 2013).

Most chromosome conformation capture methods use defined viewpoints (genomic regions 

of interest for which interactions are determined) to build dense maps of DNA–DNA contact 

information (for review, see Nicoletti et al. 2018). However, it is also possible to use this 

approach to perform an unbiased analysis in an organism’s cells to study the three-

dimensional organization of chromosomes under physiological conditions. This approach is 

described for Xenopus in Protocol: Generating a Three-Dimensional Genome from Xenopus 
with Hi-C (Quigley and Heinz 2019). This approach has previously been used in Xenopus to 

investigate the relationship between Foxj1 binding and chromatin loops in multiciliated cells 

(Quigley and Kintner 2017) using tethered conformation capture (Kalhor et al. 2011).

FUTURE CONSIDERATIONS

The major change sweeping through the world of biological data generation is the switch in 

emphasis from the bulk analysis of whole organisms or tissues to the analysis of hundreds to 

many thousands of individual cells from an embryo or tissue sample. Advances have been 

most rapid in the field of single cell transcriptomics - with, for example, the recent launch of 

the Human Cell Atlas (Rozenblatt-Rosen et al. 2017), which aims to create comprehensive 

reference maps of cell types in all major tissues. Recently, a major single-cell 

transcriptomics survey was conducted in Xenopus specimens spanning the blastula stage to 

the tailbud stage; this enabled the characterization of cell types from the earliest pluripotent 

cells to the well-differentiated cells of early organogenesis (Briggs et al. 2018). Although not 

all mRNAs in each cell are currently detected, single-cell RNA sequencing (scRNA-seq) can 

help us define the set of cell types in a population of cells, determine the evolution of cell 

lineages during development, and better understand the regulatory relationships between 

genes. Inevitably, the very large data sets that are generated do introduce some challenges in 
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the development and application of computational methods, but modern approaches such as 

deep learning may be ideal for this.

Genomics techniques will not be far behind. Already, a number of approaches to single-cell 

genomics analysis are being developed along the lines of the multicellular methods, 

although the relatively small amounts of DNA in each sample will require highly efficient 

experimental methods and some rethinking of the downstream analysis. New approaches 

include the use of the Tn5 transposase for efficient library preparation—for example, in the 

CUT&Tag method (Kaya-Okur et al. 2019) for efficient epigenomic profiling on low cell 

numbers and single cells. An ATAC-seq method has been developed for single-cell work 

(Chen et al. 2018) and used to resolve dynamic changes in the chromatin landscape and to 

uncover the cis-regulatory programs of Drosophila germ layer formation (Cusanovich et al. 

2018). Last, in addition to Hi-C, Capture Hi-C (Jäger et al. 2015) has been developed to 

specifically enrich (for example) for promoter-containing fragments from Hi-C libraries, and 

it will be able to generate evidence for dynamic interactions between promoters and 

enhancers.

The availability of genome assemblies for two closely related Xenopus species (see above) 

provides opportunities for new insights in comparative biology. In addition, there are many 

potential sources of genetic variation data captured in expressed sequences from both 

species and from different strains of these. Analysis of such data is useful for many different 

purposes, such as the design of morpholinos and CRISPR guide RNAs when using outbred 

populations. Genetic variation is also key to analyses of quantitative trait loci (QTL) and 

genome evolution. Although analysis of variation in whole-genome sequencing data is 

outside the scope of this introduction, genomic variation in X. laevis and X. tropicalis has 

already been analyzed in several reports (Elurbe et al. 2017; Savova et al. 2017; Mitros et al. 

2019). Further studies will likely address genetic variation and their associated 

developmental, gene-regulatory, and phenotypic traits, both within populations and between 

closely related species.

Future genome-wide studies in Xenopus using the techniques described above will lead to 

the discovery of new mechanisms and to a better understanding of the processes controlling 

transcription and gene activation. We look forward to seeing the Xenopus community 

employing this next generation of methods in this most tractable of model systems.
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