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Abstract. A software supply chain attack is characterized by the injec-
tion of malicious code into a software package in order to compromise
dependent systems further down the chain. Recent years saw a number
of supply chain attacks that leverage the increasing use of open source
during software development, which is facilitated by dependency man-
agers that automatically resolve, download and install hundreds of open
source packages throughout the software life cycle. Even though many
approaches for detection and discovery of vulnerable packages exist, no
prior work has focused on malicious packages. This paper presents a
dataset as well as analysis of 174 malicious software packages that were
used in real-world attacks on open source software supply chains and
which were distributed via the popular package repositories npm, PyPI,
and RubyGems. Those packages, dating from November 2015 to Novem-
ber 2019, were manually collected and analyzed. This work is meant to
facilitate the future development of preventive and detective safeguards
by open source and research communities.
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1 Introduction

In general, software supply chain attacks aim to inject malicious code into a
software product. Frequently, attackers tamper with the end product of a given
vendor such that it carries a valid digital signature, as it is signed by the respec-
tive vendor, and may be obtained by end-users through trusted distribution
channels, e.g. download or update sites.

A prominent example of such supply chain attacks is NotPetya, a ransomware
concealed in a malicious update of a popular Ukrainian accounting software [8].
In 2017, NotPetya targeted Ukrainian companies but also hit global corpora-
tions, causing damage worth billions of dollars and is said to be one of the most
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devastating cyberattacks known today [30]. In the same year, a malicious version
of CCleaner, a popular maintenance tool for Microsoft Windows systems, was
downloadable from the vendor’s official website, and remained undetected for
more than a month. During this period it was downloaded around 2.3 million
times [27]. Another flavor of supply chain attacks aims at injecting the malicious
code into a dependency of a software vendor’s product. This attack vector was
already predicted by Elias Levy in 2003 [29], and recent years saw a number of
real-world attacks following that scheme. Such attacks become possible, because
modern software projects commonly depend on multiple open source packages,
which themselves introduce numerous transitive dependencies [2]. Such attacks
abuse the developers’ trust in the authenticity and integrity of packages hosted
on commonly used servers and their adoption of automated build systems that
encourage this practice [1].

A single open source package may be required by several thousands of open
source software projects [23], which makes open source packages a very attractive
target for software supply chain attacks. A recent attack on the npm package
event-stream demonstrates the potential reach of such attacks: The alleged
attacker was granted ownership of a prominent npm package simply by asking
the original developer to take over its maintenance. At that time, event-stream
was used by another 1,600 packages, and was on average downloaded 1.5 million
times a week [22]. Open source software supply chain attacks are comparable to
the problem of vulnerable open source packages which may pass their vulnerabil-
ity to dependent software projects. This is known as one of the OWASP Top-10
application security risks [31]. However, in case of supply chain attacks, mali-
cious code is deliberately injected and attackers employ obfuscation and evasion
techniques to avoid detection by humans or program analysis tools.

The main contribution of this paper is the collection, categorization, and
manual analysis of a dataset with malicious code from 174 packages that were
used for real-world attacks on open source software supply chains between 2015
and 2019.

The remainder of the paper is structured as follows: Sect. 2 summarizes
related work and Sect. 3 outlines the methodology used for the main contribu-
tions of this paper. Section 4 presents the necessary background on supply chain
attacks, in particular two attack trees developed both on the basis of the dataset
and by reviewing and investigating potential attacks and actual weaknesses of
open source ecosystems. That is followed by Sect. 5, presenting the analysis and
categorization of the actual code of 174 malicious packages observed in the wild.
Section 6 summarizes and concludes the paper.

2 Related Work

Related work mostly covers vulnerable packages, which contain design flaws or
code errors that are accidentally introduced, without bad intention but through
negligence, and which may pose a potential security risk. In contrast to that,
malicious packages contain design flaws or code errors that have been imple-
mented selectively, with caution and the intention to be exploited or triggered
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at later times in the software life cycle. Technically, malicious code and vulner-
able code may look identical, the main difference lies in the intention of the
developer (or lack thereof) and, in some cases, the use of evasion or obfuscation
techniques to hinder the detection of such code.

Malicious and vulnerable packages reside in the same ecosystem and live
through the same software life cycle. As such, related works that investigate
package reuse in open source ecosystems in general, or the impact and spread of
vulnerable packages in particular, also apply to malicious packages.

