
Web Runner 2049: Evaluating
Third-Party Anti-bot Services

Babak Amin Azad1(B), Oleksii Starov2, Pierre Laperdrix3,
and Nick Nikiforakis1

1 Stony Brook University, Stony Brook, USA
baminazad@cs.stonybrook.edu

2 Palo Alto Networks, Santa Clara, USA
3 CNRS, Univ. Lille, Inria, Lille, France

Abstract. Given the ever-increasing number of malicious bots scouring
the web, many websites are turning to specialized services that advertise
their ability to detect bots and block them. In this paper, we investi-
gate the design and implementation details of commercial anti-bot ser-
vices in an effort to understand how they operate and whether they can
effectively identify and block malicious bots in practice. We analyze the
JavaScript code which their clients need to include in their websites and
perform a set of gray box and black box analyses of their proprietary
back-end logic, by simulating bots utilizing well-known automation tools
and popular browsers.

On the positive side, our results show that by relying on browser
fingerprinting, more than 75% of protected websites in our dataset, suc-
cessfully defend against attacks by basic bots built with Python scripts
or PhantomJS. At the same time, by using less popular browsers in terms
of automation (e.g., Safari on Mac and Chrome on Android) attackers
can successfully bypass the protection of up to 82% of protected web-
sites.

Our findings show that the majority of protected websites are prone
to bot attacks and the existing anti-bot solutions cannot substantially
limit the ability of determined attackers. We have responsibly disclosed
our findings with the anti-bot service providers.

1 Introduction

The modern web is home to benign and useful bots, such as, search engine
crawlers that provide easy access to information around the web. Yet the same
technology that enables benign bots is also utilized by malicious bots which dis-
rupt services, steal business and customer information, and make illicit profits
for their operators. Malicious bots are used to automatically find and exploit
vulnerabilities on websites (such as outdated and vulnerable Content Manage-
ment Systems) [15], scrape email addresses and content for sending spam and
creating phishing websites, registering thousands of accounts and selling them
via underground markets (e.g. for fake followers on social networks [47]) and
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brute forcing login forms with credentials stolen from other websites (known as
credential stuffing). Some of the recent bot attacks include, ride-sharing compa-
nies scraping pricing and vehicle information from their competitors websites [9].
Similarly, the bots targeted the airline industry, causing an increase in the look-
to-book ratio which leads to increased fees [11].

According to recent estimates, more than 50% of traffic on the web belongs
to bots with more than half of that belonging to malicious ones [19]. In this
environment, specialized anti-bot services have emerged which offer bot detection
and bot blocking as a service to their clients. Even though these services claim
to utilize an impressive array of technologies, their operation and effectiveness
in detecting and blocking bots have not been evaluated.

In this paper, we report on the first analysis of 15 popular anti-bot services.
We identify the JavaScript code which their clients deploy on their websites
and perform a white box analysis of its operation. We observe heavy reliance
on browser fingerprinting including recent fingerprinting techniques that finger-
print a system’s graphics card, local IP address, and even whether the browser
attempts to lie about its identity. To understand whether this extracted informa-
tion is sufficient to detect and block abusive bots, we utilize six different existing
automation tools, ranging from off-the-shelf crawlers, to automated browsers.
Through the use of carefully designed experiments, we evaluate the ability of
the most popular anti-bot services to stop attacks, such as, content scraping,
credential brute forcing, and account hijacking.

Among others, we find that few services are capable of significantly slowing
down attackers and that certain unusual crawling tools, such as, an AppleScript-
controlled Safari Browser and an ADB-controlled Android smartphone can suc-
cessfully crawl large numbers of webpages and conduct account attacks. More
specifically, at least 68% of our simulated scraping requests were not blocked,
and more than 90% of our account takeover attempts were successful with at
least one of the tested tools. In addition, for more than half of our target web-
sites, there is at least one tool that enables us to do 1,000 password brute force
attempts without getting blocked.

Contrary to our expectations, we discover that having a bot reach websites
from a public cloud does not significantly decrease its performance since exist-
ing services put more emphasis on browser fingerprints rather than source IP
address.

2 Background

Since malicious bots can lie about their identity, prior research has proposed a
number of methods for bot detection, including behavior-based detection (based
on the premise that bots browse websites differently than real users [24,29]),
detection based on accessing content that is invisible for regular users [39,52] and
more recently, based on browser fingerprinting [14]. Once a visitor is suspected
to be a bot, the website can request the solving of CAPTCHAs, rate-limit the
user, or altogether block traffic from the offending IP address.
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Even though web developers may try to implement the aforementioned tech-
niques, it is unlikely that the developers of small websites can keep up with the
adaptation from the side of the bot authors. In order to keep up with attackers,
new businesses have emerged that sell bot-detection services to their clients, sim-
ilar to anti-DDoS companies which protect their clients against DDoS attacks.
Website owners can then integrate these services with their website to block bots
without needing to know how a bot was identified. One major benefit of using
such services compared to a custom implementation of an anti-bot mechanism,
is the threat-information sharing that happens in the background. If bot activity
with certain characteristics is detected on website A, website B that is also a
client of the same anti-bot service, can get information about this bot and block
it immediately at its first interaction.

Anti-bot companies advertise a range of bot-related attacks which they can
detect and stop. By analyzing the descriptions of their services, we summarize the
attack scenarios performed by malicious bots into the three following categories
(these attacks are discussed in more detail in Sect. 5):

– Account Takeover, also known as credential stuffing, refers to automated
login attempts with stolen or leaked credentials to target websites. In this
case, attackers may take advantage of users reusing credentials across services
and leaked password databases found in underground markets.

– Credential Brute Force is another type of account takeover attack. In this
scenario, the attacker uses a list of popular passwords against user accounts
to break into them.

– Content Scraping is an automated attempt to steal proprietary website
information, such as product price lists and inventory, to gain a business
advantage.

