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Abstract

Background—Independent component analysis (ICA) is a popular tool for investigating brain 

organization in neuroscience research. In fMRI studies, an important goal is to study how brain 

networks are modulated by subjects’ clinical and demographic variables. Existing ICA methods 

and toolboxes don’t incorporate subjects’ covariates effects in ICA estimation of brain networks, 

which potentially leads to loss in accuracy and statistical power in detecting brain network 

differences between subjects’ groups.

New Method—We introduce a Matlab toolbox, HINT (Hierarchical INdependent component 

analysis Toolbox), that provides a hierarchical covariate-adjusted ICA (hc-ICA) for modeling and 

testing covariate effects and generates model-based estimates of brain networks on both the 

population- and individual-level. HINT provides a user-friendly Matlab GUI that allows users to 

easily load images, specify covariate effects, monitor model estimation via an EM algorithm, 

specify hypothesis tests, and visualize results. HINT also has a command line interface which 

allows users to conveniently run and reproduce the analysis with a script.

Comparison to Existing Methods—HINT implements a new multi-level probabilistic ICA 

model for group ICA. It provides a statistically principled ICA modeling framework for 

investigating covariate effects on brain networks. HINT can also generate and visualize model-

based network estimates for user-specified subject groups, which greatly facilitates group 

comparisons.

Results—We demonstrate the steps and functionality of HINT with an fMRI example data to 

estimate treatment effects on brain networks while controlling for other covariates. Results 

demonstrate estimated brain networks and model-based comparisons between the treatment and 

control groups. In comparisons using synthetic fMRI data, HINT shows desirable statistical power 

in detecting group differences in networks especially in small sample sizes, while maintaining a 

low false positive rate. HINT also demonstrates similar or increased accuracy in reconstructing 

both population- and individual-level source signal maps as compared to some state-of-the-art 

group ICA methods.

Conclusion—HINT can provide a useful tool for both statistical and neuroscience researchers to 

evaluate and test differences in brain networks between subject groups.
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1. Introduction

In recent years, there has been a growing interest in network based approaches to investigate 

brain organization and function. Under a network approach, observed brain signals represent 

a combination of signals generated from distinct brain functional networks. For example, in 

functional magnetic resonance imaging (fMRI), the observed blood-oxygen-level-dependent 

(BOLD) signal can be viewed as a combination of contributions from different brain 

networks. These brain functional networks can help reveal the brain’s functional 

organization structure as they have been shown to be present across a wide variety of 

subjects and across a range of different experimental conditions (Smith et al., 2009, 2013; 

Kemmer et al., 2015). Consequently, studying these brain functional networks has become a 

topic of great interest (Ma et al., 2007; Biswal et al., 2010; Wang et al., 2016; Kemmer et al., 

2018). Currently, one of the most popular brain network estimation tools is independent 

component analysis (ICA). As a special case of blind source separation, ICA identifies brain 

functional networks by separating observed imaging data, mostly fMRI signals, into linear 

combinations of latent source signals that are assumed to be statistically independent and 

non-Gaussian.

The earliest usage of ICA for studying brain networks applied Spatial ICA to single subject 

fMRI data. Spatial ICA (McKeown et al., 1997) separates the observed data into 

independent spatial maps and corresponding time courses and is the most popular technique 

for brain network estimation due to its ease of interpretation and the high spatial resolution 

of fMRI data. For fMRI data with a large number of measurements across time, it is also 

possible to perform temporal ICA (Smith et al., 2012), which separates the observed data 

into temporally coherent maps.

While methods for single subject ICA are quite well established, applying ICA to multiple 

subjects or groups is not straightforward and requires extension of the original ICA. Existing 

group level ICA techniques are frequently based on temporal-concatenation group ICA (TC-

GICA), which assumes that brain functional networks have the same spatial pattern across 

different subjects. Under a TC-GICA approach, the subject level data are stacked in the time 

domain and the spatial source signals (ICs) are extracted. The subject level ICs are then 

recovered using techniques such as back-reconstruction (Calhoun et al., 2001; Erhardt et al., 

2011) or dual regression (Beckmann et al., 2009). Inference on covariate effects under these 

frameworks requires secondary hypothesis testing or regression analysis.

Recently, Shi and Guo (Shi and Guo, 2016) proposed a hierarchical-covariate adjusted 

spatial ICA (hc-ICA) framework for estimating underlying brain networks adjusted by 

subject-specific covariate effects. This novel technique is fundamentally different from other 

group ICA methods because it directly incorporates covariate effects in the ICA 

decomposition. In this work we introduce the Hierarchical INdependent component analysis 
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Toolbox (HINT), a Matlab toolbox aimed at implementing these powerful hierarchical ICA 

techniques in a user-friendly platform allowing researchers to easily conduct analyses under 

the hierarchical ICA framework. HINT is released as an open source package under the MIT 

license (https://opensource.org/licenses/MIT) and is available for downloading on NITRIC1. 

By implementing the advanced hc-ICA model, HINT aims to improve the accuracy in 

estimation of brain functional networks by modeling covariate effects to account for 

between-subject heterogeneity in networks, which are not modelled in ICA decomposition 

of the current TC-GICA methods. Simulation studies have shown that this model based 

approach can result in improved power to detect differences in sub-populations (Shi and 

Guo, 2016; Wang and Guo, 2019), especially in small size scenarios. Throughout this paper, 

we use the term “sub-populations” to refer to sub-groups defined by user-specified clinical 

and demographic characteristics, such as treatment and control groups.

The hc-ICA implemented in HINT has several appealing features: it can provide model-

based estimates and prediction of sub-population brain networks and it offers a formal 

statistical framework for estimating and testing covariate effects. Such a statistically 

principled framework can potentially lead to improved accuracy and increased power for 

detecting brain network differences. For example, we (Shi and Guo, 2016) showed that hc-

ICA identified significant differences in the visual network between subjects in groups with 

and without post traumatic stress disorder whereas an existing probabilistic TC-GICA 

method did not. The findings from hc-ICA coincided with the results reported in previous 

fMRI studies which showed enhanced activities in visual cortex among PTSD subjects. As 

another example, in our recent work Wang and Guo (2019), we applied a longitudinal 

version of hc-ICA to investigate the differences between Alzheimer’s disease patients and 

control subjects. In comparison, we applied a probabilistic TC-GICA (Beckmann et al., 

2005) with dual regression method. The hc-ICA framework identified more significant 

differences across major resting state networks. In particular, we identified significant 

differences in the default mode network between Alzheimer’s disease patients and normal 

controls which coincided with previous findings in the literature, while the probabilistic TC-

GICA wasn’t able to detect such differences from the data. In both data applications, the hc-

ICA results have been shown to be consistent across different sets of initial values and robust 

to leave-one-out validation analyses.