Decan, Mens, and Constantinou [13] leveraged security reports in order to
examine how and when vulnerabilities in npm software packages are discovered
and fixed. In order to assess the effect on other packages hosted on npm, a
dependency graph was used. The key findings are that nearly half of the pack-
ages inherited vulnerabilities from other packages, and that version pinning to
vulnerable and outdated packages are the main cause for such inherited vulner-
abilities, even if fixes are available.

Zimmermann, Staicu, Tenny, and Pradel [40] were able to verify these findings
and provide mitigation techniques. Highly popular packages and highly active
developers were identified as single point of failures. Thus, the authors propose to
raise developer awareness through training as well as automated code analysis.

Pfretzschner and Othmane [32] proposed a system to identify software supply
chain attacks in npm packages by static code analysis. The tool is able to detect
four kinds of attacks: Leakage of global variables, manipulation of global vari-
ables, local function manipulation, and dependency-tree manipulation. However,
the authors failed to identify real-world examples of these attacks for evaluation.

Garrett, Ferreira, Jia, Sunshine, and Kästner [18] proposed anomaly detec-
tion through unsupervised learning in order to identify suspicious package
updates. For that purpose they collected over 700,000 packages from npm and
normal behavior was inferred from 1,500 randomly selected packages. The sys-
tem reported 539 suspicious updates per week reducing manually inspection by
89%.

Jukka Ruohonen [33] examined vulnerable Python packages regarding their
CVSS (Common Vulnerability Scoring System) score and the respective weak-
ness according to CWE (Common Weakness Enumeration). An auto regressive
model was used to calculate how likely a new release is vulnerable based on
previous releases’ vulnerability. It was found that the prediction of this event
is difficult despite good statistical performance. However, the supply chain of a
package was not taken into consideration.

While related work mostly focused on vulnerable packages and impact assess-
ment with regard to specific open source ecosystems, especially Node.js (npm),
this work considers malicious packages across several ecosystems.

3 Methodology

It is important to distinguish between vulnerable and malicious packages. As
said, vulnerable packages may contain design flaws or code errors that are acci-
dentally introduced, without bad intention but through negligence, and which
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may pose a potential security risk. According to the Cambridge Dictionary mali-
cious means “intended to cause damage to a computer system, or to steal
private information from a computer system”. Technically, malicious and vul-
nerable coding can be similar or even identical, thus, the main difference lies in
the attacker’s intention.

The main contribution of this paper is a dataset of malicious packages used in
real-world attacks and their analysis. The analysis is detailed in Sect. 5 and com-
prises the subset of malicious packages used in real-world attacks for which the
actual malicious code could be obtained (typically a compressed archive). Com-
pilation took place between July 2nd and August 2nd, 2019 and was updated on
27th of January 2020. The dataset covers the programming languages JavaScript
with its package repository npm, Java (Maven Central), Python (PyPI), PHP
(Packagist) and Ruby (RubyGems), which are the most popular languages
according to newly created GitHub repositories in 2018 [17].

During that time, the vulnerability database Snyk1, security advisories2,3,4,
and research blogs (e.g. [3,4]) were reviewed to identify malicious packages and
possible attack vectors. Only packages that are explicitly labeled as malicious
are considered. Leaving out packages labeled as vulnerable might lead to missing
some malicious packages. However, manually reviewing all vulnerable packages
to find intention and hence prove maliciousness is infeasible. Likewise, the devel-
opment of an automatized procedure is out of scope for this work but definitely
desirable for future work.

Nonetheless, parts of the collection are automatized. This way no packages
should be missed because of negligence or fatigue. A parser for the Snyk database
is utilized to extract names, affected versions, and disclosure dates of packages
listed as malicious. In the next step the publication of malicious versions of a
package are dated according to Libraries.io5, a service that monitors package
releases across all major package repositories. Advisories and public incident
reports are used to date the public disclosure of the malicious package.

Malicious packages are typically not available anymore on standard package
repositories of the respective programming language, e.g. npm or PyPI. Thus,
the script tries to download the affected version of a package from a PyPI6,
RubyGems7, or npm8 mirror. Failed attempts are manually checked for avail-
ability.