Fingerprint & Events

Server Side Events

Risk Score /
Recommended Action

Web Browser

Web ServerAnti-bot Service

 HTTP Connection

Fig. 1. High-level architecture of anti-bot services

The general structure for anti-bot services is depicted in Fig. 1. We arrived
at this architecture by studying the design of multiple anti-bot services and
abstracting away service-specific details. When users visit a website protected by
an anti-bot service, fingerprinting scripts gather information from their browser
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and send it directly to the anti-bot service’s back-end. Information about how
users interact with the website and actions taken, such as, login attempts and
viewed pages, are also transmitted to the anti-bot service by the webserver using
server-side APIs. Plugins are typically provided for popular content management
systems (such as WordPress and Drupal) and integration is also available at
the website and webserver layers using provided SDKs. In this architecture,
every visitor of the website has a unique identifier which is later used by the
webserver to query the anti-bot service and receive a risk score. Depending on
the configuration of the website, different thresholds on the risk score can trigger
different events, such as, showing a CAPTCHA, limiting the number of requests
of suspicious users, or altogether blocking them.

A key component of each service is their fingerprinting scripts, which attempt
to collect as many signals as possible for distinguishing between human and bot-
like behavior. Browser fingerprinting has evolved substantially in the past few
years from querying simple JavaScript APIs [20] to the rendering of complex
3D scenes with WebGL [16]. By collecting a range of information about the
browser, the operating system and the hardware of a device, anti-bot services
can obtain a precise view of the overall browsing system which can be used
for detecting bots [14]. Next, such services usually claim to have sophisticated
machine learning models on their back-end servers, which are trained to identify
bot-related fingerprints on large volumes of data that they observe across their
clients. In order to get a complete view of these services, both the coverage of
fingerprinting features, as well as the accuracy of their back-end models have to
be measured to quantify their effectiveness. Hence, in this study, we perform an
analysis of their deployed fingerprinting scripts (Sect. 3), as well as gray box and
black box testing of anti-bot back-end models (Sect. 5). Our experiments allow
us to not only capture the effectiveness of each anti-bot service in detecting
bots, but to also measure how well websites interpret and act upon the risk
score reported by each anti-bot service.

3 Analysis of Anti-bot Services

For our analysis, using popular search engines, we searched for phrases such as,
“bot detection” and “bot prevention”, and compiled a list of 15 popular services
in September 2017. Table 1 lists the discovered services ranked according to
their number of clients. The process of identifying client websites is described in
Sect. 5.

Overall, we see that almost half of the anti-bot services have thousands of
client websites with Cloudflare being the most popular service having 13.65%
of its clients from the Alexa’s top 1 million websites. The number of clients
for Cloudflare in Table 1 represents the total number of websites observed using
Cloudflare. The numbers are based on “BuiltWith” website statistics, which
provides reports on web technologies [10]. Since all other services specialize only
in bot protection, we already know that clients that use these services want to
defend against bots. Whereas for Cloudflare, there can be various reasons to use
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Table 1. Popular anti-bot services

Service Type # Clients Alexa 1M

Cloudflare (G) Bot attacks 7, 250, 835 13.65%

Sift Science Bot attacks 18, 733 3.41%

Iovation Account fraud 14, 280 1.62%

ShieldSquare (G) Bot attacks 8, 151 1.46%

PerimeterX Bot attacks 7, 808 1.14%

InfiSecure Bot attacks 5, 443 0.11%

DataDome (G) Bot attacks 912 5.48%

ThreatMetrix Account fraud 628 5.41%

Distil Bot Defense Bot attacks 484 38.43%

Castle (G) Account fraud 260 4.62%

Simility Account fraud 182 2.20%

ThisData Account fraud 138 1.45%

Kount Access Account fraud 124 31.45%

Unbotify Bot attacks 60 3.33%

DupZapper Account fraud 33 3.03%

Overall Anti-bot 7, 311, 809 13.56%

their service such as DDOS protection, CDNs, or for adding HTTPS support to
a website. Therefore, only a subset of these websites might configure Cloudflare’s
firewall to block bots.

Services in Table 1 marked with (G) indicate those for which we could acquire
an account (trial or paid) without having to talk to a sales representative. For
these services, we were able to conduct gray box testing, in addition to the black
box testing for all services. Among the services we study, we can distinguish the
following two main types:

– Universal solutions against bot attacks usually collect fingerprints and
user-behavior data from clients using JavaScript and other common browser
fingerprinting methods. They also collect information from the web server
including the specific actions taken by users, such as, the browsing of a specific
page, or the submission of a form.

– Specific services against account fraud that focus on the defense against
account takeover and credential stuffing attacks. These services make use of
both bot detection and anomalous account activity to identify attacks.

All of the anti-bot services listed in Table 1, except Cloudflare, use finger-
printing scripts on their clients’ websites to assist them in bot detection. We
collected client-side fingerprinting scripts from the 14 anti-bot services that use
this technique. Next to beautifying and statically analyzing the JavaScript code,
we dynamically executed the scripts in order to inspect the sent payloads and
detect what fingerprinting-related APIs they utilize. For that, we used a cus-
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tom browser extension (following the approach of Lerner et al. [28]) that can
intercept browser API calls on a page.

3.1 Fingerprinting and Automation Detection Mechanisms

First, we observed that most services use standard fingerprinting features, such
as, screen properties, available fonts, plugins and MIME types. We observed
similar features being collected to those reported by Vastel et al. [50]. The par-
ticular techniques in extracting these features differ, e.g. some services directly
enumerate the navigator.plugins object, some simply use the PluginDetect
library [7], and others have further custom checks. In comparison, we witness
that few services incorporate more recent fingerprinting techniques, such as,
Canvas or WebGL fingerprinting that can provide a more accurate view of the
system’s hardware.