At this time, the toolbox implements the hc-ICA technique of Shi and Guo (2016), with 

further extensions of this approach, including the longitudinal version of hc-ICA Wang and 

Guo (2019), in active development. The intent of this toolbox is to provide neuroimaging 

researchers with an easy-to-use tool for utilizing hierarchical ICA techniques on fMRI data, 

allowing them to estimate the brain networks of interest, test hypotheses about covariate 

effects, and generate model-based estimates of the brain networks on both the study 

population- and individual-level. The toolbox features several interactive visualization 

windows that allow users to flexibly specify the brain networks and subject sub-populations 

for results visualization. HINT also features a computationally optimized EM algorithm with 

significant improvements over the original EM in the hc-ICA paper (Shi and Guo, 2016). 

1https://www.nitrc.org/projects/hint
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This new EM algorithm in HINT provides much more efficient estimation of the hc-ICA 

model, particularly on data sets with a large number of subjects.

The HINT Matlab GUI allows the user to input their imaging data in The Neuroimaging 

Informatics Technology Initiative (NIFTI) file format. HINT then performs the 

preprocessing steps prior to hc-ICA, obtains initial guesses for the hc-ICA model 

parameters, and, upon user request, removes ICs that are not of interest, such as those 

corresponding to motion artifacts, from the subsequent hc-ICA modeling. Model estimation 

within HINT is carried out via an Expectation Maximization (EM) algorithm as described in 

Section 2.3. HINT can perform hypothesis testing on the covariate effects and linear 

combinations of the covariate effects using a voxel-specific approximate inference procedure 

(Shi and Guo, 2016). After obtaining parameter estimates, the toolbox provides display 

windows enabling the user to visualize brain network maps in several configurations. 

Specifically, the user can visualize the model-based estimates of the brain functional 

networks for sub-populations of interest by specifying their corresponding covariate 

patterns. The user can also visualize the model-based estimates of subject-specific brain 

networks to obtain individual-level network information. Furthermore, users can use the 

covariate effect display window to identify specific regions of the brain that show significant 

differences between groups, as well as perform model-based hypothesis testing of contrasts 

of those covariate effects.

In addition to the GUI interface, the HINT toolbox also includes a command line interface 

for the hc-ICA analysis allowing users to easily reproduce the analysis with a script or run 

HINT on a high performance computing cluster.

This paper proceeds as follows. First, Section 2 provides a review of the hc-ICA model, a 

description of the EM algorithm for estimating the model parameters, and an introduction to 

inference procedure for the covariate effects. Then, in Section 3, we provide a discussion of 

the toolbox. In Section 4, we carry out a simulation study using synthetic data in order to 

compare HINT to TC-GICA. Finally, in Section 5 we discuss future directions for HINT and 

provide some concluding remarks. In the Appendix, we provide a detailed walkthrough of 

the toolbox features, explain how they interface with the statistical model, and introduce the 

various visualization windows.

2. Methods

In this section, we describe the details of the hc-ICA method. Specifically, we discuss the 

required preprocessing, the hc-ICA model, and hypothesis testing on the covariate effects. 

All aspects of this procedure are implemented in HINT.

2.1. Preprocessing

As in standard ICA methods, prior to hc-ICA analysis, some preprocessing steps such as 

centering, dimension reduction and whitening of the observed data are performed by the 

toolbox to facilitate the subsequent ICA decomposition (Hyvärinen and Oja, 2000). Let Y i
be the T × V fMRI data matrix for subject i where T is the number of fMRI scans and V is 
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the number of voxels in a 3D fMRI scan. In HINT, prior to hc-ICA, each subject’s observed 

fMRI images are preprocessed as follows (Shi and Guo, 2016),

Y i = Λi, q − σi, q2 Iq
−1/2Ui, q

T Y i, (1)

where q is the number of independent components, Λi,q contains the first q eigenvalues and 

Ui,q contains the first q eigenvectors as obtained by a singular value decomposition (SVD) of 

the original fMRI data Y i. The residual variance, σi, q2  , is estimated by the average of the T – 

q smallest eigenvalues that are not included in Λi,q, representing the variability in Y i that is 

not accounted for by the first q components. The number of independent components, q, is 

specified by the user. This can be determined based on theoretical methods such as the 

Laplace approximation method (Minka, 2001), using the IC number suggested by existing 

group ICA toolboxes or based on established knowledge on ICA analysis of fMRI data.

2.2 hc-ICA Model

The hc-ICA framework decomposes multi-subject fMRI data using a two-level model, 

where the first level models each individual subject’s data as a mixing of subject-specific 

independent components (ICs), and the second level models the subject-specific ICs as a 

function of population-level spatial source signals and the covariate effects. More 

specifically, at the first level, each subject’s preprocessed data is decomposed into a linear 

mixture of subject-level ICs as:

yi υ = Aisi υ + ei υ , (2)

Where yi(υ) is the column vector from Yi that corresponds to voxel υ, si(υ) = [si1(υ); si2(υ), 

… , siq(υ)]T is a q × 1 vector, and each sil(υ)(l = 1, … , q) contains the spatial source signal 

of the lth IC at the υth voxel for subject i. Ai is the q × q orthogonal mixing matrix for 

subject i, which mixes the spatial source signals to generate the observed data, ei(υ) is a q × 

1 noise vector that represents the residual variations in the subject’s data that are not 

explained by the q extracted ICs. hc-ICA assumes that ei(υ) ~ N(0,Eυ). Moreover, since the 

prewhitening described in Section 2.1 is performed to remove temporal correlations in the 

noise term and to standardize the variability across voxels, hc-ICA assumes that the noise 

covariance is identical across voxels and is isotropic (Beckmann et al., 2005; Guo, 2011; Shi 

and Guo, 2016), i.e. Eυ = σ0
2Iq.

The second-level of hc-ICA models the subject level spatial source signals as a combination 

of population-level spatial source signals, covariate effects, and subject-specific random 

variabilities:

si υ = s0 υ + β υ Txi + γi υ , (3)

where s0(υ) = [s01(υ); s02(υ), … , s0q(υ)]T contains population level source signals for each 

of the q ICs. Covariate information is encoded in xi = [xi1; xi2, … , xip]T a p × 1 vector with 

the covariate settings for subject i. The q × 1 error vector γi(υ) reflects the residual between-

subject random variability after controlling for the covariate effects. hc-ICA assumes that 

Lukemire et al. Page 5

J Neurosci Methods. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



γi(υ) ~ N(0,D), where D = diag(v1
2, …, vq2). We allow the variances to be IC-specific to allow 

for different levels of between-subject random variability across various brain networks.

The population level spatial source signals, s0(υ), are modeled under a mixtures of 

Gaussians (MoG) approach (Shi and Guo, 2016; Guo, 2011; Guo and Tang, 2013; Gao et al., 

2017, 2018; Wang and Guo, 2019). That is, for IC ℓ, ℓ = 1, … , q, we have

s0ℓ υ ∼ MoG πℓ, μℓ, σℓ
2 , υ = 1, …, V , (4)

where πℓ = [πℓ,1, … , πℓ,m]′ with Σj = 1
m πℓ, j = 1, μℓ = [μℓ, 1, …, μl, m]′ and 

σℓ
2 = [σℓ, 1

2 , …, σℓ, m
2 ]′; m is the number of Gaussian components in MoG. The probability 

density of MoG πℓ, μℓ, σℓ
2  is Σj = 1

m πℓ, jg(s0ℓ(υ); μℓ, j, σℓ, j
2 ) where g(⋅) is the pdf of the 

Gaussian distribution. In fMRI applications, mixtures of two to three Gaussian components 

are sufficient to capture the distribution of fMRI spatial signals, with the different Gaussian 

components representing the background fluctuation and the negative or positive fMRI 

BOLD effects respectively (Beckmann and Smith, 2004; Guo and Pagnoni, 2008).