Collected packages are statically analyzed in a manual fashion. The package’s
metadata like name and publication/disclose date are analyzed to find out how
it were injected into the ecosystem and how long it was available. The location
of the suspicious code is found by manually looking through the package’s code.
1 https://snyk.io.
2 https://www.npmjs.com/advisories.
3 https://github.com/rubysec/rubygems-advisories.
4 https://github.com/pypa/warehouse.
5 https://libraries.io.
6 https://nero-mirror.stanford.edu.
7 https://mirror.auckland.ac.nz.
8 https://registry.npm.taobao.org.

https://snyk.io
https://www.npmjs.com/advisories
https://github.com/rubysec/rubygems-advisories
https://github.com/pypa/warehouse
https://libraries.io
https://nero-mirror.stanford.edu
https://mirror.auckland.ac.nz
https://registry.npm.taobao.org
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In-depth analysis is carried out to verify the maliciousness as well as to reveal
the trigger and condition for malicious behavior, what its objective and targeted
operating system (OS) is, and whether obfuscation was employed.

4 Background: Supply Chain Attacks

This background section starts with a high-level introduction of activities and
systems related to open source software development projects in Sect. 4.1. Fur-
thermore, different attack vectors for software supply chains will be presented
with the help of two attack trees. In general, attack trees allow for a system-
atic description of attacks against any kind of system [34]. The root node of a
given tree thereby corresponds to the attacker’s top-level goal, and child nodes
represent alternative ways to achieve it. The top-level goals of the attack trees
presented in Sects. 4.2 and 4.3 are to inject malicious code into the software sup-
ply chain, thus, into a dependency of a development project, and to trigger that
malicious code in different circumstances.

4.1 Open Source Development Projects

In a typical development environment as visualized in Fig. 1, Maintainers are
members of a development project who administer the depicted systems, provide,
review and approve contributions, or define and trigger build processes. Open
source projects also receive code contributions from contributors, which may
be reviewed and merged into the project’s code base by maintainers. The build
process ingests the source code and other resources of a project, and has the
goal to produce software artifacts. These artifacts are subsequently published
such that they become available to end-users and other development projects,
either through to distribution platforms like app stores such that they may be
consumed by end-users or to package repositories for other development projects.

The project resources reside in a version control system (VCS), e.g. Git, and
are copied to the local file system of the build system. Among those resources is
a declaration of direct dependencies, which is analyzed at the start of the build
process by a dependency manager in order to establish the complete dependency
tree with all direct and transitive dependencies. As all of them are required
during the build, for instance, at compile time or during test execution, they are
downloaded (pulled) from package repositories such as PyPI9 for Python, npm10

for Node.js, or Maven Central11 for Java.
Such project environments are subject to numerous trust boundaries, and

many threats target the respective data flows, data stores and processes. Man-
aging those threats may be challenging even when considering only the environ-
ment of a single software project. When considering supply chains with dozens
or hundreds of dependencies, it is important to notice that such an environment
9 https://pypi.org.

10 https://www.npmjs.com.
11 https://search.maven.org/.

https://pypi.org
https://www.npmjs.com
https://search.maven.org/
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Fig. 1. High-level development and build activities.

exists for every single dependency, making it obvious that the combined attack
surface of such projects is considerably larger than that of software entirely
developed in-house.

Taking the perspective of attackers, malevolent actors have the intention to
compromise the security of the build or runtime environment of software projects
through the infection of one or more upstream open source packages, each one
of which is developed in environments comparable to Fig. 1. How to reach this
goal is described in the following sections by means of two attack trees that
provide a structured overview about attack paths to inject a malicious code into
dependency trees of downstream users and to trigger its execution at different
times or under different conditions.

4.2 Injection of Malicious Code

The attack tree illustrated by Fig. 2 is an extension and refinement of the graph
presented by Pfretzschner and Othmane [32], and has as top-level goal to inject
malicious code into the dependency tree of downstream packages. Thus, the
goal is satisfied once a package with malicious code is available on a distribution
platform, e.g. package repository, and it became a direct or transitive dependency
of one or more other packages.

To inject a package into dependency trees an attacker may follow two possible
strategies, he may either infect an existing package or submit a new package.

Obviously, developing and publishing a new rogue package using a name that
is not used by anybody else avoids interference with other legitimate project
maintainers. However, such a package has to be discovered and referenced by
downstream users in order to end up in the dependency trees of victim packages.
This may be achieved using a name similar to existing package names (typosquat-
ting) [3,4,14,15,35,36], or by developing and promoting a trojan horse [12]. An
attacker might also use the opportunity to reuse the identifier of an existing
project, package, or user account withdrawn by its original and legitimate main-
tainer (use after free) [10].
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Fig. 2. Attack tree to inject malicious code into dependency trees.

