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Abstract

Modelling of human organs has long been a task for scientists in order to lower the costs of 

therapeutic development and understand the pathological onset of human disease. For decades, 

despite marked differences in genetics and etiology, animal models remained the norm for drug 

discovery and disease modelling. Innovative biofabrication techniques have facilitated the 

development of organ-on-a-chip technology that has great potential to complement conventional 

animal models. However, human organ as a whole, more specifically the human heart, is difficult 

to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional 

complexity. Recent progress with the development of induced pluripotent stem cell differentiation 

protocols, made recapitulating the complexity of the human heart possible through the generation 

of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and 

Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, 

and topographical cues to facilitate tissue maturation, therefore improving the predictive power for 

the chamber-specific therapeutic effects targeting adult human. In this review, we will give a 

summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook 

on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
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On average, the human heart beats 3 billion times during a lifetime, starting as early as 3 

weeks of gestation age and stopping right before death.[3]. It is reported that human cardiac 

muscle has a limited ability to regenerate, with approximately 50% of adult human 

cardiomyocytes (CM), being throughout a lifetime of 80 years. [4–6] Because of the scarce 

availability of human adult CMs, cardiac researches have to rely on animal models for 

studying human cardiac diseases, despite the inter-species differences. However, the 

emergence of induced pluripotent stem cells (iPSC) and the recent advancement made in 

differentiation techniques [7] have greatly transformed this conventional research paradigm. 

Directed differentiation of human pluripotent stem cells (PSCs) can now generate large 

numbers of cardiomyocytes readily available for research.[8] Thus, cardiac tissue 

engineering becomes a pivotal conduit to explore the applications of these cells for drug 

testing and patient-specific disease modeling purposes.

Despite the advances made in tissue engineering to revolutionize the field of therapeutic 

discovery, the effort to re-create a physiological-relevant heart remains a foreseeable 

challenge. The human heart is a muscular organ that is characterized by its distinctive 

chambers orientation and the built-in electrical conducting system that stimulate the muscle 

contraction. However, conventional bench-top studies lack the capability to mimic this 

complex 3D orientation. Heart-on-a-chip, one of the more recent tissue engineering 
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technologies, provides an interesting alternative. It adopts cardiac cell developmental 

biology and allows precise physical control of microenvironment to create miniaturized 3D 

cardiac tissue model that offer more reliable clinically relevant biological functions and 

disease mechanisms. [9]

In reality, current heart-on-a-chip platforms should be viewed as ventricle-on-a-chip 

platforms since the majority of the current studies use ventricular CMs and only study drug 

responses and diseases modeling related to ventricle chambers. This is because ventricular 

dysfunction is the primary cause of heart failure[10] and ventricular CMs is the first 

chamber-specific CM population that can be differentiated with high purity[11]. 

Nevertheless, other compartments of the heart, such as the atria, sinoatrial node, and 

Purkinje fibers, are just as important as ventricles during the investigation of drug-related 

toxicity and cardiac disease mechanisms (Figure 1). For example, conditions of the atrium, 

such as atrial fibrillation (AF), can elicit sudden death or severe complications during the 

medical intervention of ventricular chambers.[12] Failure of sinoatrial node function due to 

congenital disease or aging results in slowing of the heart rate, inefficient blood circulation 

and arrhythmia.[13] Therefore, it is imperative to obtain these compartment-specific tissue 

models and to condition them to reach adult maturity for relevant evaluation of their 

responses to drug dosage and therapeutic intervention.

This review will highlight the current progress of cardiac tissue engineering of specific heart 

chambers and discuss the challenges to generate a physiologically-relevant heart-on-a-chip 

model for drug testing applications and disease modeling.

Brief History of Cardiac Tissue Engineering and Heart-on-a-Chip

The main paradigm tissue engineering is to use cells and other biological materials to build 

functional tissues. Organ-on-a-chip technology, as the convergence of tissue engineering and 

microfluidics, aims to build functional miniaturized tissues in vitro, simulating the 

functional characteristics of in vivo tissues or organs for the purposes of drug screening and 

disease modeling.[14, 15]

Long before the invention of the terms “tissue engineering” or “organ-on-a-chip”, Moscona 

et al were the first to aggregate chicken embryonic myocytes into a spheroid shaped 

construct by a continous spinning of the fresh cells in flasks, back in 1950s[16]. This culture 

method is considered the first in vitro platform in the cardiac field, that enables 3D tissue 

culture. It has been adapted and improved for culturing various neonatal animal cardiac cells 

by many groups. In 1999, Akins et al defined a better and more detailed protocol for 

culturing sphere-shaped 3D structures, resulting in tissues that were structurally-organized 

presenting with spontaneous and rhythmic beating patterns[17]. Despite the success of 

simulating cardiac organogenesis in vitro, the morphology and organization of the resulting 

organoids was not comparable to the native heart muscle.