To facilitate derivations in models involving MoG, we define latent state variable z(υ) = 

[z1(υ), … , zq(υ)]′ at voxel υ. For ℓ = 1, … ,q, zℓ(υ) takes a value in {1, … ,m} with 

probability p[zℓ(υ) = j] = πℓ,j for j = 1, .., m. The latent state variable zℓ(υ) represents the 

voxel υ’s membership in the MoG of the ℓ IC, with zℓ(υ) = j indicating that voxel υ comes 

from the jth Gaussian component in the MoG distribution in the ℓ network.

2.3. EM Algorithm for model estimation

HINT employs the subspace-based EM algorithm in Shi and Guo (2016) to estimate the 

parameters in the hc-ICA model. Specifically, the model parameters are estimated using a 

unified maximum likelihood method via the EM algorithm that simultaneously estimates all 

parameters in the hc-ICA model. The detailed expression for the complete data log-

likelihood function at each voxel υ is:

lυ Θ; Y , X, S, Ƶ = ∑
i = 1

N
[logg(yi(υ); Aisi(υ), E) + logg(si(υ); s0(υ) + β(υ)′xi, D)]

+logg s0 υ ; μz υ , ∑z υ + ∑
ℓ = 1

q
logπℓ, zℓ(υ),

(5)

where Y = {yi(υ) : i = 1, … ,N, υ = 1, … , V}, X = {xi : i = 1, … ,N}, S = {si(υ) : i = 1, 

… ,N, υ = 1, … , V}, and Ƶ = {z(υ) : υ = 1, … , V}. The model parameters are 

Θ = β υ , Ai , E, D, πℓ , μℓ , σℓ
2 : i = 1, …, N, υ = 1, …, V , ℓ = 1, …, q . We note that Θ 

can be partitioned into two sets of parameters Θ = {ΘG,ΘL}. Here, ΘG is the set of global 

parameters which are common across voxels in the brain and include all the parameters in Θ 
except {β(υ)}, and ΘL is the set of local parameters which include the voxel-specific 

covariate effects {β(υ)}.
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The EM algorithm requires some initial values for the parameters. HINT obtains these 

starting values based on estimates derived from an initial analysis using an existing group 

ICA model via the Group ICA Of fMRI Toolbox (GIFT) (Calhoun et al., 2001). GIFT was 

one of the first group ICA methods developed under the TC-GICA framework for 

decomposing multi-subject fMRI data. In the iterative steps of the EM algorithm, we obtain 

the conditional expectation of the complete log-likelihood in the E-step and then obtain the 

updated parameter estimates in the M-step by maximizing the conditional expectation. We 

specify the convergence criteria separately for the global and local parameter estimation 

given that the two sets of parameter estimates have different convergence properties. The 

EM-algorithm is presented in Algorithm 1.

Algorithm 1:

The EM algorithm for estimating the hc-ICA model parameters.

Initial Values: Starting values of Θ 0
 and β0

 are obtained using TC-GICA estimates via GIFT.

REPEAT

  E Step:

 1. Evaluate the conditional distribution p[s υ |y υ ; Θ K ] .

 2. Evaluate the conditional expectations in Q(Θ|Θ K)) with regard to p[s(υ)|y(υ); Θ(K)]

Q(Θ|Θ k ) = ∑
v = 1

V
Es(υ)|y(υ)[lυ(Θ; Y , X, S, Ƶ)] .

  M Step:

  Update parameters as follows

Θ k + 1 = argmaxΘQ(Θ|Θ k )

UNTIL max iterations or convergence, i.e. 
‖ΘG

k + 1 − ΘG
k ‖

‖ΘG
k ‖

< ϵg and 
‖ΘL

k + 1 − ΘL
k ‖

‖ΘL
k ‖

< ϵl .

After obtaining the ML estimates Θ, HINT can derive model-based estimates of population- 

and subject-specific brain networks. In particular, HINT provides model-based estimation of 

the brain functional networks for specific sub-populations. For a sub-population 

characterized by covariate pattern x*, the estimated brain functional networks are derived by 

plugging the ML parameter estimates into the hc-ICA model, i.e.,

s υ x∗ = s0 υ + β υ Tx* . (6)

2.4. Inference for covariate effects

In this section, we introduce the statistical inference procedure for testing covariate effects in 

HINT. Standard maximum likelihood inference is based on the inverse of the information 
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matrix which is used to estimate the asymptotic variance-covariance matrix of the MLEs. 

However, the information matrix of the hc-ICA model is ultra-high dimensional for brain 

imaging data and is not sparse, which makes it extremely challenging to invert. HINT 

implements a novel statistical inference procedure for covariate effects in hc-ICA model 

developed by our group (Shi and Guo, 2016). The inference method provides an efficient 

approach to estimate the asymptotic standard errors of the covariate effects at each voxel, 

i.e., β υ υ = 1, …, V  by directly using the output from the EM algorithm. The method is 

developed based on the connection between the hc-ICA and linear models. Specifically, the 

hc-ICA model can be rewritten in a non-hierarchical form by collapsing the multi-levels of 

models in (2) and (3), which resembles the classical linear model. Therefore, a variance 

estimator for vec β υ ′  is developed following the linear model theory as,

Var vec β υ ′ = 1
N ∑

i = 1

N
Xi′W υ −1Xi

−1
, (7)

where Xi = x′i ⊗ Iq and W(υ) is the variance of γi υ + Ai′ei υ , which is the residual term in 

the non-hierarchical form of hc-ICA. Then, the variance of vec β υ ′  can be estimated by 

plugging in an estimator for W(υ) in (7), which can be obtained by plugging the ML 

estimates from the EM algorithm or based on the empirical variance estimator proposed in 

Shi and Guo (2016).

After deriving the variance estimator for covariate effects estimates in hc-ICA, HINT can 

conduct hypothesis testing on the covariate effects to test for group differences in brain 

networks. Specifically, users first formulate the hypothesis in terms of linear combinations 

of the parameters in the hc-ICA model, i.e. H0:λ′vec[β υ ′] = 0 vs . H1:λ′vec β υ ′ ≠ 0 where 

λ is a vector of constant coefficients specified based on the hypothesis that users are testing. 

HINT then constructs the test statistic as.

z υ =
λ′vec β υ ′

λ′V ar vec β υ ′ λ
(8)

The test statistic z(υ) is compared against its null distribution to derive the p-value for 

testing the significance of the covariate effects at voxel υ.