The second strategy is to infect an existing package that already has users,
contributors and maintainers. The attacker might choose packages for different
reasons, e.g. a significant number or specific group of downstream users. Once
the attacker chooses a package to infect, the malicious code may be injected into
the sources, during the build, or into the package repository.

Open source projects live and strive through community contributions. Thus,
attackers can mimic benign project contributors. For instance, an attacker may
pretend to solve an existing issue by creating a pull request (PR) with a bug fix or
a seemingly useful feature or dependency [19]. The latter could be used to create
a dependency on an attacker-controller package created from scratch using the
techniques described beforehand. In any case, this PR has to be approved and
merged into the main code branch by a legitimate project maintainer. Alter-
natively, an attacker may commit malicious code into the project’s code base
all by himself by using weak or compromised credentials or security-sensitive
API tokens [21,26]. Furthermore, attackers may become maintainer themselves
through social engineering [22]. In all cases, no matter how the malicious code
has been added to the sources, it will become part of an official package dur-
ing the next release build—regardless where that build happens. Compared to
attacks on build systems and package repositories, malicious code in VCS is more
accessible to manual or automated reviews of commits or entire repositories.

The compromise of build systems typically entails tampering with resources
used throughout the build process, e.g. compilers, build plugins or network ser-
vices such as proxies or DNS servers. Such resources may be compromised if
the build system, be it a developer’s work station or a dedicated build server, is
subject to vulnerabilities, or if insecure communication channels are such that
attackers can manipulate the package download from repositories [1,38]. The
release builds of the targeted package may also run on a shared build system
and thus used by multiple projects [20]. Depending on the setup, such build
processes may not run in isolation, hence resources such as package caches or
build plugins are shared between the builds of different projects. In this case, an
attacker may compromise shared resources during a malicious build of a project
under his control such that the targeted project is compromised at a later point
in time.
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Even popular package repositories are still subject to simple but severe secu-
rity vulnerabilities. While all the other attack vectors seek to inject malicious
code into a single package, the exploit of vulnerabilities in package repositories
themselves puts the entire repository with all its packages at risk [24,25]. Similar
to injecting the code in the sources, the attacker may use weak or compromised
credentials [7,9,11,16,39] or gain maintainer authorizations through social engi-
neering [22] in order to publish malicious versions of legitimate packages.

Further, an attacker may upload malicious package versions to alternative
repositories or repository mirrors [5,6] that are not provisioned by the original
maintainers, and wait for victims pulling dependencies from there. Supposedly,
such repositories and mirrors are less popular, and the attack is dependent on
the victim’s configuration, e.g. the order of repositories queried for dependencies
or the use of mirrors.

4.3 Execution of Malicious Code

Once malicious code is present in a project’s dependency tree, the attack tree
illustrated by Fig. 3 has the top-level goal to trigger the malicious code under
different conditions. Such conditions may be used to evade detection and/or
target attacks towards specific users and systems.

Malicious code may trigger at different life cycle phases of the infected pack-
age and its downstream users (c.f. Sect. 5.3). If malicious code is contained in
test cases, the attack primarily targets the contributors and maintainers of the
infected package, which run such tests on their developer work stations and
build systems. In many of the recorded attacks, malicious code is contained
in install scripts, which are automatically executed during package installation
by downstream users or their dependency managers. Such install scripts exist
for Python and Node.js, and may be used to perform pre- or post-installation
activities. Malicious code in install scripts puts the contributors and maintainers
of downstream packages as well as their end users at risk. Malicious code may
also be triggered at runtime of downstream packages, which requires that it is
invoked as part of the regular control flow of the victim package. In Python, this
may be achieved by including malicious code in init .py, which is invoked
through import statements. In JavaScript, this may be achieved by monkey-
patching (modifying) existing methods. The specifics of individual programming
languages, package managers, etc. may easily be covered by refining this goal.

Independent of the life cycle phase, the execution of malicious behavior may
always trigger (unconditioned) or only if certain conditions are met (conditional
execution). As for any other malware, conditioned execution complicates the
dynamic detection of malicious open source packages, since the respective con-
ditions may not be known, understood or met in sandbox environments. Condi-
tioning the execution on the application state is a common means to evade detec-
tion, e.g. in test environments or dedicated malware analysis sandboxes. Again,
the specifics of individual build systems may be covered by respective sub goals,
e.g. the presence of Jenkins environment variables indicates that malicious code is
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Fig. 3. Attack tree to execute malicious code.

triggered during a build rather than in a production environment. Moreover, con-
ditions may be related to a specific victim package, e.g. check a specific application
state such as the balance of a crypto wallet [22]. Heavy reuse of open source pack-
ages may lead to a malicious package ending up in the dependency tree of many
downstreampackages. If only certain packages are of interest to attackers, theymay
condition the code execution on the nodes of a given dependency tree at hand [22].
Furthermore, the operating system used may serve as condition.