Heart is a complex organ, which requires sophisticated organization and synchronized 

behavior of cardiomyocytes. Many efforts were made in the 1990s towards building a 

functional in vitro platforms. Terracio et al performed chronic cyclic stretch on 2D cell 
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sheets.[18] Carrier et al. used a polyglycolic acid (PGA) scaffold together with laminar flow 

to form tissue-like structures (50–70 μm thick) in which myocytes were organized in 

multiple layers in a 3D configuration. [19, 20] Bursac et al seeded cardiomyocytes into 

patch-shaped PGA scaffolds culturing them in the spinning flask based bioreactor, which 

enabled improved oxygen supply, thus promoting a better cardiac function. The platform 

also enabled the electrophysiological assessments on the patch. [19, 20] Similarly, the 

groups of Li and Leor seeded rat neonatal myocytes into gelatin or alginate scaffolds 

respectively, which were later engrafted into rat hearts.[21, 22] Tissues seeded on patterned 

surfaces obtained improved cellular alignment and enhanced tissue function. [23, 24]

Instead of reconstructing the whole heart in vitro, an easier solution is to recapitulate the 

function and morphology of the basic unit of cardiac muscle. With this in mind, in 1997, 

Eschenhagen et al were the first to invent the biaxial culture platform with two Velcro-

covered glass tubes, which created cardiac tissues recapitulating cardiac muscle bundles. 

The system can provide anchor points for tissue attachment and static stretching forces 

during cell compaction and tissue formation for cellular alignment.[25] The arrangement 

allows the measurement of the isometric contraction force generated by the engineered 

cardiac tissues. [26] They were also the first group to use collagen I gel aiding cardiac tissue 

formation. [25] In the later work from this group, the rigid tissue anchor was replaced by 

posts made of flexible and biocompatible materials, PDMS, significantly increasing the 

throughput. The mechanical properties of PDMS and the bending motion resulting from 

tissue contraction could be monitored non-invasively for miniaturized tissue culture systems 

with a higher throughput.[27] The system has been adapted and modified by multiple 

research groups and became the earliest version of heart-on-a-chip in the field.[28–35]

In parallel to developing improved tissue culture systems, significant enhancements in cell 

sources were also achieved over the past two decades. The first engineered cardiac tissue 

was generated by murine neonatal myoyctes. However, through generation of human 

embryonic stem cells (hESC), human stem cell derived cardiomyocytes were gradually 

introduced into engineered platforms. Caspi et al were among the pioneers who introduced 

human stem cell derived cardiomyoyctes into 3D structure [36]. Shortly after the discovery 

of human induced pluripotent stem cells (hiPSC)[37], hiPSC derived cardiomyocytes 

quickly became available to replace the conventional animal cell sources and hESC derived 

cardiomyocytes [7, 38] in tissue engineering and organ-on-a-chip applications.[30, 35, 39] 

Chamber-specific cardiomyocytes became available shortly after to create chamber-specific 

tissues.[2, 28]

Ventricular Tissue Engineering

Ventricles have thick muscle walls and are the primary driving forces for blood flow through 

the entire body. The diminished ventricular function negatively impacts the quality of life of 

the individuals and has become one of the primary research foci on therapeutic strategies. 

Ventricular differentiation method has been well established since the discovery of iPSCs 

more than a decade ago [40] and produce consistently reproducible results among species.

[41] The emerging challenge is to fully exploit these ventricular CMs for more clinically 

relevant drug testing. Engineered cardiac tissue targeting drug testing applications has been 
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envisioned as a miniaturized, functional 3D tissue that not only recapitulates human adult 

myocardium, but also can be easily reproduced and tested in a high throughput manner.[42]

3D Ventricular Tissue Models

3D cardiac tissue is commonly preferred since it has more physiologically relevant cell-cell 

cross talk and cell-matrix interactions compared to 2D monolayer cultures. [43] These 

biological cues are particularly relevant in cardiac tissue engineering, since the coordinated 

contraction at the tissue level depends on the intercellular ion exchanges, electrical coupling, 

and mechanical transduction. [44] Cardiac organoids are created by self-organization into a 

sophisticated architecture that closely resembles the organogenesis of native cardiac tissues.

[15, 45–48] The organoids are typically small in size, i.e. 100 μm, with multiple cardiac 

lineages and are commonly maintained in a relatively high throughput manner. 