Another finding, supporting the fact that anti-bot scripts attempt to cap-
ture obvious signs of web automation, is the variety of checks to detect Phan-
tomJS, Nightmare [2], Selenium, and headless Chrome browsers. Different ser-
vices use different techniques, such as, printing a stack trace and searching for
the “selenium” keyword or probing for the existence of known variables (e.g.,
window.callPhantom). By deploying these checks against our own Selenium
installations, we discovered that most of the deployed checks do not work for
recent Selenium versions (except the navigator.webdriver property which is
still present on the Selenium ChromeDriver).

Even though not all services use state-of-the-art fingerprinting techniques,
those that do also try to detect inconsistencies in the collected browser finger-
prints. For example, the user-agent sent by Selenium can be modified to look like
a Firefox browser on Android, or Safari on iOS. The problem is that these mod-
ifications can lead to inconsistencies where modified and unmodified attributes
cannot possibly belong to the same browsing environment. Three services make
use of client-side code to detect such cases of mismatch between attributes.

Table 2. Known fingerprinting libraries

Source library # Services Source library # Services Source library # Services

Fingerprintjs2 [4] 4 PluginDetect [7] 3 fonts2.swf [1] 1

FontList.swf [4] 3 Evercookies [3] 1 Modernizr [5] 1

As Table 2 shows, a significant number of anti-bot services rely on existing
fingerprinting libraries, such as, the popular Fingerprintjs2 [4]. We also observed
services that use other advanced fingerprinting features, including the detection
of the local IP address through WebRTC and Flash, as well as the recording of
user actions, i.e., mouse moves and clicks. Some collect and send this data only
once, whereas others periodically collect and report this information. Finally, we
discovered a number of cases where more novel fingerprinting techniques were
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used, like the recently deprecated Battery status API [38] (Castle), AudioCon-
text fingerprinting (PerimeterX), and even DOM changes to a supplied HTML
page with different input fields (ThreatMetrix) which can be used to detect
browser extensions [44]. This demonstrates that a small number of anti-bot ser-
vices are closely following browser-fingerprinting research, and incorporate this
research in their products.

A service which includes anti-bot functionality but differs from the rest is
Cloudflare [17]. Unlike the evaluated third-party anti-bot services, Cloudflare
itself is responsible for all resolutions of their clients’ domains. As a result,
Cloudflare can detect and block traffic at their servers, without any input from
their clients. After analyzing the requests, we observed that Cloudflare does not
perform any type of client-side fingerprinting using JavaScript or Flash. Cloud-
flare mostly relies on IP reputation (historical malicious activity), firewall rules
based on HTTP requests, and rate limiting to prevent automated and malicious
behavior.

3.2 Anti-bot Service Integration with Websites

As depicted in Fig. 1, anti-bot services communicate the decision (often in the
form of a risk score) to their clients upon each request. In this section we present
our observations on how risk scores or decisions are communicated to clients and
how the websites react to these reports.

Communicating the Raw Risk Score. Services like Cloudflare, directly com-
municate the score to their clients and let them decide which thresholds to choose
when blocking bots (e.g., show a CAPTCHA when risk score is greater than 50).

Communicating the Final Verdict. Services like Castle interpret the risk
score internally and communicate the final verdict (Allow, Challenge, or Block)
to the client websites through their API. Website administrators can then decide
to show a CAPTCHA or notify the user via third-party channels.

Handling Everything in the Background. These services analyze the col-
lected fingerprints and events, redirecting users to CAPTCHAs or block pages.
As a result, the whole process of decision making happens in the background
and website administrators have no control over it. Occasionally, there are no
tunable parameters exposed to administrators which means that false positives
have to be communicated and remediated through customer-support channels.

Finally, next to communicating the risk score and decision making, how web-
sites react to bots is also defined by the anti-bot service. Some services have the
ability to be deployed inline with the web traffic (e.g., Distil Bot Defense and
Cloudflare). In this scenario they can straightforwardly redirect malicious users
to CAPTCHAs and block pages. Similarly, the integrated SDK can communi-
cate with the anti-bot service and redirect the detected threats to specific block
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pages. Lastly, the reaction may be left up to the website developers. In the exam-
ple of Castle, website developers can decide to block the request or notify the
users about the breach.

4 Available Tools for Building Bots

In this section, we introduce the tools that we utilized to evaluate whether the
anti-bot services are capable of detecting attackers of different levels of expertise
(reflected in the complexity of their tools). We categorize the tools that are
available for attackers in three groups, covering multiple levels of complexity:

– Basic bots: The least sophisticated approach is based on general-purpose
automation tools (e.g., Python Requests and PhantomJS). Python Requests
scripts are capable of sending GET and POST requests but do not execute
JavaScript (these are conceptually similar to utilizing command-line tools,
such as, wget and curl). This is the most basic approach that we expect
to be detected by anti-bot services. We also include PhantomJS in this
category, which was the first easy-to-script, headless, JavaScript-supporting
browser [40] and therefore attracted a great deal of abuse [41].

– Automated Browsers: The second and more sophisticated category
involves using real browsers (e.g., Firefox and Chrome) automated by Sele-
nium. These bots can often be augmented with user-action simulation, such
as, mouse moves, floating delays, and page scroll.

– Less Popular fingerprints: Anti-bot companies claim to share threat infor-
mation between their clients. As a result, common tools used to create bots
can be detected more effectively. Contrastingly, attackers can incorporate
less popular tools to potentially bypass bot detection mechanisms, due to
their limited history of malicious activity. To model this approach, we use
AppleScript-automated Safari and ADB-automated Chrome on Android.