5 Description of the Dataset

The dataset contains 174 packages and was compiled according to our method-
ology as described in Sect. 3. A total number of 469 malicious packages could
be identified. Additionally, 59 packages were found that could be identified as
proof of concept (published by researchers) and hence are excluded from further
examination. Eventually, we were able to obtain at least one affected version for
174 packages. The rate of successful downloads of malicious packages for npm
is 109/374 (29.14%), for PyPI 28/44 (63.64%), for RubyGems 37/41 (90.24%),
and for Maven Central 0/10 (0.00%). All statements and statistics below refers
to the set of downloaded packages as it is infeasible to infer characteristics from
unobserved packages.

5.1 Composition and Structure

The dataset consists of 62.6% packages published on npm and hence are writ-
ten for Node.js in JavaScript. The remaining packages were published via PyPI
(16.1%, Python) and via RubyGems (21.3%, Ruby). Unfortunately, a malicious
Java package targeting Android developers could not be downloaded. For PHP,
we were not able to identify any malicious package at all.

The complete dataset is available for free on GitHub12. However, access will
be granted on justified request only due to ethical reasons. The dataset is struc-
tured as follows: package-manager/package-name/version/package.file.

Malicious packages are grouped by their originating package manager on
the first level. Further, multiple affected versions of one package are grouped

12 https://dasfreak.github.io/Backstabbers-Knife-Collection.

https://dasfreak.github.io/Backstabbers-Knife-Collection
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under the respective package’s name. As example for the affected version of
the well-known case of event-stream it is: npm/event-stream/3.3.6/event-stream-
3.3.6.tgz.

Fig. 4. Publication dates of collected
packages.

Fig. 5. Temporal distance between date
of publication and disclosure.

5.2 Temporal Aspects

Figure 4 visualizes the publication dates of the collected packages which range
from November 2015 to November 2019. The publication and disclosure dates
are identified according to the upload time of the package and the publication
date of the corresponding advisory identifying the respective version as malicious
(cf. Sect. 3). A trend for an increasing number of published malicious packages is
apparent. While malicious packages for PyPI are known to date back to 2015 and
since then are increasing, npm gained a massive amount of malicious packages
in 2017. Malicious packages on RubyGems experienced a boom in 2019.

Note that there are more incidents in total than Fig. 4 references, as it does
not include reported malicious packages that we could not obtain. PyPI and npm
show an ever-increasing trend as they can easily be used to spread malicious code
due to their package managers’ ability to execute arbitrary code on installation
(c.f. Sect. 5.3). In contrast to that, RubyGems does not allow code execution on
install but seems to be targeted more often in recent attacks. This might be due
to PyPI’s and npm’s increasing efforts to hinder attackers from abusing their
package repositories and managers, respectively.

Figure 5 shows that on average a malicious package is available for 209
days (min = −1,max = 1, 216, σ = 258, x̃ = 67) before being publicly reported.
A minimum of −1 days was reached for npm/eslint-config-airbnb-standard/2.1.1
which was affected by npm/eslint-scope/3.7.2. Even though the infection of
npm/eslint-scope/3.7.2 was known, the package was still in use due to the devel-
opers’ re-packaging strategy, i.e. the infected version was hard copied into the
source of npm/eslint-config-airbnb-standard/2.1.1. The maximum of 1, 216 days
was reached by npm/rpc-websocket/0.7.7 which took over an abandoned package
and went undetected for a long period.
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In general this shows that packages tend to be available for a longer period.
While PyPI has the highest average online time, that period varies the most for
npm, and RubyGems tends to detect malicious packages more timely.

5.3 Trigger of Malicious Behavior

Malicious behavior of a package may be triggered at different points of interaction
with the package. Most typically, a package may be installed, tested, or executed.
A separation per package repository is visualized in Fig. 6.

It is apparent that most malicious packages (56%) start their routines
on installation, which might be due to poor handling of arbitrary code during
install. This can be triggered by the package repositories’ install command, e.g.
npm install <package>, which invokes code as defined in the package’s defi-
nition, e.g. package.json and setup.py. This code might be arbitrary to do
whatever is necessary to install the package, e.g. download additional files. It is
by far the easiest way for attackers to effectively activate their malicious code
and hence used frequently. This seems very common for malicious packages on
PyPI. The difference for nmp and PyPI might stem from npm packages having
more dependencies than a typical Python package [37] which might lead to more
malicious packages targeting other dependent package on runtime like in the case
of event-stream [22].