Unfortunately, there is minimal control over the development of organoids in terms of their 

structural and functional consistency, due to our limited knowledge of cardiac tissue 

development. More importantly, their functional output, as well as drug responses, suggest a 

low level of maturity and little resemblance to the adult myocardium.[49–51]

Organ-on-a-chip technology, more specifically heart-on-a-chip, enables precise control of 

the physical environment that provides topographical guidance, nutrient supply, flow pattern 

and shear stress and facilitates functional readouts with built-in sensors. [15, 39, 52–55] 

Muscle thin film[56] (Figure 2A), as an example, uses 3D printing technique to print force 

sensors within the polymer scaffold that hold orientated CM layers. The sensors can 

translate forces into electrical signals and therefore potentially facilitate efficient on-line 

force analysis. However, muscle films are too thin to be considered as 3D tissues and their 

physiological relevance is not ideal. [57]

An alternative approach to recreate a papillary-like tissue is to use template guided cellular 

assembly. Soft lithography with polydimethylsiloxane (PDMS) molding is a commonly used 

technique to fabricate the platform with complex template structures.[28, 39, 58] These 

templates can be a single wire[39], a single perfusable tube[54], double wires[28, 58], or 

opposing cantilevers[30, 31, 34, 59], residing in microwells (Figure 2B–F), where they 

simultaneously serve as tissue anchors and force sensors based on their mechanical 

properties. When CMs with or without hydrogel are placed into the microwells, these 

templates allow cell self-organization around the structures and generation of static tension 

within the tissue. These topographical features promote the elongation and alignment of 

cells.[60, 61] The resulting tissues resemble the papillary muscle bundles at structural and 

functional levels.

Ventricular Tissue Maturation towards Adult Phenotype

Although human PSC-CMs in 3D tissues and fetal CMs have similar morphological 

structures and function, they are drastically different from adult CMs (Table 1) [65] Similar 

to fetal CMs, PSC-CMs are commonly spherical [66] with small sizes[67] and have a low 

percentage of binucleated cells [68, 69]. Gap junction proteins, such as connexin-43, (Cx43) 

in PSC-CMs spread out on the cell edge and do not have anisotropic distribution [70–72], 

confined to intercalated discs as in the adult CMs, which explains the low conduction 
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velocity (1–15cm/s[68, 69]) in the tissues. Although large variation exists among studies 

with different cell lines and experimental conditions, action potential profiles of PSC-CMs 

are mostly underdeveloped [73–78]. The randomly distributed sarcomeres in PSC-CMs are 

on average 0.5–0.6 μm shorter than in adult CMs [77, 78] and only have z disc, I- and A-

bands[79, 80]. All PSC-CMs exhibit spontaneous beating[81–83] with the low force of 

contraction (0.15–0.3 mN/mm2) [84, 85]. Positive force-frequency-relationship (FFR) from 

1–3 Hz [86] and pronounced post-rest potentiation (PRP)[87] are two key unique features of 

adult myocardium, which are not present in either fetal myocardium[88] or PSC-CM derived 

tissues[89, 90]. Moreover, PSC-CMs and fetal CMs depend on glycolysis for their 

metabolisms with a minimal level of transition to β-oxidation of fatty acids [91], which is 

the primary energy source in the adult heart [92]. Mitochondria in PSC-CMs are also less 

mature, low in quantity and randomly distributed within the cytoplasm. The status of 

mitochondria confirms the low level of energy production efficiency in PSC-CMs with 

minimal β-oxidation. [93] Due to these large differences, PSC-CM derived tissues are 

considered poor approximations of adult myocardium. Further improvements are vital to 

produce clinically relevant results through the use of these tissues for drug testing 

applications.

Native cardiomyocytes reach full maturity after 6–10 years of development [70]. Tissue 

models for drug testing, however, should achieve ideal maturity within a much shorter time 

frame, e.g. weeks, after differentiation for an appropriate throughput. To facilitate better 

tissue maturation within a shorter time frame, many maturation strategies have been 

investigated over the years. To date, advances of cardiomyocyte maturation have been made 

through the prolonged culture[78, 119], non-myocyte co-cultures[60, 101, 120], 

mechanical[31, 35, 101], electrical[32, 39, 121], chemical[33, 122] conditioning and the 

combinations of these treatments, which all attempt to emulate native physiological 

microenvironment (Table 2).

Bioreactor systems have also been demonstrated to improve functional cardiomyocyte 

phenotypes and tissue maturation. Godier-Furnemont et al demonstrated that electro-

mechanical stimulation on the rat engineered heart muscle at a physiological frequency is a 

necessity to obtain a positive FFR.[123] The combination of mechanical and electrical 

stimulation was used to mimic the complexities of the native tissue environment.[124] The 

timing between mechanical and electrical stimulation is important for cardiomyocyte and 

myocardial tissue maturation in a dual electromechanical bioreactor system.[125] 

Bioreactors can also provide chemical and mechanical cues, such as hypoxic or dynamic 

flow conditions, for certain specialized tissue culture models. For example, the rocking/

rotating shaker promotes dynamic flow in the bioreactor and enhanced delivery of nutrients, 

compared to static systems.[126] Hypoxic conditions in the bioreactors have been used to 

simulate cardiac ischemic conditions in vitro.[127]

Studies have shown that long-term (up to 6 months) monolayer culture can gradually 

promote human PSC-CMs maturation by improving morphology, myofibril density, 

alignment, Z-disc registration and action potential (AP) profiles[78]. Jackman and his 

colleagues have demonstrated that increased nutrient availability by dynamic cultures 

