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Abstract. One important topic of concept analysis is to learn an inten-
sion of a concept through a given extension. In the case where an exact
intension cannot be formulated due to limited information, rough set the-
ory introduces approximations to roughly learn the intension. Pawlak
originally proposes a qualitative formulation of approximations which
allows no error in the learned intension. Various quantitative formula-
tions have been studied as generalizations, most of which use proba-
bilistic measures. In contrast, non-probabilistic formulations have not
been fully investigated. On the other hand, three-way approximations
and structured approximations have been proposed to emphasize the
semantics of approximations for the purpose of learning and interpreting
intension. To combine the benefits of these two directions of generaliza-
tions, this paper investigates quantitative structured three-way approx-
imations based on both probabilistic and non-probabilistic measures in
the context of both complete and incomplete information.

Keywords: Concept analysis · Three-way · Rough set · Incomplete
information · Subsethood measure

1 Introduction

Concept analysis is one common application of rough set theory [18,19]. A con-
cept can be formally represented by a pair of intension and extension [3] where
the intension describes the definition and the extension lists all instances. Con-
cept analysis is usually based on a dataset represented in a tabular form with
rows as objects and columns as attributes [7,20,21,24,31,32]. The attributes
are used to describe the properties of objects as well as to formulate intensions.
While learning extension from a given intension is not difficult, the opposite task
may be complicated. In particular, we may not be able to find an exact intension
of a given extension due to insufficient, incomplete, or limited information.

To solve the above issue, rough set theory introduces the concept of
approximations to roughly approximate the true intension. As illustrated by
Fig. 1(a) [12], the set of all objects in a given table, represented by the biggest
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rectangle, is divided into pieces called definable sets. Each definable set can be
precisely described by an intension and is used to approximate a given extension.
Pawlak [18,19] proposes a pair of lower and upper approximations, where the
lower approximation corresponds to the positive region in Fig. 1(a) and the upper
approximation corresponds to the union of the positive and boundary regions. A
set of classification rules is derived from an approximation by using the intension
of a definable set as the premise of one rule. All such rules together approximate
the true intension and can be used to classify instances of the concept. By inter-
preting classification rules through associated actions, Yao [26] further considers
the negative region, which leads to a three-way approximation consisting of the
positive, boundary, and negative regions. Semantically, the positive and negative
regions are associated with actions of accepting and rejecting instances of the
concept, respectively. The boundary region is associated with a non-commitment
action, which reflects the limitation of our knowledge.

Fig. 1. Illustrations of rough set approximations [12]

There are at least two directions in which the above approximations can
be improved. The first direction is to allow a certain rate of misclassification
in order to enlarge the positive and negative regions and shrink the boundary
region. Instead of the qualitative set-inclusion used in Fig. 1(a), a considera-
tion of quantitative measures results in various quantitative rough set models.
Most related research uses probabilistic measures [9,23,29,33] and a few con-
siders non-probabilistic [10,28]. Yao and Deng [28] propose a general framework
of formulating both probabilistic and non-probabilistic approximations based
on subsethood measures whose properties are further studied in [11]. A few
related works regarding concept-based non-probabilistic classifiers are investi-
gated in [17], which may inspire the research on non-probabilistic quantitative
rough set models.

The second direction is to build explanation-oriented approximations that
emphasize on explaining and understanding the semantics. Most formulations of
approximations focus on which objects should be included without due atten-
tion to their descriptions which are necessary to formulate rules. The lower and
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upper approximations proposed by Pawlak in [18,19] and the three-way approx-
imations proposed by Yao in [26] are defined as sets of objects, which are better
illustrated by Fig. 1(b). A lack of internal structure leads to certain difficulties in
deriving and interpreting classification rules. In contrast, a structured approxi-
mation [2,12] is defined as a set of definable sets instead of a set of objects. With
clearer semantics, structured approximations can be conveniently and meaning-
fully applied to learn concepts with incomplete information, where most existing
rough set models face a common challenge of interpreting their approximations
in order to formulate classification rules [12,15].

This paper studies quantitative structured approximations as improvements
in both directions. More specifically, we investigate quantitative structured
approximations based on both probabilistic and non-probabilistic measures with
both complete and incomplete information. This work focuses on exploring
meaningful approaches to building explanation-oriented quantitative structured
approximations. Accordingly, we present conceptual formulations of approxima-
tions that emphasize on the semantics, rather than computational formulations
that emphasize efficient computations in practice. Further discussions on con-
ceptual and computational formulations can be found in [4,12,16,25].