In contrast, Ruby does not implement such install logic and hence no packages
for that case exist in Ruby. Consequentially, all found packages on RubyGems use
runtime as trigger, often targeting Ruby on Rails, a server-side web application
framework. Overall, 43% of the packages expose their malicious behavior during
the program’s runtime, i.e. when invoked from another function.

For 1% of the packages the test routines are used as trigger. Invoking the
test routine of npm/ladder-text-js/1.0.0 would execute sudo rm -rf /* which,
if successful, deletes all the user’s files. Note that this observation might not
generalize due to the low number of found packages using this technique.

Fig. 6. Trigger of malicious behavior separated per package repository and overall.

5.4 Conditional Execution

As seen in Fig. 7, 41% of the packages check for a condition
before triggering further execution. This may depend on the appli-
cation’s state, e.g. check whether the main application is in production
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Fig. 7. Ratio of conditional and unconditional execution per package repository and
overall.

mode (e.g. RubyGems/paranoid2/1.1.6 ), resolvability of a domain name (e.g.
npm/logsymbles/2.2.0 ), or the amount contained in a crypto wallet (e.g.
npm/flatmap-stream/0.1.1 ). This may be done to find profitable targets and
evade sandboxing (dynamic analysis).

Other techniques are to check whether another package is present in the
dependency tree (e.g. npm/load-from-cwd-or-npm/3.0.2 ) or whether the pack-
age is executed on a certain OS (e.g. PyPI/libpeshka/0.6 ). This is done to either
target another package or because the malicious functions rely on OS character-
istics and functions.

The majority of packages published on PyPI and RubyGems execute uncon-
ditionally. For npm the ratio of conditional and unconditional execution is nearly
equal. However, packages from PyPI seem not to use Application State as con-
dition which might be due to Python not being used on server-side – unlike npm
and Ruby (on Rails) – very often.

5.5 Injection of Malicious Package

In Fig. 8 it is apparent that most (61%) malicious packages mimic existing
packages’ names via typosquatting. A deeper analysis of that phenomenon
revealed that the Levenshtein distance of an average typosquatting package to
its target is 2.3 (min = 0,max = 11, σ = 2.05, x̃ = 1.0). In some cases the
typosquatting target is available from another package repository, e.g. the Linux
package repository apt under the exact same name. This is for instance the
case for python-sqlite. The maximum distance of 11 is reached in the case of
pythonkafka which targeted kafka-python. Common techniques are adding or
removing hyphens, leaving out single letters, or exchange of letters that are often
mistyped. A word that is targeted exceptionally often is “color” or, respectively,
its British English counterpart: “colour”. Typosquatting is already proven to be
a highly effective technique to infect large numbers of victims in short time [36].

The second most common injection method was the infection of an exist-
ing package. This may often be achieved with compromised credentials for the
repository system (e.g. npm/eslint-scope/3.7.2 ). In most cases, the exact infec-
tion technique could not be determined in retrospect. This is because the related
source is often removed from the version control system or no further details
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about the injection are made public. Hence, these packages are listed as infect
existing package. This technique requires more work from the attackers point of
view as he has to take over a developer’s/publisher’s account first. Once that is
accomplished, an update containing malicious content can easily reach numerous
users as they are already using that package and depend on its functionality. It is
especially dangerous if no version pinning is used and dependencies are updated
automatically.

Fig. 8. Injection technique used to introduce the malicious package into a package per
package repository and overall.

Another injection technique is to create a new package which consist of noth-
ing but the malicious package to which we refer to as trojan horse. No meaningful
typo-squatting targets were found for these packages. These packages might have
been around as preparation for further attacks to be used in conjunction with
an infected existing package or standalone.

5.6 Primary Objective

As shown in Fig. 9, most packages aim at data exfiltration. Commonly,
the data of interest is the content of /etc/passwd, ∼/.ssh/*, ∼/.npmrc, or
∼/.bash history. Furthermore, malicious packages try to exfiltrate environ-
ment variables (which might contain access tokens) and general system informa-
tion. Another popular target (7 reported packages, 3 of them available in our
dataset) is the token for the voice and text chat application Discord. A Dis-
cord user’s account may be linked to credit card information and thus be used
for financial fraudulence. Exfiltrated data – especially access tokens – may be
used for further attacks and spreading of the malicious code [28]. Credit card
information may be used for financial fraud.