(rocking the plate) enhanced the force of contraction (23.2 mN/mm2) to the half of the force 
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in adult heart (51 mN/mm2). [31] Tiburcy et al. have shown that fully defined medium can 

improve the FFR from negative to positive and increase sarcomere length in comparison to 

fetal CMs.[33] Adding triiodothyronine also improves the force of contraction and AP 

parameters.[77, 128] β-adrenergic stimulation was shown to improve cellular hypertrophy 

and the force of contraction through increased expressions of structural proteins.[129] Co-

culture with cardiac fibroblasts significantly improves tissue morphology and conduction 

velocity.[60] While static stretching has moderate effects on increasing contractility, tissue 

stiffness, cell alignment and size [101, 129], a combination of stretching and low-frequency 

electrical pacing synergistically enhance cardiac tissue functional development.[130, 131] 

Nunes et al have shown that gradual increase of the electrical pacing frequency up to 6 Hz in 

a week can greatly improve calcium handling, AP profiles and cell morphology. Ronaldson-

Bouchard et al.[32] slightly decreased the frequency step-up from 0.83 Hz per day to 0.33 

Hz per day. The modified electrical stimulation regime was shown to facilitate the formation 

of cardiac tissues with many hallmarks of adult myocardium, such as positive FFR, T-tubule 

formation, partially anisotropic gap junction protein distribution and myofibril and 

mitochondria organization, reporting the M-line presence for the first time and full 

sarcomere length achievement in engineered cardiac tissues. Another study with a slower 

frequency ramping up protocol obtained tissues with over 200% PRP, faster conduction 

velocity, and AP profiles with Ito notch and better refractory phase.[28]

However, many of these studies only assess a subset of these maturation parameters and can 

hardly perceive the actual maturity of their tissues in the natural cardiac developmental 

process. The level of maturation in PSC-CMs requires multifaceted evaluations, which 

should include intracellular structure development, tissue function assessment such as 

contractile forces, conduction velocity, calcium handling, and electrophysiology; metabolic 

activities and cellular morphology. The benchmarks of native CMs would allow us to better 

evaluate the level of CM maturation and determine whether they are improved towards the 

adult myocardium and therefore will be more suitable for drug testing applications.

By comparing with the benchmarks of native CMs, several maturation strategies can 

successfully improve a subset of parameters to the level of neonatal CMs or adult CMs 

(Table 1 and 2). Thus, ventricular engineered tissues after maturation regimes are ideally 

comparable to post-natal stages with several aspects approaching adult myocardium. [28, 31, 

32, 119, 135]Although the tissue model would be more suitable as a surrogate for drugs 

targeting infants[88], it would be interesting to compare the drug testing results from 

engineered tissue model and adult myocardium to understand the differences.

We have compiled a list of commonly used drugs and the comparison of drug responses in 

PSC-CMs, matured PSC-CMs, and adult myocardium (Table 3). Isoproterenol is a potent β-

adrenergic agonist that induce positive chronotropic and inotropic responses. The inotropic 

EC50 in matured engineered cardiac tissues and increased maximum force are comparable 

to these in adult myocardium. However, inotropic EC50 is much higher [34] with minimal 

force increase[30, 119] in non-matured cardiac tissue. Dofetilide, an hERG channel blocker, 

has a high risk of causing QT interval prolongation and arrhythmias. In adult CMs, 

prolongation of the action potential duration (APD) by 20% is observed at 220 nM [136]. 

Matured PSC-CMs have approximately 20–40% longer APD at 100–1000nM[28] which is 
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comparable with the adult CMs responses. On the other hand, non-matured PSC-CMs are 

highly sensitive to dofetilide and have approximately 1000% APD increase at 1000 nM 

[137]. Oversensitivity of non-matures PSC-CMs is a critical issue in drug development, as it 

may potentially lead to inappropriate elimination of potentially useful compounds. 

Lidocaine, a sodium channel blocker, has a negative chronotropic effect on matured PSC-

CMs with EC50 at 10–20μM range[28], which is at the same magnitude as EC50 of sodium 

channel activity in adult CMs [138]. Diltiazem and verapamil, calcium channel blockers, 

also have similar EC50s in matured CMs[28] and adult CMs [139, 140]. This evidence 

suggests that the engineered cardiac tissue with maturity approaching adult level can be used 

to capture some drug responses in adult cardiac muscle strips. However, there are also 

several exceptions. Both non-matured and matured CMs have different sensitivity of Ca2+ 

compared to adult CMs. It is also unexpected to see matured CMs becomes much less 

sensitive to nifedipine compared to adult CMs. To sum up, PSC-CMs with higher maturity 

have indeed improved the reliability of the drug response evaluation, nevertheless, more 

sophisticated strategies should be developed to further improve the cell maturity, which 

eventually closes the gap between matured engineered tissues and adult myocardium.