In the remainder of this paper, Sect. 2 reviews qualitative structured approx-
imations with both complete (Sect. 2.1) and incomplete (Sect. 2.2) information.
Section 3 explores the generalizations into quantitative structured approxima-
tions, including both complete (Sect. 3.1) and incomplete (Sects. 3.2 and 3.3)
information. Conclusion and future work are discussed in Sect. 4.

2 Concept Analysis Using Qualitative Structured
Three-Way Approximations

This section reviews the main results of qualitative structured approximations
proposed in [12] with both complete and incomplete information.

2.1 Learning Intension with Complete Information

An information table is formally used in rough sets to represent a given dataset.
In the case of complete information, a complete information table is formulated
as the following tuple:

T = (OB,AT, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}), (1)

where OB is a finite nonempty set of objects, AT is a finite nonempty set of
attributes, Va is the domain of an attribute a, and Ia is an information func-
tion which maps each object to a unique value in Va. This unique value reflects
the complete information or our complete knowledge. Logic formulas regarding
attributes and their values are used as formal descriptions of objects. By arguing
that a consideration of logic conjunction is sufficient for the rule-learning pur-
pose, Hu and Yao [12] use a conjunctive description language DLc consisting of
formulas defined as follows:
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(1) Atomic formulas: (a = v) ∈ DLc, where a ∈ AT and v ∈ Va;
(2) Composite formulas: if p, q ∈ DLc, and p and q do not share any attribute,

then p ∧ q ∈ DLc.

The satisfiability of a formula by an object, denoted by |=, is defined as:

(1) o |= (a = v) ⇐⇒ Ia(o) = v,

(2) o |= (p ∧ q) ⇐⇒ o |= p ∧ o |= q, (2)

where o ∈ OB, a ∈ AT , v ∈ Va, and p, q, p ∧ q ∈ DLc. Accordingly, a formula is
associated with a set of objects exhibiting its meaning.

Definition 1. For a formula p ∈ DLc, the set of objects:

m(p) = {o ∈ OB | o |= p}, (3)

is called the meaning set of p.

On the other hand, objects in m(p) can be uniformly described by p and thus,
is considered to be definable. By using a formula as intension and its meaning
set as extension, one can form a definable concept.

Definition 2. A set of objects O ⊆ OB is a conjunctively definable set if there
exists a formula p ∈ DLc such that O = m(p). The pair (p,m(p)) is a conjunc-
tively definable concept.

DEF(T ) is widely used to represent the family of definable sets in recent works [4,
22,25]. Accordingly, we use CDEF(T ) to represent the family of conjunctively
definable concepts which is used to construct structured approximations.

Definition 3. For a set of objects X ⊆ OB, its structured positive and negative
regions [12] are defined as:

SPOS(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,m(p) ⊆ X},

SNEG(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,m(p) ⊆ Xc}, (4)

where Xc is the complement of X.

The boundary region is commonly defined through the positive and negative
regions. With respect to Definition 3, the structured boundary region of X can
be defined as:

SBND(X) = {(p,m(p)) ∈ CDEF(T ) | ¬(m(p) ⊆ X) ∧ ¬(m(p) ⊆ Xc)}. (5)

From the view of learning intension, we are not interested in the boundary
region since it doesn’t lead to classification rules for recognizing either positive
or negative instances of the concept.

Most research in the literature applies unstructured approximations [18,19]
which can be expressed as [12]:

POS(X) =
⋃

{m(p) | (p,m(p)) ∈ SPOS(X)},

NEG(X) =
⋃

{m(p) | (p,m(p)) ∈ SNEG(X)}. (6)
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As argued and illustrated in [12], the structured approximations benefit rule
learning with clear semantics obtained through preserving the internal structure
as well as introducing intensions which are left-hand-sides of rules.