5 Experimental Setup

To analyze the effectiveness of anti-bot services in terms of preventing bot activ-
ity, we utilize a number of real-world attack scenarios. In this section, we describe
the categories of our tests, and how we utilize tools from different bot categories
presented in Sect. 4. We implement a large number of web automation scripts
that can interact with websites at different levels of complexity. Each test is
comprised of attack and tool combination and is executed from hosts with IP
addresses belonging to our campus and a public cloud. These addresses are picked
from a pool of 30 campus IP addresses and 30 cloud IP addresses distributed
across 8 geographical regions.
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5.1 Gray Box Experiments

For the companies that we could obtain paid or trial accounts, we integrate their
SDK with our testing website (a WordPress-based, web application). Under the
gray box scenario, we run our tests in a fully controlled environment where we
control both the bots as well as the website receiving the bot traffic. By moni-
toring the administration panel provided by the anti-bot service, we have access
to the final decisions to allow or block the traffic. Nevertheless, the machine
learning models and decision boundaries used to classify the incoming traffic is
still a black box. As such, we call these set of tests, gray box.

1. Test Preparation. Initially, for each “attack category,” and “web automa-
tion tool,” we create scripts to mount the attacks and measure their success.
Our tests cover the following categories:

Fig. 2. Screenshot of blocking message from Distil Networks

– Account Takeover: In this setup, we create an account on websites utilizing
anti-bot services (either our own for gray box testing or third-party websites
for black-box testing) from a fixed geographical location, IP address, and
browser. We then attempt to automatically login to this account from different
geographical locations and IP addresses using our bots. This discrepancy
in login location, browser fingerprint, and use of automation tools should,
in principle, trigger the account-takeover protection system to prevent the
“malicious” login activity or alert the user.

– Credential Brute Force: To implement this scenario, we use our web
automation tools and try to login with 1,000 invalid credentials. We then
measure the number of requests before getting blocked. According to prior
work [26,32], at least 4% of passwords created under different password policy
schemes can be found in under 1,000 guesses.

– Content Scraping: By extracting product list and pricing information from
1,000 pages, we evaluate whether the anti-bot service will block our bots.
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2. Test Execution. Each attack script is executed from different IP addresses
which we rotate as necessary. The hosts are located on our campus and on
Linode (a public cloud provider). The reason for using two different locations
is to simulate attackers who have access to premium IP address space that is
not associated with crawling activity, versus attackers who can just rent virtual
machines on public clouds. We do not perform multiple attacks at the same
time to ensure that the detection of one attack does not affect the detection of
another.

3. Post-processing of Results. After each test, we inspect the anti-bot admin-
istration panel and look for reports of blocked bots based on the IP address we
used for each attack.

5.2 Black Box Experiments

Most services require their potential customers to talk to a sales representative,
prove their identity as a real business, and go through a series of interactions to
acquire and adopt anti-bot services. Since we cannot perform gray box testing
for these service, we devised a set of black box experiments.

Data Collection. After compiling our list of anti-bot services that we wish to
evaluate, we crawl the web and find websites that adopt these services. Starting
with a list of known clients for each anti-bot service (e.g., list of clients on the
website of anti-bot services), we analyze their websites to identify unique content,
such as, JavaScript files or DOM elements that can be used as a signature to
detect more clients of each service. The resulting signatures are then queried in
the PublicWWW [8] and NerdyData [6] code-search engines and the results are
supplemented with our own crawls of the Alexa top 1 million websites.

Given the number of tests we wish to conduct and that we need website-
specific scripts that can fill forms and navigate each website, it is not feasible
to evaluate all clients of each service. As such, we decided to focus on a sub-
set of their clients by randomly selecting ten clients for each anti-bot service.
We ensure that the selected websites do not exhibit any client-side signs (e.g.
JavaScript libraries) that would suggest that they are utilizing any anti-bot ser-
vice, other than the evaluated ones. We also removed websites which, through
experimentation, showed signs of additional, server-side software blocking our
requests. This is not a challenge since block pages used by anti-bot services are
distinctive (Fig. 2) and HTML tags, URLs, and variable names within the page
source point to the anti-bot company.

1. Test Preparation. We target the same attack categories that we discussed in
gray box tests. Since we do not have access to the administration panel this time,
we devised heuristics to detect being blocked based on the received response.
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– Account Takeover and Credential Brute Force: We use the same type
of scripts that we used in gray box tests. Note that in both experiments we
create an account on the target website and only target our own user account
during the experiments, for ethical purposes.

– Content Scraping: In this attack scenario, we inspect the websites of clients
of anti-bot services, and identify content that is a likely target for scraping
by malicious crawlers (such as pricing of products and inventory details). We
then implement the necessary automation scripts for each website, attempting
to scrape 1,000 pages worth of content.

We spent a total of 5 man-months developing automation scripts for all
tested websites which could appropriately navigate each website according to
our desired tests. Another obstacle that we had to overcome is that, due to the
churn of clients of the anti-bot services, we had to often repeat experiments with
new randomly sampled websites, as some websites stopped being clients of the
services before we were able to finish our experiments.

2. Test Execution. Using the same infrastructure, we run our experiments
against selected clients of each service. To generalize our results, in addition to
Linode, we ran a set of pilot tests from AWS and did not observe significant
differences in the results (5% over 60 tests) showing that the choice between
popular and less popular cloud providers does not have significant impact on
the final results.

3. Post-processing of Results. After each test, we inspect our logs and screen-
shots to locate the number of successful attempts each bot made before getting
blocked and to make sure any observed blocking is the outcome of fingerprint-
related and behavior-related information that these services gather from our bots
and correlate with server-side events.

The extracted information consisting of fingerprint, headers and user actions
are used by each anti-bot service to come up with a verdict for each user ID,
which their client will use to decide whether they should block the current
request. Section 6 discusses the results from this step in more detail. In all cases
where we received unexpected responses, we manually inspected them to ver-
ify that our scripts were indeed blocked. We define “success” and “failure” as
follows:

– Successful content scraping is defined as our bot loading the content for
1,000 pages on protected websites containing information that would be worth
scraping for attackers.

