Skip to main content
. 2020 Jun 11;12223:3–22. doi: 10.1007/978-3-030-52683-2_1

Table 6.

Granular test results from model with case features and without lexicon. Scores are over each possible label for the model. Label Count describes how many instances of that particular label is present in the test set, and Prediction Count describes how many predictions the model produces for a particular label.

Label F1 Recall Precision Prediction count Label count
B-versionEndIncluding 0.7817 0.7817 0.7817 875 875
B-version 0.8573 0.8618 0.8527 2655 2627
B-versionStartIncluding 0.7415 0.7238 0.76 100 105
B-product 0.8711 0.8774 0.8649 4840 4771
O 0.9935 0.9931 0.9938 184649 184768
B-versionEndExcluding 0.7987 0.7922 0.8053 303 308
B-vendor 0.9126 0.8951 0.9308 2715 2823
I-version 0.4396 0.3509 0.5882 34 57
B-versionStartExcluding 0 0 0 2 1
I-product 0.8549 0.8812 0.8302 3787 3568
I-vendor 0.5714 0.5 0.6667 111 148
I-versionEndExcluding 0 0 0 0 1
I-versionEndIncluding 0.2581 0.16 0.6667 6 25
I-versionStartExcluding 0 0 0 0 0
I-versionStartIncluding 0 0 0 0 0