2.2 Learning Intension with Incomplete Information

Although an object actually takes exactly one value on an attribute, due to our
limited or incomplete information, we may not be able to know this actual value.
In such a case, an incomplete information table is used, which can be formally
represented as the following tuple:

T̃ = (OB,AT, {Va | a ∈ AT}, {Ĩa : OB → 2Va − {∅} | a ∈ AT}), (7)

where OB, AT , and Va have the same meanings as in a complete table, and Ĩa

maps each object to a nonempty subset of Va. Every value in Ĩa(x) may be the
actual value of an object x ∈ OB on an attribute a ∈ AT , but exactly one value
is indeed the actual one which we do not know due to incomplete information.

Lipski [14] equivalently interprets an incomplete table as a family of complete
tables. A complete table (OB,AT, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}) is
called a completion of T̃ if:

∀x ∈ OB ∀ a ∈ AT (Ia(x) ∈ Ĩa(x)). (8)

One gets a completion of T̃ by picking up exactly one value for each object on
each attribute. Since each value in Ĩa(x) represents one possibility of the actual
value, a completion is a possibility of the actual table and called a possible world.
Accordingly, Lipski’s interpretation is called the possible-world semantics of an
incomplete table. The family of all completions of T̃ is denoted as COMP(T̃ ).

The meaning set of a formula p in a completion T , denoted by m(p|T ), is
a possibility of its actual meaning set. The collection of p’s meaning sets in all
completions covers all possibilities of p’s actual meaning set and can be used to
interpret p.

Definition 4. The meaning set of a formula p ∈ DLc in an incomplete table T̃
is defined as:

m̃(p) = {m(p|T ) | T ∈ COMP(T̃ )}, (9)

It is verified that m̃(p) is actually an interval set defined as [12]:

m̃(p) = [m∗(p),m∗(p)] = {S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p)}. (10)

The sets m∗(p) and m∗(p) are the lower and upper bounds of m̃(p), respectively.
The interval set [m∗(p),m∗(p)] contains all sets in-between these two bounds
(inclusive). Moreover, the two bounds can be computed as:

m∗(p) =
⋂

T∈COMP(˜T)

m(p|T ) = {x ∈ OB | ∀T ∈ COMP(T̃ ), x ∈ m(p|T )},

m∗(p) =
⋃

T∈COMP(˜T)

m(p|T ) = {x ∈ OB | ∃T ∈ COMP(T̃ ), x ∈ m(p|T )}. (11)
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The lower bound m∗(p) contains objects satisfying p in every possible world,
that is, they must satisfy p in the actual table and be included in p’s actual
meaning set. Similarly, the upper bound m∗(p) contains objects satisfying p in
at least one possible world, that is, they possibly satisfy p in the actual table and
may be included in p’s actual meaning set. By means of m̃(p), the definability
can be generalized with respect to an incomplete table.

Definition 5. An interval set O on OB is conjunctively definable if there exists
a conjunctive formula p ∈ DLc such that O = m̃(p). The pair (p, m̃(p)) is a
conjunctively definable interval concept.

The family of conjunctively definable interval concepts CDEFI(T̃ ) is used to
construct the structured approximations in an incomplete table.

Definition 6. Given a set of objects X ⊆ OB in an incomplete table T̃ , two
pairs of structured regions are constructed as [12]:

(1) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∀S ∈ m̃(p), S �= ∅, S ⊆ X},

SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∀S ∈ m̃(p), S �= ∅, S ⊆ Xc};

(2) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∃S ∈ m̃(p), S �= ∅, S ⊆ X},

SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∃S ∈ m̃(p), S �= ∅, S ⊆ Xc}. (12)

SPOS∗(X) and SNEG∗(X) are called lower structured regions, and SPOS∗(X)
and SNEG∗(X) are upper structured regions.

A lower structured region requires an exhaustivity of the set-inclusion rela-
tionship between a set in m̃(p) and X (or Xc), and an upper structured region
requires an existence of such a relationship. The two lower structured regions
give the lower bounds of the actual structured positive and negative regions,
respectively, and the upper structured regions give the upper bounds [12].

3 Concept Analysis Using Quantitative Structured
Three-Way Approximations

In this section, we generalize the qualitative structured regions into quantita-
tive structured regions, in both complete and incomplete tables, based on two
types of quantitative measures, namely, probabilities and subsethood measures.
The generalization with respect to a complete table is straightforward based on
existing research on quantitative unstructured approximations. In contrast, the
generalization with respect to an incomplete table needs further investigation.