3. Toolbox Design

The goal of the HINT is to provide a GUI environment that facilitates users to implement the 

hc-ICA method described in Section 2. Analyses in the HINT can be boiled down to the 

following steps: loading the imaging data, preprocessing the imaging data, conducting an 

initial ICA analysis to obtain an initial guess and select ICs of interest (upon user request), 

estimating the hc-ICA model parameters using the EM algorithm, and visualizing the 

extracted brain networks on both population- and individual-level and testing hypotheses 

about covariate effects on brain networks. Figure 1 provides a schematic flowchart of 

workflow of the HINT.
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Our toolbox design incorporates three major modules implementing the above steps, each 

with a corresponding panel. The first module allows the user to input and preprocess the 

data. The second allows the user to run our optimized EM algorithm to estimate the model 

parameters. The third panel allows visualization of the brain network estimation and testing 

results. HINT allows users to save their progress in the intermediate analysis steps and load 

them later if needed to rerun the analysis for some specific steps while avoid repeating the 

entire analysis. We have included detailed walk through of the HINT toolbox in the 

Appendix.

To run hc-ICA analysis in HINT, three inputs are required including the preprocessed fMRI 

images for each subjects, a text file containing the covariates information, and a grey matter 

mask file. The mask file should be a grey matter mask with either 0s or NaNs in the 

locations outside the grey matter. These masks can be easily generated using readily 

available fMRI software such as FSL’s FAST tool (Zhang et al., 2001). After providing 

these inputs, HINT proceeds with the ICA preprocessing procedures as described in Section 

2.1. Specifically, HINT prewhitens the data and generates an initial guess using TC-GICA 

for the subsequent EM algorithm.

3.1 Computation of hc-ICA

Parameter estimation is carried out in the analysis panel via an EM algorithm as described in 

Section 2.3. The panel provides plots enabling real time monitoring of the algorithm’s 

progress. These plots display the convergence criteria functions for both the global and local 

parameters in hc-ICA, i.e. 
‖ΘG

k + 1 − ΘG
k ‖

‖ΘG
k ‖

 and 
‖ΘL

k + 1 − ΘL
k ‖

‖ΘL
k ‖

, across iterations. The 

algorithm is terminated if convergence criteria are met or the maximum number of iterations 

are reached. Please refer to the Appendix for detailed description and screenshot of the 

analysis panel.

Due to the large dimension of both the fMRI data and the parameter space, parameter 

estimation for hc-ICA can be quite expensive both in terms of memory and computation. In 

light of this, extensive testing and care has been put into the EM algorithm implemented in 

HINT in order to make it as fast as possible, while still allowing it to scale well as the 

sample size increases. Specifically, we have vectorized the updates for all population-level 

parameters in the model across data to reduce the computation time. Subject-level 

parameters are updated individually for each subject which allows the algorithm to scale 

well without memory issues as the sample size grows. By optimizing the algorithm, HINT 

has reduced the running time from weeks using the original algorithm in Shi and Guo (2016) 

to hours. In our experiments, the EM algorithm generally converges within 100 iterations 

and computation time is in hours with some variations depending on the number of 

independent components (ICs) and the number of subjects in the analysis.

3.2 Visualization and Hypothesis Testing

The visualization module provides four types of displays, corresponding to the different 

parameters of interest in the study. The population display shows the estimated population-
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level brain network maps across all subjects. The sub-population display shows the 

estimated brain network for specific sub-populations, which are subject groups defined by a 

specific set of covariate values. The beta display window provides tools for visualization of 

the estimated covariate effects and hypothesis testing of the effects and contrasts as 

described in Section 2.4. Finally, the subject-specific display allows examination of 

individual subject’s brain network maps. All panels provide thresholding functionality, and 

the population display window can be used to generate network masks which can then be 

applied in the other windows. An example of the sub-population comparison window is 

provided in Figure 2 for illustration. In this example, HINT provides side-by-side 

comparison of the default mode network maps between two sub-populations defined by 

user-specified covariates. In the Appendix, we provide a detailed explanation of each 

visualization window.

3.3 Command Line Interface

In addition to the GUI interface, the HINT can also be run using the command line interface 

in Matlab. This function facilitates users to reproduce an analysis with a script, conduct 

simulations studies by running HINT on replicates of synthetic imaging data, or run the 

HINT analysis on a high performance computing cluster to analyze a large data set. 

Specifically, the hc-ICA analysis can be conducted using the Matlab function runHINT.m 

from the command line as,

runHINT(HINTpath, datadir, outdir, q, N, numberOfPCs, maskf, covf, prefix, maxit, 

epsilonl, epsilon2) ,

where HINTpath is the file path to the HINT toolbox, datadir is the file path to the data 

directory, outdir is the file path to the output directory, q is the number of independent 

components, N is the number of subjects, numberOfPCs is R which is the number of 

principal components extracted in the two stage dimension reduction of the initial TC-GICA 

analysis via GIFT, maskf is the file path for the mask file in Nifti format, covf is the file path 

for the .csv file containing the covariates, prefix is the desired prefix for the output, maxit is 

the maximum number of EM iterations, and epsilon1 and epsilon2 are the convergence 

criteria ϵg and ϵl described in detail in the Appendix. After the script finishes running, the 

results from the hc-ICA can be viewed through the HINT visualization window.

4. Comparison to Some TC-GICA Approaches

We conduct a comparative study between the HINT and three existing TC-GICA methods 

using synthetic data to illustrate its performance in detecting network differences and 

estimating spatial maps. Following Shi and Guo (2016), we generated synthetic fMRI 

datasets from three underlying source signals (q = 3) and considered various sample sizes 

with N = 25, 50,100 and 200. For each source or IC, we first generated 3D population-level 

spatial maps, i.e. s0(υ), with dimension 53 × 63 × 3 based on three selected slices from real 

fMRI imaging data. We then generated two covariates for each subject with one (xi1) being a 

categorical covariate simulated from Bernoulli(0.5) distribution and the other xi2 being a 

continuous covariate randomly generated from a uniform (0,1) distribution. The strengths, 

β(υ), for these voxels were taken from {2.0, 3.0, 4.0}. In this paper, we generated synthetic 
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data from more complex settings where the spatial sources and covariate effects can be 

overlapping. Specifically, we considered all four possible scenarios with the combinations of 

overlapping or non-overlapping source signals and overlapping or non-overlapping covariate 

effects. Figure 3 shows the activated regions in each IC and the covariate effect maps for the 

non-overlapping case. Highlighted regions correspond to active voxels. A full view of all 

combinations of overlapping and non-overlapping maps can be found in Table 4 of the 

Appendix.

The subject-specific spatial source signals were simulated as the linear combination of the 

population-level signals, covariate effects and subject-specific random effects. We 

considered three levels of between-subject variability, labeled as “low”, “medium,” and 

“high,” which correspond to between-subject variances of diag{0.1, 0.3, 0.5}, diag{1.0, 1.2, 

1.4}, and diag{1.8, 2.0, 2.5}, respectively. For temporal responses, each IC had a time series 

of length of T = 200 that was generated based on time courses extracted from real fMRI data 

and hence represented realistic fMRI temporal dynamics. We then generated subject-specific 

time sources with similar frequency features but different phase patterns (Guo, 2011), which 

represented temporal dynamics in resting-state fMRI signals. After obtaining the spatial 

maps and time courses for the source signals, Gaussian background noise was added to 

generate observed fMRI data. Table 1 displays a summary of the simulation settings we 

varied. We considered all combinations of settings and generated 50 datasets per 

combination.