Atrial Tissue Engineering

CMs from atrial and ventricular myocardium have profound physiological differences, such 

as genetic profiles[154], calcium handling [155], electrophysiology [156–160], and 

structural and functional protein expressions [154] (Figure 1 B, C). Compared to ventricular 

cells, atrial cells are smaller in size and surface area. They have thinner and fewer traverse 

tubules with calcium handling machinery different from ventricular cells. In atria, calcium 

propagation is delayed and shorter than in ventricles, shows lower expression of Ryanodine 

receptor (RYR), higher expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 

and sarcolipin (SERCA inhibitor). [155]

Atria and ventricles show a distinct pattern of gene expression. For example, atria express 

MLC2a, sarcolipin or connexin 40 whereas ventricles express MLC2v and phospholamban 

[154]. Atrial cells have differential channel activities and expressions which result in a 

triangle-like AP shape[156]. (Figure 1B) More specifically, potassium channel KCNA5 and 

its current Ikur are responsible for fast repolarization in atrial AP. Low activity of IK1, IKs, 

IKr, and INa in atrial cells, also contributes to atrial specific AP shape. IKACh, T type Ca2+ 

channel and Ca2+ activated K+ channels are also atrial specific channels [157–160]. Thus, 

several compounds are atrial-selective due to these atrial-specific ion channels. Carbachol 

(Figure 3A–B), an M2 muscarinic receptors agonist which acts on IKACh, reduces action 

potential duration[161]; serotonin, acting through the atrial-specific 5HT4 receptor, 

increases calcium current and induces an inotropic response in atrial cells[162]. These 

divergent drug responses in different heart chambers, increases the complexity of the drug 

screening process. The ideal therapeutic strategy for the ventricular disease should have 

minimal impact in atria, and vice versa. Off-target effects should be actively screened and 

identified for drugs like adenosine, which targets supraventricular tachycardias with off-

target effect on IKACh potentially inducing atrial arrhythmia (off-target effect of known 

compounds on atria is reviewed elsewhere [163]).
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Therefore, chamber-specific engineered tissues are imperative in drug screening to minimize 

the cardiac off-target effect in human. While significant progress has been made in 

ventricular tissue engineering, generation of engineered atrial tissues is still at its infancy 

stage. This lag is partly due to the limited availability of atrial specific differentiation 

protocols [164]. Recently, the use of retinoic acid (RA) has been studied to direct atrial CMs 

differentiation from hPSC cells [160, 165–167]. Zhang et al added noggin and retinoic acid 

in cardiac differentiation protocol, and obtained impure atrial population. A purer population 

of atrial cells was generated by applying retinoic acid after induction of mesodermal stage[6, 

166]. Lee et al reported an efficient atrial differentiation protocol for the generation of atrial 

linages through the use of developmental signaling gradients that specify atrial mesoderm 

precursors.[6] These advances provide a strong foundation for the creation of functional 

engineered atrial tissues.

Several groups have reported engineered atrial tissues. Zhao et al have successfully cultured 

and improved the maturity of atrial tissues[28] on Biowire II platform with two opposing 

elastic wires as a template. Cyganek and Lemme have created ring-shaped and rod-shaped 

atrial cardiac tissues using the two post platform [2, 116] (Figure 3C). These tissues showed 

distinct AP profiles with much shorter APD30 relative to ventricular tissue, resembling adult 

atrial APD30, measured both by potentiometric dyes and sharp microelectrode recording. 

(Table 4) When compared with atrial adult myocardium atrial phenotype of these tissues was 

confirmed by atrial specific carbachol response which reduces APD and hyperpolarizes 

membrane potential (Figure 3D–I). Tissues from Lemme et al201 and Zhao et al[28] showed 

unique responses to low doses of 4AP, IKur blocker by APD extension. These atrial tissues 

had less force compared to their ventricular counterparts and did not show positive FFR. 

Instead, they showed flat FFR, a characteristic of atrial tissue [2, 28, 116]. All reported atrial 

tissues had around 100 times less force than human adult atria. [168] Atrial tissue from 

Zhao’s study had approximately the same level of post rest potentiation compared to that of 

atrial adult myocardium. Atrial myocytes are known to have faster calcium handling. They 

show smaller post rest twitch and in a shorter time frame139,140. The AP parameters, 

including APD30 and APD30/90, are also slightly improved towards adult level when atrial 

PSC-CMs are incorporated in engineered tissues. Moreover, atrial PSC-CMs and atrial 

engineered tissues both have higher than 1Hz spontaneous beat which shows both 

immaturity and contamination with a small population of pacemaker cells. The engineered 

tissues are also showing AP profile of immature myocytes, with lower Upstroke velocity, a 

sign of lower adult INa activity, hyperpolarized membrane potential which indicates lower 

IK1 activity. The APD is also shorter than adult atrial CMs. To date, the ability to generate 

pacemaker free atrial population and development of a maturation protocol that would 

generate quiescent cells remain as challenges in atrial tissue generation.