3.1 Probabilistic and Non-probabilistic Structured Approximations
in a Complete Table

A probabilistic rough set model [27] replaces the qualitative set-inclusion with
quantitative probabilities in defining unstructured approximations. By the same
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idea, if an object described by p ∈ DLc has a high probability of being a positive
instance of X, then the concept (p,m(p)) is included in the structured positive
region. This leads to the following probabilistic structured regions.

Definition 7. For a set of objects X ⊆ OB, its probabilistic structured positive
and negative regions are defined as:

SPOSpr
(α,·)(X) = {(p,m(p)) ∈ CDEF(T ) | Pr(X|m(p)) ≥ α},

SNEGpr
(·,γ)(X) = {(p,m(p)) ∈ CDEF(T ) | Pr(Xc|m(p)) ≥ γ}, (13)

where 0 ≤ α, γ ≤ 1 are two thresholds, a dot represents a non-relevant threshold,
and the probabilities are computed as:

Pr(X|m(p)) =
|X ∩ m(p)|

|m(p)| , P r(Xc|m(p)) =
|Xc ∩ m(p)|

|m(p)| . (14)

The qualitative structured regions can be viewed as a special case of the
probabilistic structured regions with α = γ = 1.

Fig. 2. Relationships between X and sets in SPOSpr
(α,·)(X) and SNEGpr

(·,γ)(X)

As shown in Fig. 2(a), (p,m(p)) is included in SPOSpr
(α,·)(X) if the intersection

between m(p) and X occupies a large portion of m(p). Accordingly, p is used to
classify positive instances of X with an error rate:

IAE((p,m(p))) =
|Xc ∩ m(p)|

|m(p)| = 1 − |X ∩ m(p)|
|m(p)| ≤ 1 − α, (15)

which is called the rate of incorrect acceptance error (IAE) [5]. Similarly, a con-
cept (q,m(q)) ∈ SNEGpr

(·,γ)(X) is associated with the following rate of incorrect
rejection error (IRE):

IRE((q,m(q))) =
|X ∩ m(q)|

|m(q)| = 1 − |Xc ∩ m(q)|
|m(q)| ≤ 1 − γ. (16)

At the expenses of IAE and IRE, we are able to approximate a larger part of X
compared with the qualitative regions.
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Most existing research on quantitative rough sets is based on the probabilistic
(unstructured) approximations, such as decision-theoretic rough sets [29], game-
theoretic rough sets [10], information-theoretic rough sets [6], naive Bayesian
rough sets [30], confirmation-theoretic rough sets [9], and Bayesian rough
sets [23]. Variable precision rough sets [33] can be viewed as both probabilis-
tic and non-probabilistic in the sense that approximations are defined in terms
of precisions which are estimated through probabilities.

In contrast, there is limited research [8,13,28] on non-probabilistic rough set
models, which mainly uses subsethood measures and similarity measures instead
of probabilities. Subsethood measure is a quantitative generalization of the qual-
itative set-inclusion. Given a universe OB, a normalized subsethood measure is
defined as a mapping sh : 2OB × 2OB → [0, 1] where 2OB is the power set of
OB. For two sets A,B ⊆ OB, sh(A � B) represents the degree to which A is a
subset of B. Yao and Deng [28] formulate quantitative unstructured approx-
imations through subsethood measures, which unifies both probabilistic and
non-probabilistic models. Following their formulation, we present the following
quantitative structured regions based on subsethood measures.

Definition 8. Suppose sh : 2OB × 2OB → [0, 1] is a normalized subsethood mea-
sure. For a given set of objects X ⊆ OB, its quantitative structured positive and
negative regions can be defined as:

SPOSsh
(α,·)(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅, sh(m(p) � X) ≥ α},

SNEGsh
(·,γ)(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅, sh(m(p) � Xc) ≥ γ}. (17)

By using a subsethood measure sh(A � B) = |A∩B|
|A| , we have:

sh(m(p) � X) =
|m(p) ∩ X|

|m(p)| = Pr(X|m(p)), (18)

and similarly, sh(m(p) � Xc) = Pr(Xc|m(p)). Thus, the two probabilistic
regions in Definition 7 are special cases of the above two regions defined through
subsethood measures. One may also consider many other meaningful cardinality-
based subsethood measures [1] to formulate non-probabilistic approximations.
For example, by using a measure shRc

5
[11]:

shRc
5
(A � B) =

{
|Ac|

|(A∩B)c| , ¬(A = B = OB),
1, A = B = OB.