Comparison Methods

We compared the performance of HINT with three Group ICA methods: group ICA with 

GICA3 back reconstruction (GICA3) (Erhardt et al., 2011) and group ICA with the spatio-

temporal back reconstruction (STR) , as implemented in the GIFT toolbox (Calhoun et al., 

2001). We also compared to group information guided ICA (GIG-ICA) using the GIFT-

estimated group-level spatial maps as the reference signals (Du and Fan, 2013), which was 

was implemented using the gig-ica package available on NITRIC2. For the GICA3, GIG-

ICA, and STR approaches, once we have obtained back-reconstructed subject-level spatial 

maps, we fit the following regression model at each voxel and IC (denoted q),

siq υ = s0q υ + β1q υ xi1 + β2q υ xi2 + ∈iq υ , (9)

for q = 1,2,3. Significance was assessed using the p-values for the estimated coefficients.

Performance Metrics

We estimated the false positive rate or Type-I error rate with the empirical probabilities of 

falsely detecting covariate effects at voxels such that there were no covariate effects, i.e. 

β(υ) = 0. We estimated the power of the tests with the empirical probabilities of detecting 

covariate effect at voxels with non-zero covariate effects, i.e., β(υ) ≠ 0. We report the 

correlation between the true and estimated population-level spatial maps and the true and 

2https://www.nitrc.org/projects/gig-ica/
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estimated subject-specific maps in order to measure how well each approach does in 

estimating the population- and individual-level spatial maps.

Results

In general, we found the performance of HINT is very similar across the the four scenarios 

with various combinations of overlapping or non-overlapping signals. It only shows slight 

decrease of accuracy in estimating the population-level spatial maps in the presence of 

overlapping signals. We show the results for the scenario with non-overlapping source 

signals and non-overlapping covariate effect maps in Figures 4 and 5. The results for the 

other three configurations with overlapping in either source signals or covariate effects are 

presented in Figure 15–20 in the Appendix, which are generally consistent with the results 

from the non-overlapping setting. The simulation results in Figure 4 show that HINT 

generally demonstrates better or similar accuracy in recovering both the population-level IC 

spatial maps (i.e. S0) and the subject-level IC spatial maps (i.e. Si), as compared to the other 

approaches. For testing covariates’ effects on brain networks, the results in Figure 5 show 

that with small sample size N = 25 the HINT approach has the highest power to detect true 

covariate effects, followed by GICA3, GIG-ICA, and then STR. As the sample size 

increases, GICA3, GIG-ICA, and HINT have similar statistical power, all of which 

outperform the STR approach. The Type I error rates are generally comparable between 

STR, GIG-ICA and GICA3, while HINT shows a lower Type I error rate.

5. Conclusions

In this paper we introduced the HINT Matlab toolbox for implementing hierarchical-

covariate adjusted ICA (hc-ICA) (Shi and Guo, 2016) which is the first group ICA method 

that models covariate effects in the ICA decomposition. HINT enables users to perform 

hierarchical ICA analyses using an intuitive and user friendly interface, that neatly separates 

data loading/ preparation, algorithm execution and result visualization using separate tabs 

and windows. HINT provides interactive visualizations of the output of analyses aiding users 

in testing hypotheses about covariate effects on brain networks. HINT also offers a script 

based execution work flow for non-gui server environment users. HINT is useful for both 

statisticians and neuroscientists for investigating differences in brain functional networks 

between clinical sub-populations while controlling for potential confounding factors. To the 

best of our knowledge, HINT will be the first ICA toolbox that allows users to conduct 

hypothesis testing on user-specified linear contrasts of covariate effects and to obtain model-

based prediction of sub-population brain network maps based on user-specified 

characteristics. While this paper focused on the implementation of the hc-ICA model using 

the HINT toolbox, related ICA methods developed under the hierarchical ICA framework 

are going to be added to the HINT. For example, we have recently developed a longitudinal 

ICA model (Wang and Guo, 2019) for modeling longitudinal fMRI data and this method 

will be incorporated into the future version of the HINT toolbox.

The first level model of the hc-ICA model in equation (2) of the paper bears a resemblance 

to the general linear model (GLM). However, there are several fundamental differences 

between hc-ICA and GLM: 1) unlike the GLM which is based on a pre-specified design 
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matrix, hc-ICA doesn’t require any prior information in it model where both the mixing 

matrix A and spatial source signals s are unknown and need to be estimated based on the 

observed imaging data, 2) the hc-ICA is a multi-level model which includes the first-level 

and second-level models in (2) and (3) and also the Mixture of Gaussian (MoG) source 

distribution model in (4). In comparison, the GLM is a single-level model that doesn’t model 

the various levels of variability and doesn’t model the unobserved latent source signals s, 3) 

the estimation methods are fundamentally different between hc-ICA and the GLM. hc-ICA 

uses an EM algorithm to simultaneously estimate all the parameters and latent variables 

across its multi-level models while the GLM mainly uses least square estimation given its 

relatively simple model set up.

When applying ICA to extract brain networks, we often need to determine whether the 

identified independent components (ICs) are related to neural processing or caused by non-

neural related artifacts. In its current form, HINT includes a feature that allows supervised 

removal of artifactual ICs after obtaining an initial guess by visual inspection of the spatial 

maps of the extracted ICs or by correlating the IC time series with physiological related 

temporal signals. In the future, we plan to add an automated procedure, similar to the FIX 

algorithm (Salimi-Khorshidi et al., 2014), into our HINT toolbox to help identify and 

remove nuisance ICs. Specifically, a classifier could potentially be developed to calculate the 

predicted probability that an IC is artifactual. Such a classifier could help guide the decision 

of whether to include or remove an IC from the data.

HINT uses estimates from TC-GICA to provide the starting values to initiate the EM 

algorithm. A limitation of the EM algorithm is the potential for converging to a local 

maximum for the objective function. For a fixed initial guess, the EM algorithm is 

theoretically guaranteed to converge to a maximum, but not necessarily the global 

maximum. One commonly used strategy to overcome this limitation of EM is to consider 

different starting values, e.g. by adding random variations to the initial TC-GICA estimates 

and re-run the estimation procedure multiple times. We have adopted this strategy in our 

previous work (Shi and Guo, 2016; Wang and Guo, 2019).
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Appendix 1 -: Toolbox Details

In the following sections, we walk through the main steps of the HINT toolbox. To 

demonstrate the functionality of the toolbox, we perform an entire hc-ICA analysis using a 

fMRI dataset with 24 subjects. We have measures of three covariates: score on a behavioral 

test, treatment group, and gender. Our primary interest is in identifying a treatment effect on 

the spatial maps, however we also are interested in any possible differences in brain 

networks due to gender or score. The steps of the analysis will be carried out using the 

following 3 panels:
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1. The prepare analysis panel (“Prepare Analysis”) is where the user inputs the 

data, performs model specification of the covariates and interactions, conducts 

initial TC-GICA analysis to obtain initial values for the hc-ICA EM algorithm, 

and selects ICs of interest for hc-ICA modeling if requested by the user.