– Successful account takeover is defined as our bot being able to login
to a target user account from a different location and fingerprint from the
actual user’s fingerprint used to register and login to the account. The test is
considered to have failed when the tool fails to login with explicit (e.g. “You
are blocked”) or implicit (e.g. “Incorrect credentials”) responses.
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– Successful brute forcing in our experiment is defined as a bot sending
1,000 login attempts with incorrect credentials and then being able to login
with correct credentials. We designed this test in a way that simulates an
attacker attempting a large number of incorrect credentials before finding the
correct one.

For credential brute-forcing experiments, we distinguish the following cases
as being blocked: being blocked with an explicit message, receiving a CAPTCHA
in order to login, target user account being locked (note that this is always our
account), being rate-limited for a considerable amount of time or not being able
to login with correct credentials after brute forcing. The last case is based on
the observation that some anti-bot services silently increase the risk score when
the noisy brute force behavior is observed, and as a result, prevent the bot from
logging in even with correct credentials.

5.3 Ethical Considerations

To understand how real anti-bot services detect malicious bots on their client
websites, we cannot avoid sending bot-like traffic to public websites. To conduct
these experiments in an ethical fashion we took special care when designing them
and conducting them. For content scraping, we access content that is considered
public, i.e., it is not behind a registration wall. For account takeovers, we only
try to log in to our own account on all websites from a location/fingerprint that
is different from the one that we utilized to register that account. Lastly, for
account brute forcing, we only make login attempts against our own accounts,
never trying to log in into the accounts of other users. We provide ample time
between requests (in the order of seconds) allowing our requests to be interleaved
with regular traffic received by the evaluated popular websites. Our bots behave
as humans and therefore never send any maliciously-crafted input to target web
applications.

As a result, we are confident that our experiments did not have any negative
consequences, neither for the protected websites, nor for the anti-bot services
themselves.

6 Analysis of Results

In this section, we describe the results of our bot experiments on our test websites
(gray box testing) and on client websites of popular anti-bot services (black
box testing). By combining data across both types of experiments, we uncover
shortcomings and flaws of these services. Our focus in this section is on the
common patterns across the services that will provide an opportunity for the
attackers to bypass their protection. As our study is not meant to promote one
product over another, we opt to anonymize the names of the anti-bot services.
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6.1 Gray Box Testing Results

From the list of anti-bot services that we initially started with, we were able to
obtain accounts from four services: Service #3, Service #4, Service #2 (provid-
ing generic anti-bot protection) and Service #1 (providing specialized protection
against account fraud). For the first two services, installing their WordPress plu-
gins and including the JavaScript file in all of our pages was sufficient to adopt
them. After each client request reaches the webserver, these plugins collect the
request context including HTTP headers, cookies and IP addresses and report
it back to the anti-bot service through their APIs. Conversely, Service #2 pro-
tection is enabled by routing website traffic through their servers by changing
DNS records. In the case of Service #1, while the JavaScript code sends back
information on each page load, we needed to manually call their API upon
authentication and report the event. Upon successful authentication, we then
have to query their API to receive a verdict (Allow, Challenge, and Block) that
defines what action the service recommends. The reaction to these verdicts is
also the website developers’ responsibility and can vary for each client website
(e.g., showing CAPTCHA, or requesting a second factor of authentication).

Gray Box Content Scraping Results. The number of successful content-
scraping attempts against the three services which protect against it (Service
#3, Service #4, and Service #2) is listed in Table 3. For Service #2, none of
our scraping bots was ever blocked, regardless of their location (i.e. Campus vs.
Cloud). While further fine-tuning the rate limits might be helpful to block more
aggressive bots, as long as bots keep their request number low, they can hide
within normal user traffic and remain undetected.

Our results show that Service #3 clearly makes a distinction in its decisions to
block bots based on their source IP address. Requests from bots originating from
campus IP addresses were strictly more successful, compared to those of Linode
datacenters. For Service #4, this observation does not always hold true. While
Firefox Stripping (i.e. with fingerprinting script blocked) got worse results when
originating from Linode, AppleScript and Mobile scrapers remained undetected.
This suggests that Service #3 places more weight on the source IP address
in their decision-making model, compared to Service #4. Service #3 trusts IP
addresses to the extent that attackers with access to prime IP addresses from
outside datacenters (Campus address space, in our case) can scrape content even
with trivial tools from the “Basic Bots” category.

Gray Box Account Fraud Results. The account-fraud tests are relevant for
all four companies in our gray box experiment. We analyze the results for both
account takeover and account brute force tests. The time window of interaction
for account takeover is limited to two requests (one to grab the CSRF token and
one to login). As a result, features, such as, login history including locations,
fingerprint of used devices and fingerprints of bots, are more effective in this
scenario compared to behavioral anomaly detection. Table 4 shows the number
of successful brute force attempts along with whether the account takeover was
successful.
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Table 3. Number of successful content scraping attempts (Gray box)

Service Tool/IP Python Phantom

JS

Firefox

(Stripping)

Chrome Chrome

(Mouse)

Firefox

(Mouse)

Safari Mobile

Service #2 Campus 1000 1000 NA 1000 1000 1000 1000 1000

Cloud 1000 1000 NA 1000 1000 1000 1000 1000

Service #3 Campus 1000 0 1000 1000 1000 1000 1000 1000

Cloud 4 0 21 23 7 14 24 23

Service #4 Campus 21 0 1000 0 1 1 1000 1000

Cloud 3 1 16 0 0 0 1000 1000

Plain Python Outperforms PhantomJS: The first unexpected observation,
which is consistent among nearly all tests and anti-bot services, is that Phan-
tomJS has inferior performance to plain Python scripts. For example, all services
with client fingerprinting capability block login attempts from PhantomJS. Our
hypothesis is that this tool was so much overused by attackers (PhantomJS
was the first headless JavaScript-supporting browser) that anti-bot services have
enough features to detect it with high confidence. Contrastingly, since Python
scripts are not capable of executing JavaScript, anti-bot services give them the
benefit of the doubt (e.g. it may be a JavaScript-blocking user) and allow a few
requests to go through before taking action.