(19)

we can formulate a pair of non-probabilistic structured regions of X ⊆ OB as:

SPOS
shRc

5
(α,·) (X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,

|m(p)c|
|(m(p) ∩ X)c| ≥ α},

SNEG
shRc

5
(·,γ) (X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,

|m(p)c|
|(m(p) ∩ Xc)c| ≥ γ}. (20)



Concept Analysis Using Quantitative Structured 291

3.2 Probabilistic Structured Approximations in an Incomplete
Table

One may also consider both probabilities and subsethood measures in defining
quantitative regions in an incomplete table. In this subsection, we present two
ways to define probabilistic structured regions. An intuitive way is to simply
replace the set-inclusion in Definition 6 with probabilities, which leads to the
following definition.

Definition 9. Given a set of objects X ⊆ OB in an incomplete table T̃ , one can
construct the following probabilistic lower and upper structured regions:

(1) SPOSpr
∗(α,·)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), P r(X|S) ≥ α},

SNEGpr
∗(·,γ)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), P r(Xc|S) ≥ γ};

(2) SPOS∗pr
(α,·)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), P r(X|S) ≥ α},

SNEG∗pr
(·,γ)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), P r(Xc|S) ≥ γ}, (21)

where the probabilities are computed as:

Pr(X|S) =
|X ∩ S|

|S| , P r(Xc|S) =
|Xc ∩ S|

|S| . (22)

The condition (p, m̃(p)) ∈ CDEFI(T̃ ) is omitted in Definition 9 and the following
definitions where this doesn’t cause misunderstanding. Since m̃(p) is a collection
of p’s meaning sets in all completions, the above regions can be equivalently
expressed through the family COMP(T̃ ).

Proposition 1. Given a set of objects X ⊆ OB, one may construct the proba-
bilistic lower and upper structured regions of X as follows:

(1) SPOSpr
∗(α,·)(X) = {(p, m̃(p)) | ∀T ∈ COMP(T̃ ), P r(X|m(p|T )) ≥ α},

SNEGpr
∗(·,γ)(X) = {(p, m̃(p)) | ∀T ∈ COMP(T̃ ), P r(Xc|m(p|T )) ≥ γ};

(2) SPOS∗pr
(α,·)(X) = {(p, m̃(p)) | ∃T ∈ COMP(T̃ ), P r(X|m(p|T )) ≥ α},

SNEG∗pr
(·,γ)(X) = {(p, m̃(p)) | ∃T ∈ COMP(T̃ ), P r(Xc|m(p|T )) ≥ γ}. (23)

The possible-world semantics also connects the above probabilistic regions
in an incomplete table to those in a complete table (i.e., Definition 7). The
condition Pr(X|m(p|T )) ≥ α implies that the concept (p,m(p|T )) is included in
SPOSpr

(α,·)(X|T ). Accordingly, we get the following theorem.

Theorem 1. Given a set of objects X ⊆ OB, we have:

(1) (p, m̃(p)) ∈ SPOSpr
∗(α,·)(X) ⇔ ∀T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SPOSpr

(α,·)(X|T ),
(p, m̃(p)) ∈ SNEGpr

∗(·,γ)(X) ⇔ ∀T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SNEGpr
(·,γ)(X|T );

(2) (p, m̃(p)) ∈ SPOS∗pr
(α,·)(X) ⇔ ∃T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SPOSpr

(α,·)(X|T ),
(p, m̃(p)) ∈ SNEG∗pr

(·,γ)(X) ⇔ ∃T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SNEGpr
(·,γ)(X|T ).

(24)
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Definition 9 and Proposition 1 provide two mathematically equivalent but
semantically different formulations. Definition 9 is a straightforward general-
ization of the qualitative regions. Proposition 1 provides an equivalent version
through the family COMP(T̃ ), which offers a clearer semantics. This clear seman-
tics enables us to explore the relationships stated in Theorem 1.

Instead of considering Pr(X|S) for every set S ∈ m̃(p), we may generalize
Pr(X|S) into a probability Pr(X|m̃(p)) regarding a set X and an interval set
m̃(p) which has not been well studied. Different interpretations of Pr(X|m̃(p))
may lead to different formulas. In our work, we interpret Pr(X|m̃(p)) as the
probability of a set in m̃(p) being included in X. Accordingly, we define the
following probabilistic structured regions.