Tissue engineering of the conduction system

Development of pacemaker has great therapeutic importance for patient suffering from 

brachychardia, in this regard, several groups applied different approaches to purify and 

characterize cells from the cardiac conduction system; sinoatrial node, atrioventricular node 

or Purkinje fibers (Figure 1A). The primary attempts in the generation of nodal cells were 

the introduction of genes with an active role in conduction systems in stem cells 
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differentiation, expression of mink-Lacz under chicken GATA6 enhancer in mouse ES, 

expression of HCN2 /4 in NKX2.5 myocytes and differentiation HCN4 expressing cells.

[175, 176] Addition of certain chemicals, like B12 or SKCa activator 1-ethyl-2-

benzimidazolinone to cardiac differentiation, increased the population of nodal cells.[177, 

178]. A mixed population of pacemaker cells was generated by induction of C-MYC 

regulated NKX2–5 and TGF-beta inhibition[165] or by controlling the expression of BMP 

and Wnt at specific time points from the mesoderm stage. Portze et al developed the first SA 

nodal specific differentiation protocol by treating mesoderm differentiated PSCs by bFGF 

and low amount of activin A, BMP4 then inhibition bFGF, TGF-β, and Wnt signaling in the 

presence of BMP4 and RA.[13]

ESC reporter line derived from Contactin2:EGFP BAC gene was first used to separate small 

population of cells in cardiac differentiation that show Purkinje fiber like gene expression 

and AP profile, using small molecule screening strategies in ventricular differentiation. It 

was reported that the addition of sodium nitroprusside between day 6 to 11 increases 

Purkinje cells population from less than 1% to more than 33%.[179, 180]

The first engineered tissue of the conduction system was made using neonatal rat ventricular 

myocytes co-cultured with HCN1 transfected human mesenchymal cells. The tissue showed 

hyperpolarized membrane potential and higher spontaneous beating rate [181]. Another 3D 

structure was generated from cells with sinoatrial or atrioventricular AP and gene expression 

profile. These tissues were generated by selection of cells based on SHOX2 promoter and 

Cx30.2 enhancer and constructing spheroid shaped aggregates [182]. Co-culture of 

endothelin treated embryonic rat cardiac cells with endothelial progenitor cells in Matrigel 

generated high spontaneous beating vascularized tissue like pacemaker [183]. Further efforts 

need to be done on the direct differentiation protocol for Purkinje fibers and AV nodal cells 

to enable a complete setup of cardiac conductive tissue model.

Conductive biomaterials aiding functional maturation

Other than the biological niches used in differentiation protocols, specialized biomaterials, 

especially conductive biocompatible materials, can potentially be incorporated as 

scaffolding materials to promote the electrical function of the engineered conduction 

systems.

Cardiac muscle fibers throughout the entire heart rely on the adequate electrical signal 

propagation to generate chamber-specific synchronized contraction. In case of large injuries 

caused by ischemic myocardial infarction, conductive materials can be incorporated into the 

scaffolds of large implantable cardiac tissue patches to quickly re-establish the signal 

propagation through the infarct sites. The use of conductive materials can potentially 

accelerate the electromechanical integration of the grafts with the host tissues, compensating 

for the functional loss of cardiomyocytes in the infarct site and minimizing the possibility of 

arrhythmia.[184, 185] For in vitro applications, miniaturized engineered cardiac tissues can 

benefit from the incorporation of conductive materials at the early phase of the tissue 

formation and functional maturation. Shortly after cell seeding, cell-cell junctions and gap 

junction proteins are not well-developed to provide sufficient conduction for adequate 

intercellular communication. Some cardiomyocytes begin to spontaneously contract, but 
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they are unable to propagate the electrical impulses to the adjacent cells for synchronized 

contraction. Thus, introducing conductive materials at the early stage can be beneficial to 

ameliorate the conductive properties of the cardiac tissues and help with the initiation of 

tissue level synchronized contraction. [186]

The biocompatible materials and conductive materials are commonly chemically or 

covalently incorporated together as composite materials for cardiac tissue engineering. 

Carbon nanotubes blended with collagen hydrogel[187], GelMA[188] or polyesters[189], 

and reduced graphene oxide dispersed in GelMA[190] or silk materials[191, 192], have been 

previously reported and shown to promote functional improvements in the engineered 

cardiac tissues. Conductive and electroactive polymers work in the similar fashion. 

Polypyrrole has been incorporated with polycaprolactone[193], chitosan[194] or silk[195] as 

scaffold materials to improve electrophysiology of cardiomyocytes, synchronization of 

tissue contraction and myocardial electrical impulse propagation across the tissue constructs. 

PEDOT:PSS[196] as well as polyaniline[197] were both tested in a similar fashion for in 
vitro cardiac tissue engineering.