Safari Breaks into All User Accounts: Interestingly, none of the services
block Safari that is automated by Applescript. To our surprise, the risk score
reported by Service #1 for Applescript is very low (17/100) even though a real
user never logged into the user account with an Apple device or Safari. For com-
parison, this score is in the range of 70–88 for Selenium and 100 (i.e. maximum
risk) for PhantomJS.

Table 4. Number of brute force attempts before getting blocked (Gray box) Check-
marks indicate successful account takeover

Service Service #1 Service #2 Service #3 Service #4

Tool CampusCloudCampusCloudCampusCloudCampusCloud

Python 1000 � 0 � 5 � 5 � 240 � 12 � 2 � 1000 �

PhantomJS0 � 0 � 5 � 5 � 0 � 0 � 0 � 0 �

Chrome 0 � 0 � 5 � 5 � 250 � 23 � 0 � 0 �

Firefox 10 � 0 � 5 � 5 � 405 � 21 � 1 � 0 �

Safari 1000 � 0 � 5 � 5 � 334 � 13 � 1000 � 1000 �

Not Executing JavaScript Can Be Helpful: Finally, using Python, our bots
were able to successfully log into user accounts both from Campus and Linode
IP addresses with a high degree of success. Service #1 was the only exception
which returned the verdict of “Challenge” only for Python requests from Linode.
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For brute force tests (Table 4), similar to account takeover results, Service #3
shows higher sensitivity to source IP addresses and blocks requests from Linode
more aggressively whereas Service #4 does not penalize Python and Safari-based
bots. For Service #1, this transition from Campus to Cloud was enough to mark
all our login attempts as malicious and increase their risk scores, shifting them
to their next verdict category: from Allow to Challenge and from Challenge to
Block.

6.2 Overall Content Scraping Results

In this section, we report on six anti-bot services which were either included
in our gray box tests or match our criteria for black box tests, that is: (a)
provide overall protection against automated attacks/mention content scraping
as a covered use case; (b) have a representative sample of at least 10 client
websites. We chose distinct websites that use only the corresponding service out
of the known anti-bot solutions. Each website was tested against eight different
automation tools among three bot categories and each test included the scraping
of 1,000 pages.

Table 5 summarizes our results for content scraping from gray box tests and
black box tests. The column named “IP sensitivity” indicates whether using IP
addresses from Cloud (Linode) rather than Campus makes the service block our
bots earlier. If there is more than 50% change (i.e., at least half of the websites
that did not block us on campus IPs blocked us from cloud IPs), we consider
the service to be highly sensitive to cloud IP addresses and if the change is less
than 50%, we say the impact of source IP address is low. Finally if we do not
observe a significant difference when moving from Campus to Cloud, we infer
that presence/absence of an IP address from a cloud provider, does not have an
effect on the blocking decision.

In Tables 5 and 6, partial success is marked with half-filled circles indicating
that either some tools within that bot category were not blocked (e.g., Phan-
tomJS was blocked but Python was not), or some websites protected by the
same service blocked a tool within a category while others did not. Even though
we do not have enough information for a definitive answer, we opine that the
partial difference in behavior among clients of the same anti-bot company is the
result of different characteristics of their normal traffic and the dynamic nature
of the machine learning models.

Basic Bots: Nearly all services with the exception of Service #2 are able to
block “basic bots” to some extent. Among them, Service #5 and Service #4
successfully block both Python and PhantomJS consistently on all their clients.

Automated Browsers: Service #4 always detects and blocks automated
browsers. While Firefox automated by Selenium goes undetected by Service #5
and Service #7, Selenium Chrome is blocked quickly (in less than 100 requests).
Adding page scrolls and mouse moves to our automated browsers only helped
with Service #7 which led to scraping 1,000 pages on some clients and getting
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Table 5. Service ability to block content scraping by different bots (Gray box and
Black box tests) (�: Blocked, ��: Some automation tools can bypass, �: Failed to
block)

Anti-bot service Basic bots Automated
browsers

Less popular FPs Stripping IP
sensitivity

Service #2 (G) � � � NA None

Service #3 (G) �� � � NA High

Service #4 (G) � � � � None

Service #5 � �� �� � None

Service #6 �� � � NA None

Service #7 �� �� � � Low

blocked after around 60 attempts on other clients where we could previously
make less than five successful requests.

Less Popular Fingerprints: Applescript-Safari and Chrome on Android are
able to bypass the limitations imposed by most anti-bot services. The only excep-
tion is Service #5 where some of their clients block Applescript-Safari while
others block Chrome on Android. Even the websites that block either of these
tools, do so after 300–600 attempts. Compared to basic bots and automated
browsers which made less than 10 successful attempts on Service #5 clients,
this demonstrates that unpopular, JavaScript-enabled clients can be significantly
more successful in evading detection.

Stripping: Stripping refers to blocking fingerprinting JavaScript when scraping
content from the websites. None of the services allowed our bots to scrape more
pages when client side fingerprints were stripped, and most of the time we got
blocked earlier (e.g., in less than 5 attempts on Service #5). Since Service #2,
Service #3 and Service #6 either do not perform client-side fingerprinting via
JavaScript or do not block our automated browsers, we can not compare their
performance when automated browsers are used and fingerprinting scripts are
blocked.

Figure 3 generalizes the performance of different scraping bots across all eval-
uated services. There we can see that, even though the different traffic patterns
of different websites lead to noisy results, there are clear patterns that favor
some tools over others. For example, when operating either an Android bot or a
Firefox-Selenium one with added mouse moves from “premium” address space,
attackers can scrape content from the vast majority of sites and services. For
cloud tests, we repeated the experiments for the tools that showed better per-
formance from campus IP addresses.