Definition 10. Given a set of objects X ⊆ OB, one may define the following
pair of probabilistic structured positive and negative regions:

˜SPOS
pr

(α,·)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Pr(X|m̃(p)) ≥ α},

˜SNEG
pr

(·,γ)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Pr(Xc|m̃(p)) ≥ γ}, (25)

where the probabilities are computed as:

Pr(X|m̃(p)) =
|{S ∈ m̃(p)|∅ �= S ⊆ X}|

|m̃(p)| ,

P r(Xc|m̃(p)) =
|{S ∈ m̃(p)|∅ �= S ⊆ Xc}|

|m̃(p)| . (26)

Since each set in m̃(p) represents a possibility of p’s actual meaning set, a
high probability Pr(X|m̃(p)) means that, in a large portion of all possible worlds
COMP(T̃ ), the meaning set of p is included in X, or equivalently, p appears in
the qualitative structured positive region of X. Thus, it is with high probability
that p appears in the actual qualitative structured positive region of X.

Proposition 2. Given a set of objects X ⊆ OB, we have:

(p, m̃(p)) ∈ ˜SPOS
pr

(α,·)(X) =⇒ Pr
(
(p,m(p|T0)) ∈ SPOS(X|T0)

) ≥ α,

(p, m̃(p)) ∈ ˜SNEG
pr

(·,γ)(X) =⇒ Pr
(
(p,m(p|T0)) ∈ SNEG(X|T0)

) ≥ γ, (27)

where T0 ∈ COMP(T̃ ) is the actual table.

The two probabilities Pr(X|m̃(p)) and Pr(Xc|m̃(p)) can be efficiently com-
puted through the two bounds of m̃(p). For Pr(X|m̃(p)), if m∗(p) �⊆ X, then no
set in m̃(p) is included X, that is, Pr(X|m̃(p)) = 0. Otherwise, we have:

Pr(X|m̃(p)) =
|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p) ∧ S ⊆ X}|

|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p)}|

=
|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p) ∩ X}|

|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p)}| =
2|m∗(p)∩X−m∗(p)|

2|m∗(p)−m∗(p)|

=
2|m∗(p)∩X|−|m∗(p)|

2|m∗(p)|−|m∗(p)| = 2|m∗(p)∩X|−|m∗(p)|. (28)
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The probability Pr(Xc|m̃(p)) can be similarly computed and the following com-
putational formulation of the structured regions can be accordingly obtained.

Theorem 2. Given a set of objects X ⊆ OB, one may construct a pair of
probabilistic structured regions of X as:

˜SPOS
pr

(α,·)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | μ · 2|m∗(p)∩X|−|m∗(p)| ≥ α},

˜SNEG
pr

(·,γ)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | μc · 2|m∗(p)∩Xc|−|m∗(p)| ≥ γ}, (29)

where μ and μc are two numbers defined as:

μ =
{

1, if m∗(p) ⊆ X,
0, otherwise. μc =

{
1, if m∗(p) ⊆ Xc,
0, otherwise. (30)

While Definition 10 provides a conceptual understanding of the structured
regions which requires an exhaustive scan of m̃(p) to compute the probabilities,
Theorem 2 gives an equivalent computational formulation where the probabilities
can be efficiently computed through the two bounds of m̃(p).

Example 1. We illustrate the above probabilistic structured regions in Defini-
tions 9 and 10 with an incomplete table given by Table 1 [12]. The family
CDEFI(T̃ ) is given by Table 2.