Moreover, 34% of the packages function as dropper to download second stage
payload. Another 5% open a backdoor, i.e. reverse shell, to a remote server and
await further instructions. This category will turn victims into zombies that
can be controlled by the attacker, e.g. for DDoS attacks. 3% aim to cause a
denial of service by exhausting resources through fork bombs and file deletion
(e.g. npm/destroyer-of-worlds/1.0.0 ) or breaking functionality of other packages
(e.g. npm/load-from-cwd-or-npm/3.0.2 ). This only yields gain for an attacker if



36 M. Ohm et al.

a competing party is attacked. Only 3% have financial gain as primary objec-
tive by for instance running a cryptominer in the background (e.g. npm/hooka-
tools/1.0.0 ) or stealing cryptocurrency directly (e.g. pip/colourama/0.1.6 ). In
addition, combinations of the above mentioned objectives might occur.

5.7 Targeted Operating System

In order to identify the targeted OS, the source code was manually ana-
lyzed for hints which may be as explicit as an if–then construct like if
platform.system() is ’Windows’ as used in e.g. PyPI/openvc/1.0.0 or
implicit by relying on resources only available on certain OS. These resources
may be for instance files containing sensible information like .bashrc etc. (cf.
Sect. 5.6, npm/font-scrubber/1.2.2 ) or executables like /bin/sh (e.g. npm/rpc-
websocket/0.7.11 ).

Fig. 9. Primary objective of the malicious package per package repository and overall.

The analysis of the packages for their targeted OS as shown in Fig. 10 revealed
that most packages (53%) are agnostic, i.e. do not rely on OS-specific
functions. The analysis was done on the initial visible code of the package and
thus the targeted OS of the second stage payload remains unknown. However,
Unix-like systems seem to be targeted more often than Windows and macOS.
This might be due to Unix-like systems being used as build environments and
hence more valuable data like access tokens (c.f. Sect. 5.6) may be accessible.

There is only one known case of macOS being the target in which the package
npm/angluar-cli/0.0.1 performs a denial of service attack on the McAfee virus
scanner for macOS by deleting and modifying its files.

Fig. 10. Targeted operating system per package repository and overall.



Backstabber’s Knife Collection 37

5.8 Obfuscation

Malicious actors often try to disguise the presence of their code, i.e. hindering
its detection by sight. Noticeable in Fig. 11 is that nearly the half of the
packages (49%) employ some kind of obfuscation. Most often a different
encoding (Base64 or Hex) is used to disguise the presence of malicious functions
or suspicious variables such as domain names. This is an easy and effective way
to go since most languages have these capabilities on-board without external
dependencies.

Fig. 11. Employed obfuscation technique per package repository and overall.

A technique often used by benign packages to compress source code and
thus save bandwidth is minification. However, this is a welcome opportunity
for malicious actors to sneak in extra code which is unreadable for humans (e.g.
npm/tensorplow/1.0.0 ). Another way to hide variables is to use string sampling.
This requires a seemingly random string which is used to rebuild meaningful
strings by picking letter by letter (e.g. npm/ember-power-timepicker/1.0.8 ).

In one case the malicious functions are hidden by encryption. The package
npm/flatmap-stream/0.1.1 leverages AES256 with the short description of the
targeted package as decryption key. That way, the malicious behavior is solely
exposed when used by the targeted package. Furthermore, combinations of the
above mentioned techniques exist.

5.9 Clusters

In order to infer on the presence of attack campaigns, all packages were analyzed
for reuse of malicious code or dependency relationships. The malicious code
snippets that were manually identified were compared visually for similarity.
This way, it was possible to identify 21 clusters for which at least two
packages either have similar malicious code in common, or an attacker-controlled
package depends on another one with the actual malicious code. In total, 157 of
the 174 packages (90%) belong to a cluster. On average a cluster comprises 7.28
packages (min = 2,max = 36, σ = 8.96, x̃ = 3).

A cross comparison of publications dates of packages within one cluster
revealed that the average temporal distance between publications is 42 days,
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6:50:18 (min = 1:29:40,max = 353 days, 11:17:02, σ = 78 days, 0:43:10, x̃ =
7 days, 15:24:51). The biggest cluster was formed around the crossenv case [35]
counting 36 packages published with an average temporal distance of 5.98 days.
It was published in two waves, 11 packages within 15 min on 19th of July 2017
and another 25 packages within 30 min on 1st of August 2017.