Disease models

Disease models are essential to allow a better understanding of disease mechanisms and 

accelerate drug development. Conventional in vitro cardiac disease studies rely mostly on 

the use of heterologous cell culture models[9]. However, these cell sources are often 

accompanied by marked interspecies differences and confounding genetic information, thus 

cannot fully elucidate human pathology[198]. Human-derived disease models have great 

potential in precisely dissecting disease mechanisms and developing compounds for treating 

patient-specific disorders, and identifying individualized therapies[199].

Genetic diseases present as major causes of cardiac conditions, and have been the focus of 

personalized disease modeling[200]. The advent of iPSC technology presents exciting 

opportunities for generating personalized diseased cardiac tissues[9]. As human iPSC-

derived cardiac cells inherit physiological and pathological traits of the differentiation 

origin[201], they often possess disease-specific genotypes that can significantly affect 

disease onset and progression[201–203]. Besides using patient-specific cells, cardiac 

myocytes carrying disorders can also be generated from healthy individuals through genetic 

editing on specific loci. The emergence of genome editing techniques such as the clustered 

regularly interspaced short palindromic repeat (CRISPR) system has provided another useful 

approach to create disease alleles into healthy cells[204].

Various genetic cardiac models have been generated using iPSC lines from patients with 

defined genetic disorders[28, 201]. Among these models, monogenic diseases have been 

intensively studied[205]. Monogenetic diseases normally present high penetrance and clear 

phenotypes[205]. Hereditary arrhythmia-related cardiomyopathies are a family of well-

characterized monogenic conditions [199]. Gene mutations in ion channels associated with 

the repolarization process can cause long QT syndrome (LQT), which is characterized by 

prolonged QT intervals on the electrocardiograms and severe ventricular arrhythmias[206]. 

LQT syndrome type 1 (LQT1) is caused by a mutation in the KCNQ1 gene, leading to 
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abnormalities in encoding the channels that regulate potassium current[206]. Moretti et al 

generated iPSCs-cardiomyocytes derived from patients with LQT1 with mutations in 

KCNQ1, which demonstrated prolonged APD, increased the occurrence of catecholamine-

induced tachyarrhythmia, and negative trafficking defect associated with IKs reduction[207]. 

Many other patient-specific PSCs based disease models have been used to study different 

types of model LQT syndrome and demonstrated the applicability of patient-derived stems 

in modeling cardiac disease[206]. As in the case of other cardiac diseases, Lan at al reported 

the generation of patient-specific PSCs from HCM patients carrying a mutation in the 

MYH7 gene. Abnormal Ca2+ transients, arrhythmias and morphological remodeling were 

observed[208]. More diseases, such as Timothy syndrome[209] with mutation in the L-type 

calcium channel CaV1.2; LEOPARD syndromes[210] with a mutation in the PTPN11 gene; 

and arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) [211] with 

desmosome gene mutations, have been investigated to demonstrate the development of 

pathological phenotypes in terms of cellular morphology, intercellular structural protein 

organization, calcium transients, electrophysiology and contractile behaviours.

More importantly, iPSCs offer the possibility to recapitulate and investigate the pathogenesis 

of cardiac disease with 3D cardiac microtissues to model cardiomyopathy in vitro. Two 

recent studies investigated the diseased phenotypes human iPSC derived CMs in the 

engineered tissue environment. In recent work, human engineered cardiac tissues from a 

post-based platform were used for evaluating the pathogenicity of sarcomeric protein titin 

gene variants in four patients[212] (Figure 4A). The effect of titin truncations can be 

successfully demonstrated with affected sarcomerogenesis-related remodeling, impaired 

intrinsic contractility, reduced responses to stress and altered gene and protein expressions, 

which all contributes to the progression of dilated cardiomyopathies[212]. In another study, 

two patient-specific PSCs were differentiated into cardiomyocytes and were constructed 

using thin muscle film tissue model to recapitulate the pathophysiology underlying Barth 

syndrome (BTHS) cardiomyopathy [213] (Figure 4B). The abnormalities associated with 

mitochondrial protein taffazin mutation were captured at metabolic, structural and functional 

levels. The platform enabled the study to capture the changes of twitch forces (Figure 4B) 

due to the impairment of sarcomeres organization and metabolic activity resulted from 

mitochondrial dysfunction. [213]

Polygenetic diseases, one the other hand, originate from a set of genes and involve various 

unknown loci[205]. Although polygenic diseases are the most common form of genetic 

disorders, they present complex disease phenotypes and are challenging to model using PSC 

cells[205]. Polygenic disorders often involve mutations in genes that have not been fully 

identified thus cannot be easily corrected using genomic editing methods. Some of these 

challenges can be overcome in order to model certain complex disorders. For example, 

cardiac hypertrophy generally occurs as a polygenic disease. It is poorly understood how 

different variants in sarcomeric proteins can lead to changes underlying this condition. To 

model this polygenic disease, it is critically required to provide a chronically increased 

workload to the cardiac tissue over a prolonged time period. [28] Tissue maturation methods 

are proven to facilitate the modeling of polygenic cardiac hypertrophy[214]. Zhao et al 

