Skip to main content
. Author manuscript; available in PMC: 2020 Jul 15.
Published in final edited form as: J Neurosci Methods. 2020 Apr 30;341:108726. doi: 10.1016/j.jneumeth.2020.108726

Algorithm 1:

The EM algorithm for estimating the hc-ICA model parameters.

Initial Values: Starting values of Θ^(0) and β^0 are obtained using TC-GICA estimates via GIFT.
REPEAT
  E Step:
 1. Evaluate the conditional distribution p~[s(υ)|y(υ);Θ^(K)].
 2. Evaluate the conditional expectations in Q(Θ|Θ^(K)) with regard to p~[s(υ)|y(υ);Θ^(K)]
Q(Θ|Θ^(k))=v=1VEs(υ)|y(υ)[lυ(Θ;Y,X,S,Ƶ)].
  M Step:
  Update parameters as follows
Θ^(k+1)=argmaxΘQ(Θ|Θ^(k))
UNTIL max iterations or convergence, i.e. Θ^G(k+1)Θ^G(k)Θ^G(k)<ϵg and Θ^L(k+1)Θ^L(k)Θ^L(k)<ϵl.