6.3 Overall Account Fraud Results

Here, we present our results for the Account Takeover and Brute Force experi-
ments. We analyzed ten anti-bot services which advertise themselves as general
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Fig. 3. Performance of content scraping bots

anti-bot or account-fraud protection services and for which we could find at least
ten distinct client websites that allowed us to register a new user (a requirement
for these experiments). We evaluate these services against five tools by perform-
ing a total of 2,800 tests.

Fig. 4. Performance of account takeover bots

Account Takeover Results. Overall, 2–8% of websites blocked all our account
takeover attempts across all bot categories from Campus and Cloud IP addresses
respectively. Applescript-Safari was the most successful tool with 82.5% average
success rate. Bots based on Safari automated by AppleScript, were able to break
into user accounts with unseen fingerprints (Safari browser) and from new IP
addresses. Table 6 summarizes our results for gray box and black box tests for
account takeover and brute force tests. The results are sobering. By looking at
Fig. 4, we observe that because of the absence of a large number of requests to
the service during account takeover (attackers have already stolen the credentials
and are logging in from a “foreign” environment), most services fail to block
the attack. We have already seen that general bot-detection mechanisms fail to
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block most of the bots right away except basic bots, which also holds true for
account takeover attacks. The change in fingerprint and location of the login
attempt were not enough to raise an alarm and block the takeover in many of
our attempts. As a result, even with the worst-performing bot (i.e. PhantomJS)
attackers can successfully conduct an account takeover attack in 40–60% of the
time.

Table 6. Service ability to block account takeover by different bots (Gray box and
Black box tests) (�: Blocked, ��: Some automation tools can bypass, �: Failed to
block) Brute force: number of websites without any login rate-limiting

Anti-bot service Basic bots Automated
browsers

Less popular FPs Brute force IP
sensitivity

Service #1 (G) �� �� � 6/10 High

Service #2 (G) � � � 0 None

Service #3 (G) �� � � 4/10 High

Service #4 (G) �� �� � 10/10 Low

Service #5 � � �� 3/10 High

Service #6 �� � � 7/10 Low

Service #7 �� �� �� 3/10 Low

Service #8 � � � 9/10 None

Service #9 �� �� �� 7/10 High

Service #10 � �� � 8/10 Low

Credential Brute Force Results. The results for this section are summarized
in Table 6. Column “Brute Force” in this table refers to the number of websites
on which at least one of our bots was able to perform 1,000 brute force attempts
against their login forms. This not only shows the lack of defense from anti-
bot services but also signifies that neither the website nor the anti-bot service
enforce a hard limit on the number of failed attempts (e.g. by account lockout,
CAPTCHA or IP address ban). Lu et al. studied the presence of rate limiting
mechanisms on top Alexa websites and already pointed out this lack of protec-
tion [30]. Our results support Lu et al.’s findings by showing that, even among
the websites that actively seek to protect against bot attacks, 30–100% of them
do not enforce any type of login rate limiting.

Among all tested services, Service #5 and Service #7 blocked more categories
of bots and enforced rate limits on a wider range of tested clients. For Service
#4 and Service #8, almost none of their tested clients enforced rate limiting.
Interestingly, simple rate-limiting on POST requests to login pages enforced by
Service #2, is sufficient to fully prevent brute force attacks, even without any
type of client-side fingerprinting.
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Contrary to content-scraping results, different tools from automated browsers
and less popular fingerprint categories achieve similar results. However, Safari
is still the best performing bot. Orthogonally to the type of bot being used,
we observe that most anti-bot services become slightly stricter when the bot
is sending authentication requests from Cloud IP addresses. For example, the
average number of successful requests by Safari, drops from 564 to 433 after
transitioning to cloud. This subtle effect is visible in Fig. 5. More importantly,
the hourglass-like distributions of Fig. 5 show that the majority of bruteforce
attempts are either blocked in under 400 attempts (the narrow “neck” of the
hourglass) or not blocked at all. With the use of more sophisticated tools (right
side of the Fig. 5), the number of successful 1,000 bruteforce attempts increases.

When combining account takeover and brute force protection, Service #5,
Service #7 and Service #9 block bots across all categories. Yet, specific tools
are able to evade detection. On the other end, websites using Service #8 in our
dataset did not show any specific pattern of blocking bots (except one website
that was enforcing a local rate limit to block brute force attempts).

Fig. 5. Performance of brute force bots

7 Discussion

In this paper, we conducted the first, large-scale study of commercial anti-bot
services that websites can use to detect and protect their content and their users
against malicious bots. Using basic bots as well as popular and less popular
automated browsers, in conjunction with different types of IP address space
(public clouds vs. campus networks), we evaluated—in an ethical fashion—the
ability of ten services to detect and block bots on the websites of their customers.
While each service has its own specific strengths and weaknesses (as described
in Sect. 5 and Sect. 6), we can still observe common patterns across services. We
describe these patterns (and their implications) below:

Variance Across Clients of the Same Service. An unexpected finding of
our experiments is that not all clients of the same service block bots in the
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same way. This could suggest that some services are more sensitive to false
positives than others, but it could also suggest misconfigurations from the side
of clients of anti-bot services. Our recommendation is that anti-bot services
regularly perform bot-based crawling of their own clients and observe whether
their own attempts are blocked by their clients. In the cases where blocking is
under a configurable threshold, these anti-bot services can reach out to their
clients and inquire whether the recorded permissiveness is a conscious choice or
merely a misconfiguration.