Table 1. An incomplete table ˜T [12]

a1 a2 a3

o1 {1} {5} {6}
o2 {2} {4} {6}
o3 {1} {3} {6}
o4 {1} {3,4} {7}
o5 {1,2} {5} {6}
o6 {1} {4} {6}
o7 {1,2} {4} {6}

Given a set of objects X = {o2, o5, o6, o7} (Xc = {o1, o3, o4}) and thresholds
α = γ = 0.7, the two pairs of lower and upper regions defined in Definition 9
are:

SPOSpr
∗(α,·)(X) = {IC2, IC4, IC12, IC16, IC20, IC26, IC32}

SNEGpr
∗(·,γ)(X) = {IC3, IC7, IC8, IC15, IC18, IC24}

SPOS∗pr
(α,·)(X) = {IC2, IC4, IC9, IC12, IC13, IC16, IC20, IC26, IC32, IC34}

SNEG∗pr
(·,γ)(X) = {IC1, IC3, IC7, IC8, IC10, IC15, IC18, IC19, IC21, IC24, IC25,

IC27, IC28} . (31)
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Table 2. The family CDEFI( ˜T ) for Table 1

Label Intension Extension Label Intension Extension

IC1 a1 = 1 [{o1, o3, o4, o6},

{o1, o3, o4, o5, o6, o7}]
IC19 a2 = 3 ∧ a3 = 7 [∅, {o4}]

IC2 a1 = 2 [{o2}, {o2, o5, o7}] IC20 a2 = 4 ∧ a3 = 6 [{o2, o6, o7}, {o2, o6, o7}]
IC3 a2 = 3 [{o3}, {o3, o4}] IC21 a2 = 4 ∧ a3 = 7 [∅, {o4}]
IC4 a2 = 4 [{o2, o6, o7},

{o2, o4, o6, o7}]
IC22 a2 = 5 ∧ a3 = 6 [{o1, o5}, {o1, o5}]

IC5 a2 = 5 [{o1, o5}, {o1, o5}] IC23 a2 = 5 ∧ a3 = 7 [∅, ∅]
IC6 a3 = 6 [{o1, o2, o3, o5, o6, o7},

{o1, o2, o3, o5, o6, o7}]
IC24 a1 = 1 ∧ a2 = 3 ∧ a3 = 6 [{o3}, {o3}]

IC7 a3 = 7 [{o4}, {o4}] IC25 a1 = 1 ∧ a2 = 3 ∧ a3 = 7 [∅, {o4}]
IC8 a1 = 1 ∧ a2 = 3 [{o3}, {o3, o4}] IC26 a1 = 1 ∧ a2 = 4 ∧ a3 = 6 [{o6}, {o6, o7}]
IC9 a1 = 1 ∧ a2 = 4 [{o6}, {o4, o6, o7}] IC27 a1 = 1 ∧ a2 = 4 ∧ a3 = 7 [∅, {o4}]
IC10 a1 = 1 ∧ a2 = 5 [{o1}, {o1, o5}] IC28 a1 = 1 ∧ a2 = 5 ∧ a3 = 6 [{o1}, {o1, o5}]
IC11 a1 = 2 ∧ a2 = 3 [∅, ∅] IC29 a1 = 1 ∧ a2 = 5 ∧ a3 = 7 [∅, ∅]
IC12 a1 = 2 ∧ a2 = 4 [{o2}, {o2, o7}] IC30 a1 = 2 ∧ a2 = 3 ∧ a3 = 6 [∅, ∅]
IC13 a1 = 2 ∧ a2 = 5 [∅, {o5}] IC31 a1 = 2 ∧ a2 = 3 ∧ a3 = 7 [∅, ∅]
IC14 a1 = 1 ∧ a3 = 6 [{o1, o3, o6},

{o1, o3, o5, o6, o7}]
IC32 a1 = 2 ∧ a2 = 4 ∧ a3 = 6 [{o2}, {o2, o7}]

IC15 a1 = 1 ∧ a3 = 7 [{o4}, {o4}] IC33 a1 = 2 ∧ a2 = 4 ∧ a3 = 7 [∅, ∅]
IC16 a1 = 2 ∧ a3 = 6 [{o2}, {o2, o5, o7}] IC34 a1 = 2 ∧ a2 = 5 ∧ a3 = 6 [∅, {o5}]
IC17 a1 = 2 ∧ a3 = 7 [∅, ∅] IC35 a1 = 2 ∧ a2 = 5 ∧ a3 = 7 [∅, ∅]
IC18 a2 = 3 ∧ a3 = 6 [{o3}, {o3}]

With the same set X and the same thresholds, the pair of regions defined in
Definition 10 are:

˜SPOS
pr

(α,·)(X) = {IC2, IC12, IC16, IC20, IC26, IC32}
˜SNEG

pr

(·,γ)(X) = {IC3, IC7, IC8, IC15, IC18, IC24}. (32)

3.3 Non-probabilistic Structured Approximations in an Incomplete
Table Based on Subsethood Measures

We present a more general formulation of quantitative structured regions by
using a subsethood measure instead of the probabilities in Definition 9.