2. The analysis panel (“Run analysis”) is where the user applies the EM algorithm 

to estimate the hc-ICA model parameters. The user can specify the maximum 

number of iterations and the convergence criteria for the EM algorithm, as well 

as monitor the convergence of the EM algorithm estimates using two change 

plots displaying the changes in the global and local parameters across EM 

iterations.

3. The results display panel (“Visualize”) provides visualization GUIs for the 

results from the hc-ICA model analysis including the model-based estimates of 

the population- and individual-level spatial maps for brain networks and the 

estimated covariate effects maps. The visualization GUI also allows users to 

specify covariate patterns for a sub-population of interest and obtain the model-

based estimation/prediction of the corresponding brain network. The covariate 

viewer within the visualization GUI enables model-based hypothesis testing 

about covariate effects following the procedure outlined in Section 2.4.

6.1. Prepare Analysis Panel

In the Prepare Analysis panel (“Prepare Analysis”, Figure 6), users can input the data, 

perform model specification, preprocess the images using the method in Section 2.1, 

conduct initial analysis using a TC-GICA model to generate initial values for the hc-ICA 

EM algorithm, and select ICs of interest for the subsequent hc-ICA modeling.
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Figure 6: 
The HINT analysis preparation panel in which the user can setup their analysis and obtain 

initial values for the EM algorithm for the hc-ICA model parameters.

6.1.1. Data Input

The first section, i.e. “1. Set up”, of the panel asks the user to specify the folder for the 

analysis, along with selecting whether they would like to generate an output log. All output 

from the HINT is stored in the selected folder. If the output log is selected, a text file will be 

created in the analysis folder that provides information about the preprocessing and analyses 

performed.

In “2. Input”, the user has two options when inputting data for the analysis. They can start a 

new analysis by selecting “Import Nifti files” and inputting the images in Nifti format. 

Alternatively, if the user wishes to continue an analysis that they have already started, they 

can load the runinfo file (described later) corresponding to that analysis using the “Load 

saved analysis” option, allowing them to bypass the preprocessing and initial analysis.

When starting a new analysis, the user is instructed to provide three elements: the Nifti files 

containing the subject-level data, a mask file in Nifti format, and a file containing the 

subjects’ covariates. The mask file should be a grey matter mask with either 0s or NaNs in 
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the locations outside the grey matter. These masks can be easily generated using readily 

available fMRI software such as FSL’s FAST tool (Zhang et al., 2001). The covariate file 

must be a .csv file conforming to the following structure. The top row of the covariate file 

contains variable names where the first variable name needs to be specified as “subject” 

since the first column is reserved for subjects’ filenames. Then, each of the following rows 

contains the covariates of a subject. In particular, the first column includes the filename for 

the subject file. An example covariate file layout is provided in Table 2. In this file, we 

included the three covariates: score, treatment group, and gender.

After reading in the data, the user has the option to perform model specification using the 

“Select Covariates” button (Figure 7). Pressing this button opens up the “Model 

Specification”

Table 2:

An example covariate file layout. The first column contains the participant identifiers and 

the remaining columns contain covariate values.

subject Score Group Gender

subj1.nii 28 Trt 1

subj2.nii 36 Trt 1

⋮ ⋮ ⋮ ⋮

subj5.nii 42 Ctrl 0

window in Figure 7. This window provides users with the option to include and exclude 

individual covariates from the analysis, specify interactions to include in the analysis, and to 

specify whether covariates are continuous or categorical. By default, the HINT treats string 

values (e.g. “Group” in Table 2) as categorical covariates and performs reference cell 

coding, creating binary indicators for all the non-reference levels. Numeric values are treated 

as continuous covariates by default (e.g. “Score” in Table 2). If the user has integer codings 

for categorical covariates (e.g. “Gender” in Table 2) and would like to treat the integer 

values as categorical levels, they can switch the covariate from “continuous covariates” to 

“categorical covariates” using the “Specify Covariate Types” panel shown in Figure 7. 

Finally, the reference category for categorical covariates can be changed using the “Specify 

Reference Category” boxes. For example, in Figure 7 we have changed the reference group 

to be the control group.
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Figure 7: 
The covariate display window. Here the user can view the design matrix, verify that 

covariates are coded correctly, change covariate traits (“continuous” vs. “categorical”), 

change the reference group for categorical covariates, and add interaction effects.

6.1.2. Initial TC-GICA analysis

The EM algorithm used to estimate the parameters in the hc-ICA model functions most 

efficiently when provided with a good set of starting values. To obtain the set of starting 

values, HINT first conducts an initial analysis using GIFT (Calhoun et al., 2001). In addition 

to providing a reasonable set of starting values, the initial analysis can also help users 

identify ICs of interest for the hc-ICA model. For example, when performing ICA of fMRI 

data, there may be some ICs that are not neural-related but correspond to artifacts including 

motion effects. It is possible to remove these artifact ICA components from the data and 

then perform the ICA (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014). Furthermore, 

among the extracted ICs, users may have strong interests in specific brain functional 

networks and would like to focus on these networks in hc-ICA modeling. After running the 

initial analysis, HINT dispalys the estimated ICs from GIFT and provides users the option of 

selecting a subset of ICs of interest for the subsequent hc-ICA modeling while removing the 

rest of the ICs from the data.
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The initial analysis via GIFT consists of several steps. First, a two stage dimensionality 

reduction step is performed prior to TC-GICA. At the first stage, each subject’s data is 

reduced to R principal components. Then, the PCA-reduced subject data is stacked to create 

an NR × V data matrix where N is the number of subjects and V is the number of voxels in 

the brain mask. The second-stage dimension reduction is then performed on this stacked 

group matrix to reduce it to a q×V data matrix where q is the number of independent 

components to be extracted. To implement this two-stage dimension reduction, we specify R 
and q in the “Number of PCs” and “Number of ICs” boxes in the preprocessing panel 

(Figure 6). After the second stage of reduction, spatial ICA is performed on the reduced data 

to obtain the q × V independent components corresponding to population-level brain 

networks and the corresponding mixing matrix. Next, subject-specific ICs are obtained using 

the back reconstruction approach as described in Calhoun et al. (2001). Based on these 

subject-specific IC estimates, HINT generates the initial values for the parameters in the hc-

ICA model by clicking the “Generate initial values” button (Figure 6). Users can then 

visualize the estimated IC maps from the TC-GICA initial analysis and, if they want, select 

ICs of interest for the subsequent hc-ICA modeling using the “Choose ICs for hc-ICA” 

button (Figure 6).