Browser Fingerprinting. Virtually all services rely, to a certain extent, on
browser fingerprinting as part of their bot-detection logic. Browser fingerprinting
is a powerful mechanism that can be used either constructively (for authentica-
tion) or destructively (for unwanted online tracking) to re-identify users (includ-
ing attackers). Yet it is also susceptible to evasions when attackers are aware
of it. When it comes to advanced attackers who can mix and match bots, con-
structively using browser fingerprinting is more likely to work in a whitelisting
fashion (i.e. is the current user’s browsing environment, similar to their past
browsing environment?) rather than in a blacklisting fashion (i.e. is the current
user’s fingerprint matching that of a previously-observed, malicious bot?).

PhantomJS is Universally Recognizable. As we showed in our experiments
in Sect. 5, PhantomJS is universally recognizable by anti-bot services and often
performs worse than simple bots that do not support JavaScript at all. Even
though this is desirable for detecting attackers abusing PhantomJS, academic
researchers have also extensively relied on PhantomJS for web-security [37,42,
45,48,51] and web-privacy [13,43] studies. Assuming the increasing adoption
of anti-bot services, this means that the results obtained through PhantomJS-
related crawling will be decreasingly accurate. In the short term, we recommend
that researchers avoid using PhantomJS in favor of newer and more complete
crawling tools, such as, headless Chrome and OpenWPM [21]. In the long term,
we need both the technical means to evaluate the fingerprintability of crawling
frameworks used for research, as well as a discussion between stake-holders on
how crawling-based studies should be best conducted.

8 Responsible Disclosure

During this study we observed behaviors that can either be attributed to
customer-website misconfigurations of an anti-bot service (i.e. customers do not
fully take advantage of the detection capabilities of anti-bot services) or can be
blind spots within the detection models of the evaluated services. As such, we
contacted 7 services with what we regarded as high-impact misconfigurations
or security issues on their client websites in December 2019. During these com-
munications, our goal was to share our findings and obtain more information
about the design decisions and details that we could not observe as outsiders.
Ultimately, three services (ThreatMetrix, DataDome, and Castle) reached back
to us. We have shared the list of vulnerable target websites in our study and our
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bot scripts with the anti-bot services upon their request and we are in continuous
conversation with them. We hope that this information will be used to increase
the accuracy and coverage of these services.

9 Related Work

Research-wise, despite its potential for abuse, bot identification has only
attracted limited research which, given the adaptations from bot authors, can
quickly become dated. Existing attempts to differentiate crawlers from real
users rely on differences in their navigational patterns, the percentage of HTTP
methods in requests, the types of links requested, and the timing between
requests [24,29,46]. These features are then used in supervised machine-learning
algorithms trained using ground truth that the authors of each paper were able to
procure, typically by manually labeling traffic of one or more webservers to which
they had access. Xie et al. propose an offline method for identifying malicious
crawlers by searching for clusters of requests towards non-existent resources [52].
Next to ML-based methods, Park et al. [39] investigated the possibility of detect-
ing malicious web crawlers by looking for mouse movement, the loading of Cas-
cading Style Sheets, and the following of an invisible link that is present in the
HTML code of a page yet is invisible to regular users. McKenna [31] recently
experimented with more types of invisible links and resources but was unable to
gauge their effectiveness due to size and duration limitations of their study.

Interestingly, the majority of work on bot detection predates browser finger-
printing despite the latter appearing as early as 2010 [12,13,18,20,21,23,27,36]
even though as we showed throughout this paper, all but one of the evaluated
anti-bot services heavily rely on fingerprinting for identifying bots.

All the prior research that focused on adding new attributes to a finger-
print [22,33,35,44], notably techniques like canvas [34], AudioContext [21] or
WebGL [16] fingerprinting, is especially relevant to anti-bot services as it could
offer more ways to distinguish a bot from a regular user. Moreover, there exists
machine-learning approaches to link fingerprint evolutions over time [49] which
could be used to track changes in a bot fingerprint. Relying on fingerprinting
techniques, Bursztein et al. proposed Picasso, a tool aimed at identifying inor-
ganic traffic through canvas fingerprinting [14].

Jueckstock et al. introduced VisibleV8, an instrumented Chromium based
browser that is capable of monitoring dynamic JavaScript API calls [25]. The
authors found that 29% of top 50k Alexa websites probe for artifacts of auto-
mated browsing environment but do not evaluate the usage of these artifacts and
whether these websites can detect different types of bots in practice. Vastel et
al. study the presence of bot-detection artifacts over the Alexa top 10K websites
[50]. While they focus on fingerprinting behavior of anti-bot systems, our study
systematically evaluates the overall benefits and drawbacks of existing anti-bot
approaches as they are deployed in the wild. Moreover, we model real world
attack scenarios whereas previous work focused on the fingerprinting surface of
browsers and blocking behavior when visiting target websites.
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10 Conclusion

In this paper, we reported on the first analysis of anti-bot services for the web. By
isolating and analyzing the JavaScript code which the clients of anti-bot services
need to utilize, we identified near universal-reliance on browser fingerprinting,
including recently-proposed fingerprinting techniques, as well as checks for the
consistency of the presented fingerprints. Through large-scale, black box and
gray box analyses of each service using off-the-shelf automation tools as well as
less-popular automated environments, we quantified the ability of these services
to detect and block bots. We discovered that many services perform poorly and
browsers that are less commonly automated (i.e Safari on Mac and Chrome on
Android) can achieve an overall success rate of 80% during content-scraping
attempts. We also discovered that the location of a bot on a public cloud is
secondary to its fingerprint and only 4 services are sensitive to the location of
source IP address. This allows attackers to launch massive bot campaigns by
renting low-cost virtual machines on public data centers.

Overall, our findings suggest that existing services can stop basic bots, but
are currently not capable of blocking specialized tools and even the less popular
automated browsers, which can bypass the protection of around 75% of content-
scraping targets. As such, they cannot substantially limit determined attackers.
At the same time, our findings are relevant for all research involving the crawling
of websites since websites that utilize anti-bot services may be able to identify
the tools used by researchers (such as PhantomJS) and thereby evade accurate
analysis.
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