The cluster having publication dates that are 353 days apart consists of the
two packages PyPI/jeilyfish/0.7.0 and PyPI/python3-dateutil/2.9.1. The first
was published on 12/11/18 12:26 AM and contained code that download a script
to steal SSH and GPG Keys from Windows machines. It went undetected for a
long time until the second package was published on 11/29/19 11:43 AM which
did not contain malicious code itself but referenced the first package. The cluster
was reported and deleted on 12/12/19 05:53 PM.

While most clusters solely contain packages from one package repository, it
was possible to find a cluster that mainly contained packages from npm but
also RubyGems/active-support/5.2.0 from RubyGems. This means that attack
campaigns exist or at least techniques flow across multiple package repositories.

5.10 Code Review of Two Malicious Packages

For vivid illustration, npm/jqeury/3.3.1 (left) and RubyGems/active-
support/5.2.0 (right) will be discussed in Fig. 12. They both belong to the same
cluster according to our manual assessment of code similarity, even though they
were published on different repositories.

6 Discussion and Conclusions

From an attacker’s point of view, package repositories represent a reliable and
scalable malware distribution channel. We were able to create the first man-
ually curated dataset of malicious open source packages that have been used
in real-world attacks. It consists of 174 malicious packages (62.6% npm, 16.1%
PyPI, 21.3% RubyGems) ranging from November 2015 to November 2019. Man-
ual analysis revealed that most packages (56%) trigger their malicious behavior
on installation, and 41% use further conditions to determine whether to run
or not. More than half of the packages (61%) leverage typosquatting to inject
themselves into the ecosystem, and data exfiltration is the most common goal
(55%). The packages typically are agnostic to operating systems (53%), and
often employ obfuscations (49%) to hide themselves. Finally, we were able to
detect multiple clusters of malicious packages through reused code even across
different programming languages. The dataset provides insight and is available
for free to facilitate research in the area of prevention, detection, and mitigation
of software supply chain attacks.

However, there are some limitations. Our dataset is highly biased towards
malicious packages that are written in JavaScript for Node.js and published on
npm which is due to npm’s enormous size and popularity. Unfortunately, we
were not able to obtain malicious packages for Java (Maven Central) and PHP
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(Packagist). Furthermore, roughly 34% of the malicious packages are droppers
with the goal to download a second stage payload, which might not be avail-
able anymore. One might notice that we listed the deployment in alternative
repository or mirrors as injection method but downloaded most of the packages
from such sources. While it is possible that these packages have been altered to
be malicious, the package’s presence in our dataset is still valid as the package
would be malicious is both cases. Furthermore, the “intended” maliciousness
according to the advisories was verified through manual analysis. Leaving out
packages labeled as vulnerable might lead to missing some malicious packages.
However, automated detection of maliciousness is out of scope of this work but
up for future work. One possible approach for applying the lessons learned from
our manual code review could be to identify common control or data flow pat-
terns in malicious code, e.g., silenced exceptions, and search for their presence
in other packages.

Our analysis shows that it is important to make use of already available secu-
rity means. To tackle the most prominent trigger – arbitrary code execution dur-
ing installation – package managers need to be reworked. Python, for instance,
already offers Python Wheels,13 which avoids code execution during installa-
tion. We offer two recommendations for dealing with existing infected packages.
For maintainers, multi-factor authentication and strong passwords should be
mandatory. Developers should use version pinning. However, the version needs
to be chosen absolute, i.e. no automated security patches or bug fixes (minor
updates) which again may be counterproductive when it comes to vulnerabil-
ities. Typosquatting packages are already being frequently purged by common
package repositories but nonetheless make it through often. General awareness
of developers and more stringent rules from the package repositories may help
against that type of attack.

However, now that a dataset exists it is possible to use proven malicious
packages as seeds in order to find more related cases (c.f. Sect. 5.9). In this
context, the manually curated and labeled dataset allows for supervised learning
approaches that support the automated and repository-wide search for malicious
packages. Moreover, with regard to existing and new mitigation strategies, the
presented dataset may pose as a benchmark. Last, acknowledging the importance
of a comprehensive and up-to-date dataset, it will be necessary to continue its
curation – contributions are welcome.

Acknowlegements. This work is funded under the SPARTA project, which has
received funding from the European Union’s Horizon 2020 research and innovation
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