6.1.3. Saving the analysis setup via the runinfo file

In applications, it is often desirable to save the analysis setup to facilitate reproducing the 

analysis on a later occasion or to re-perform the analysis with some modifications. HINT 

enables this reproducibility by building an information file entitled the “runinfo” file 

containing the information about the data set and the analysis set up based on the 

specifications from the current GUI. Table 3 in the Appendix displays the list of objects 

included in “runinfo” file. This file is automatically created when the user selects the “Save 

setup and continue” option displayed in Figure 6. When clicked, this button asks the user to 

specify a prefix for the analysis. A subfolder is created with this prefix, and the runinfo file 

is written to this folder, along with all EM algorithm output. This file can be referenced 

when the user chooses to repeat the analysis on the same data on a later occasion and 

eliminates the need to repeat some of the steps such as the loading the Nifti files and 

preprocessing of the images. The runinfo file is a single file, and thus can be easily moved 

across different computers or networks.

6.2. The Analysis Panel

After performing model specification and obtaining an initial guess for the model 

parameters, the second panel (Figure 8) is used to carry out the hc-ICA analysis, estimating 

parameters in the specified model via EM algorithm. HINT provides two EM iteration plots 

to monitor the convergence of the EM estimates for the global parameters and local 

parameters, respectively. The analysis panel in HINT allows users to specify the following 

parameters for EM convergence:

Lukemire et al. Page 18

J Neurosci Methods. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
The HINT analysis panel. This panel allows the user to select settings for the estimation 

procedure and to track the progress of the algorithm via EM iteration plots.

Max Iterations The maximum number of EM algorithm iterations.

Epsilon: Global Parameters The termination criterion for the convergence of the global 

parameters, i.e. ϵg in Algorithm 1.

Epsilon: Local Parameters The termination criterion for the convergence of the local 

parameters, i.e. ϵl in Algorithm 1.

The EM algorithm stops when the convergence criteria are met or when reaching the 

maximum number of iterations. After selecting “Run”, the user can monitor the algorithm’s 

progress using the iteration plots displayed on the right hand side of the analysis panel 

(Figure 8). These two figures display 
‖ΘG

k + 1 − ΘG
k ‖

‖ΘG
k ‖

 and 
‖ΘL

k + 1 − ΘL
k ‖

‖ΘL
k ‖

 across iterations. 

Additionally, through the iteration plots, HINT offers the user the flexibility of manually 

stopping the algorithm when it is needed. This flexibility is useful in practice because the 

EM convergence criteria may need to vary across different datasets due to the the differences 
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in the dimension of parameters and sample sizes and the user may lack sufficient 

information in pre-specifying a suitable convergence criteria for a particular dataset. By 

monitoring the iteration plots, if at some point the user is already satisfied with the 

convergence, they can manually terminate the EM algorithm by using the “Stop” button even 

though the pre-specified termination criteria have not yet been met. In this case, the 

algorithm will terminate at the end of the current iteration and output the results. 

Convergence time will vary based on the dataset, the number of independent components, 

and the number of subjects in the analysis. However, in general we find that the approach 

converges within several hours.

After the algorithm terminates, either by reaching the stopping criteria or by user 

intervention, HINT saves all relevant results. These files can be found in the output 

subfolder of the directory specified in the “prepare analysis” window. All files will begin 

with the user-specified prefix. The following items are saved: the overall population 

aggregate maps, the s0 maps, the covariate effect maps, and maps of the estimated standard 

errors for the covariate effects. Individual subject level results can be found in the iteration 

results file for the final completed iteration.

6.3. Visualization Panel

The third and final panel in HINT is the visualization panel. Figure 9 displays the panel, 

which enables the user to visualize the results from the hc-ICA analysis overlaid on the 

brain. There are two ways that the user can visualize results. First, if the user has just 

completed an hc-ICA analysis and is coming from the second HINT panel, then the results 

will already be loaded and they can proceed directly to selecting a viewer window. Second, 

if the user wishes to view results from a previously completed analysis, they can fill out the 

display path and prefix boxes using the options they selected in the prepare analysis panel 

when they first performed the analysis.
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Figure 9: 
The HINT visualization panel. In this panel the user can view the overall study population-

averaged maps, compare sub-populations, look at the estimated ICs for individual subjects, 

and examine the estimated beta coefficient maps.

The user can select the type of result to view in the “Display type” section of the 

visualization panel. HINT provides display viewers for the following main results from hc-

ICA: “Population display maps” shows the model-based estimates of the population-level 

brain network maps, “Subpopulation display maps” shows model-based estimates of the 

brain network maps for particular sub-populations defined by user-specified covariate 

patterns, “Subject specific display maps” shows model-based estimates of network maps for 

individual subjects in the data, “Beta-coefficients display maps” shows the estimated 

covariate effects including the maps of the beta parameters, i.e. β υ  and also maps of user-

specified linear combinations of the beta parameters. In each of the four display viewers, the 

user is able to move around the maps with the mouse cursor to view different locations of 

the brain network. There is a “Location and Crosshair Information” section in each of the 

display viewers, adapted from the BSmac viewer (Zhang et al., 2012), that provides the user 

with information on the current brain location at the cursor. Specifically, the user can view 

the coordinates of the current crosshair in the 3D brain image, the corresponding Brodmann 

area the current crosshair is located in, and the value of the displayed estimates or its 
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corresponding Z-score at that crosshair. Next, we demonstrate the four display viewers using 

the fMRI study data.

6.3.1. Population average display maps
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Figure 10: 
The HINT study population-level display window. Here the user can view the population 

average maps, as well as create masks using the “create mask” button in the lower right-hand 

panel. These masks can be applied in other windows such as the single subject viewer.

The first display window, the study population level display, allows the user to view the 

population-level brain network maps. These correspond to the average of the model-based 

estimates of subject-specific brain networks across subjects in the study. From this window, 

the user can select different ICs to display various brain network estimates. Figure 10 

displays the group level map of the IC corresponding to default mode network. By default, 

HINT displays the intensity of the estimated spatial source signals in the population-level 

brain network. Alternatively, by selecting the “View Z-score” option, the user can view the 

Z-scores of the spatial source signals which are derived from the raw intensity. An advantage 

of the Z-score is that it is unit-free and standardized, making it easier to compare across 

different ICs and to threshold. In fMRI analysis, researchers are often interested in 

thresholded IC maps to identify “significantly activated” voxels in a brain network. HINT 

allows user to threshold the IC maps by either specifying a particular Z-score value or by 

moving the Z thresholding slider until it reaches a satisfactory thresholded IC map. Then the 

user can save the thresholded IC map using the “Create Mask” option. The saved threshold 
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IC mask can be used in other display viewer windows to view the effects within an estimated 

brain network.

6.3.2. Sub-population display maps

The second display viewer, “Sub-population display maps” shows the the sub-population 

brain network maps. In this window, the user can define a sub-population of interest by 

specifying a combination of covariate values x*. The window then displays the estimated 

sub-population IC maps as defined in equation (6) for the corresponding sub-population. 