Definition 11. Suppose sh : 2OB × 2OB → [0, 1] is a normalized subsethood
measure. Given a set X ⊆ OB, one can define the following structured regions:

(1) SPOSsh
∗(α,·)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), S �= ∅, sh(S � X) ≥ α},

SNEGsh
∗(·,γ)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), S �= ∅, sh(S � Xc) ≥ γ};

(2) SPOS∗sh
(α,·)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), S �= ∅, sh(S � X) ≥ α},

SNEG∗sh
(·,γ)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), S �= ∅, sh(S � Xc) ≥ γ}. (33)

By using a subsethood measure sh(A � B) = |A∩B|
|A| , the probabilistic regions

in Definition 9 become special cases of the above regions. Non-probabilistic struc-
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tured regions can be constructed by applying non-probabilistic subsethood mea-
sures such as shRc

5
given in Eq. (19). Since each set S ∈ m̃(p) is a meaning set

of p in a completion, one can equivalently express the above regions through the
family COMP(T̃ ), for example:

SPOSsh
∗(α,·)(X) = {(p, m̃(p)) | ∀ T ∈ COMP(˜T ), m(p|T ) �= ∅, sh(m(p|T ) � X) ≥ α}. (34)

Similar as in Theorem 1, one may also establish relationships between the above
subsethood-based regions and those in the completions, for example:

(p, m̃(p)) ∈ SPOSsh
∗(α,·)(X) ⇐⇒ ∀ T ∈ COMP( ˜T ), (p, m(p|T )) ∈ SPOSsh

(α,·)(X|T ). (35)

Alternatively, one may generalize subsethood measures for two sets into those
for an interval set and a set to construct quantitative regions. Such subsethood
measures evaluate the degree to which an interval set is included in a set.

Definition 12. Suppose Sh : I(OB) × 2OB → [0, 1] is a normalized subsethood
measure where I(OB) is the family of interval sets on OB. Given a set of objects
X ⊆ OB, one may define the following pair of structured regions:

˜SPOS
Sh

(α,·)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Sh(m̃(p) � X) ≥ α},

˜SNEG
Sh

(·,γ)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Sh(m̃(p) � Xc) ≥ γ}. (36)

This definition depends on the specific definition of Sh which has not been well
studied. One may define Sh(A � B) through sh(A � B) where A ∈ A, such as
taking the average:

Sh(A � B) =

∑
A∈A

sh(A � B)

|A| . (37)

One may also define Sh through the qualitative set-inclusion such as using the
proportion of subsets of B in A:

Sh(A � B) =
|{A ∈ A | ∅ �= A ⊆ B}|

|A| . (38)

With the latter, the probabilistic regions in Definition 10 become special cases
of the above regions in Definition 12. One may also construct non-probabilistic
quantitative regions through Definition 12 by applying a subsethood measure
Sh that cannot be explained through probabilities.

4 Conclusion and Future Work

To combine the advantages of both quantitative and structured approximations,
this paper investigates quantitative formulations of structured approximations
in both complete and incomplete tables. We consider both probabilistic for-
mulations which are widely studied in the literature regarding unstructured
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approximations and non-probabilistic formulations which have not received due
attention.

Our work brings up several interesting topics to work on. A first topic is the
interpretation and determination of thresholds in various quantitative regions.
While there are lots of existing related studies with respect to the probabilistic
unstructured approximations in a complete table, the thresholds in subsethood-
based quantitative regions and those regions in incomplete tables need further
investigation. Solutions to this topic will help construct efficient computational
formulations of approximations, which is a second topic for future work. A third
topic is to investigate the relationships between this work and other concept
analysis approaches such as lattice theory, formal concept analysis, and pattern
structures. A fourth topic is the generalization of subsethood measures sh(A �
B) regarding two sets into those regarding interval sets, including Sh(A � B),
sH(A � B), and SH(A � B) where A,B are interval sets and A,B are sets. The
research on this topic will shed new light on defining meaningful quantitative
approximations in an incomplete table.

Acknowledgement. The author thanks reviewers for their valuable comments and
suggestions.
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