HINT also allows the user to specify multiple sub-populations of interest and display their 

estimated brain networks side by side in this display viewer. This helps the user to visually 

compare the networks between subpopulations, such as treatment vs. control group or 

diseased vs normal group. Figure 2 in the main manuscript shows an example where we 

specify two sub-populations: subpop 1: people in treatment group with a score of 28 and 

gender 0 and subpop 2: people in the control group with a score of 45 and gender 0. The left 

section of the display window provides the side-by-side viewing of the estimated maps of 

the default mode network for the two sub-populations. As in the population display window, 

the user can use the Z thresholding slide bar to view the thresholded IC maps at different Z-

value thresholds. The crosshair movement is synced across the sub-population IC maps to 

facilitate the comparison of the spatial source signals between sub-populations across voxels 

in the network.

6.3.3. Subject specific display maps
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Figure 11: 
The HINT single-subject viewer. The user can select the estimated maps for each individual 

subject as well as apply masks generated using the population-level viewer.

The third display viewer, “Subject specific display maps”, allows an investigator to view the 

estimated IC maps for each subject in the study. These maps can be viewed much in the 

same way as the population maps. It is also possible to apply the thresholed masks generated 

from the population-level display viewer to the subject-specific images to show the 

estimated networks across subjects. See Figure 11 for an example of this window.

6.3.4. Beta coefficient display maps

The fourth display viewer, Beta coefficient display maps (Figure 12), shows the estimated 

maps of the beta coefficients and their linear combinations. These displays allow users to 

view the covariate effects within the estimated brain networks and identify locations in the 

networks that show significant covariate effects. Hypothesis tests can be performed using the 

inference procedure described in Section 2.4 and test results can be shown in the display 

viewer. The resulting maps are shown by Z-score, and can be thresholded using the slider 

bar or by specifying an exact threshold. As an example, Figure 13 shows the Z-score 

thresholded at 1.96 for testing the treatment effects in the example data set. For comparison 
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purpose, Figure 13 also displays the corresponding Z-score map for testing treatment effects 

based on TC-GICA. The effect estimates using TC-GICA are more spatially dispersed than 

those estimated using hc-ICA, for example the second slice in Figure 13 shows a large area 

of activation in the frontal region of the brain. These spatially dispersed estimates are 

indicative of noiser estimates from TC-GICA. On the other hand, HINT shows more 

significant treatment effects within the relevant regions in the network. Thus, by formally 

modeling covariate effects in the ICA decomposition, HINT provides more accurate 

estimates and demonstrates higher statistical power in detecting covariate effects than TC-

GICA.
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Figure 12: 
Example of the covariate effect viewer for the effect of being in the treatment group on the 

IC corresponding to the default mode network.
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Figure 13: 
The estimated treatment effect in the DMN under TC-GICA using a Z = 1.96 significance 

threshold (compare to Figure 12).

Contrast Specification—The bottom-right panel in Figure 12 is the contrast specification 

panel for the covariate effects. Say we are interested in the overall effect on the brain 

network for a person with a score of 30 in the treatment group who was also of the Gender 

coded as 0. Recall that our covariate effects, in order, are (1) score, (2) being in the treatment 

group, and (3) being gender 1. The corresponding vector of contrast coefficients is λ′ = [30 

1 0] In the bottom-right panel of Figure 12, we select “add new contrast”, and fill out the 

values for the main effects. Any specified interactions are automatically calculated based on 

the provided values. Then, selecting the contrast from the drop-down menu above the 

contrast list, we see the image displayed in Figure 14. This is the contrast image for testing 

hypotheses about the specified linear combination of covariate effects. Notice that this map 

can be thresholded by Z-score.

Lukemire et al. Page 28

J Neurosci Methods. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14: 
Example of the contrast for people in the treatment group with a score of 30 and of the 

gender coded as 0. The image is thresholded using Z = 3 as the cutoff.

Appendix 2 -: Runinfo File Structure

Table 3:

The objects contained in the runinfo file.

Variable Description

N The number of subjects

X The design matrix

varNamesX The names of the columns of the design matrix

varInModel Whether a variable is included in the model

interactions The interactions in the model in terms of the design matrix

interactionsBase The interactions in the model in terms of the original covariates

YtildeStar The Nq × V matrix of preprocessed data

beta0Star The initial guess for the beta maps

covariates The covariate names
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Variable Description

covfile The filepath to the covariate file

isCat A p × 1 vector indexing categorical covariates

maskfl The path to the mask file

niifiles A cell array of paths to the subject level fMRI data

numPCA The number of principal components for preprocessing

outfolder Path to the output directory

prefix Prefix for the files in the analysis

q The number of independent components

thetaStar Structure containing initial guess values

time_num The number of time points for each subject

voxSize The dimension of the mask

Table 3 displays the variables contained in the runinfo file for a HINT analysis.
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Appendix 3 -: Full Synthetic Data Results

Table 4:

Spatial maps used for the synthetic data study. Within each image, each row corresponds to 

an IC. The first set of maps correspond to the baseline source signals. The middle set of 

maps corresponds to the covariate effect for the first covariate. The final set of maps 

corresponds to the covariate effect for the second covariate.
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Figure 15: 
Correlation with the true spatial maps under STR, GICA3, GIG-ICA, and HINT for the 

synthetic data with no spatial overlap in the baseline source signals but some spatial overlap 

in the covariate effect maps.
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Figure 16: 
Power and Type I Error Rates under STR, GICA3, GIG-ICA, and HINT for the synthetic 

data with no spatial overlap in baseline source signals but some spatial overlap in the 

covariate effects.
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Figure 17: 
Correlation with the true spatial maps under STR, GICA3, GIG-ICA, and HINT for the 

synthetic data with spatial overlap in the baseline source signals but no spatial overlap in the 

covariate effect maps
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Figure 18: 
Power and Type I Error Rates under STR, GICA3, GIG-ICA, and HINT for the synthetic 

data with spatial overlap in baseline source signals but no spatial overlap in the covariate 

effects.
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Figure 19: 
Correlation with the true spatial maps under STR, GICA3, GIG-ICA, and HINT for the 

synthetic data with spatial overlap in both the baseline source signals and the covariate effect 

maps.
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Figure 20: 
Power and Type I Error Rates under STR, GICA3, GIG-ICA, and HINT for the synthetic 

data with spatial overlap in both the baseline source signals and the covariate effects.
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Figure 1: 
A diagrammatic representation of the HINT workflow.
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Figure 2: 
Demonstration of the sub-population comparison window. Sub-populations based on user-

defined covariate patterns can be generated and viewed using this display window. The sub-

population control box in the upper-right hand corner allows the user to view the 

corresponding covariate values.
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Figure 3: 
Spatial maps used for the simulation (non-overlapping S0 and non-overlapping covariate 

effects).
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Figure 4: 
Correlation with the true population-level and individual-level spatial maps with STR, 

GICA3, GIG-ICA, and HINT for the synthetic data with no spatial overlap in the baseline 

maps or the covariate effect maps.
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Figure 5: 
Power and Type I Error Rates for testing covariates’ effects with STR, GICA3, GIG-ICA, 

and HINT for the synthetic data with no spatial overlap in baseline source signals or 

covariate effect maps.
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Table 1:

Factors varied in the simulation study. For each combination of factors we generated data from 50 datasets.

Factor Levels

Overlapping s0 maps no, yes

Overlapping β maps no, yes

N 25, 50, 100, 200

between-subject variability low, medium, high
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