found electrical conditioning for up to 8 months enabled modeling of polygenic left 

ventricular hypertrophy starting from patient cells[214].
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The cardiac disease can be potentiated through environmental factors. Polygenic conditions 

are particularly prone to be affected by external cues. The onset of polygenetic disease often 

remains unclear, owing to environmental modifications on phenotype development. The 

interplay between genetic and environmental factors is crucial to disease progression. For 

example, hypertrophy-promoting factors, such as energy depletion, the increased workload 

associated with prolonged hypertension can both accelerate cardiac hypertrophy progression 

and eventually cause left ventricular dysfunction and heart failure[99]. It is important to 

generate 3D tissue models that enable prolonged biophysical stimulation through tissue 

cultivation. The environmental factors can be mimicked through modulating 

electromechanical stimulation, metabolism, matrix stiffness, and oxidative conditions[198]. 

The applications of PSCs in differentiating cardiac cells combined with external 

pathological cues have important implications in constructing functional and diseased 

cardiac tissues[201].

Currently, most of the disease models are generated using ventricular cardiomyocytes 

derived from patient cells[6]. Given their major role in supplying blood to the human body, 

ventricular functional inefficiency is a significant cause of heart failure. Great strides have 

been made in modeling of ventricular arrhythmia[199], left ventricular hypertrophy[9], 

dilated cardiomyopathy[203] and channelopathy[215]. However, atrial disease modeling has 

not yet been extensively studied. Atrial originating cardiac diseases such as AF present as 

rising healthcare challenges. AF, which is a cardiac electrical conduction system disorder 

which leads to irregular and fast heartbeats, is emerging as an epidemic heart disease of 

aging population[216]. AF generally increases mortality and hospitalization rate as it is 

associated with a higher risk of stroke, heart failure, sudden cardiac death, and premature 

dementia[217, 218]. It is important to develop platforms that enable the creation of chamber-

specific tissues for disease modeling. Several atrial disease models have been studied, 

enabled by the development of atrial specific protocols. Laksman et al generated a circular 

sheet of confluent Hes3 derived cells71. Arrhythmia was induced in the cell sheet by fast rate 

pacing, and the behaviour of the formed rotor was studied with two known antiarrhythmic 

drugs flecainide and dofetilide[219]. In another study, Olsen et al created a KCNA5 

mutation model of atrial iPSC derived myocytes on Matrigel coated coverslip[220]. 

Although these cells had extended APD at baseline, they did not have arrhythmic effects. 

The addition of cholinergic agonist charbachol was found to shrink APD and eventually 

induce arrythmia in this model[221]

Cardiac Tissue Engineering for Drug Discovery

A major focus in drug discovery has to be set on avoiding a drug-induced fatal ventricular 

arrhythmia - torsades de pointes (TdP)[222–224]. Binding to ether-a-go-go-related (hERG) 

potassium channel has been used to predict the risk of drug inducing TdP[224] through the 

use of patch-clamp systems or binding assays[225]. However, drug cardiotoxicity can be 

multifaceted and the screening methods cannot detect cardiotoxicity related to multiple ion 

channels and other mechanisms. Chamber-specific toxicity should also be a factor to 

consider in screening potential drug candidates.[28] More comprehensive approaches are 

being developed to detect drug-induced, chamber-specific, structural and contractile 

cardiotoxicity[28] to avoid unexpected failure at later stages of drug discovery.
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The evaluation of electrophysiological influence of new drug candidates is critical in 

understanding drug safety and mechanisms for clinical translation. For instance, 

electrophysiological responses of iPSC-CMs to 28 blinded compounds were used to predict 

the risk of lethal ventricular tachyarrhythmia by using microelectrode array, computational 

model[226] and intracellular recording[227]. On the other hand, contractility is another 

pivotal functional index in drug discovery, since changes in cardiac contractility are 

representative of the changes in ejection fraction in clinical setting. In patients, changes in 

contractility can indicate altered ventricular wall movements and post treatment cardiac 

hemodynamics.[228] Unwanted contractility related toxicity may also result in systemic 

hemodynamic effects such as drug-induced orthostatic hypotension[229]. Heart-on-a-chip 

models can serve as an ideal in vitro platform and provide these functional parameters for 

drug assessment.

To employ heart-on-a-chip in the development of drug discovery, a key focus should be set 

on developing simplistic, high-throughput, automated cell culture and testing systems to 

screen large libraries of drug leads. Agarwal et al developed PDMS-based micron-size 

cantilevers through semi-automated laser-based fabrication technique to engineer 2D 

anisotropic cardiac tissues, allowing measurement of diastolic and systolic stresses of the 

tissues[230]. The positive inotropic effect of isoproterenol on cardiac contractility was 

demonstrated with the platform. The platforms can quantify contractility and tissue 

structure, and have a throughput of 35 tissues on one chip device. A muscle-on-a-chip 

(MTF) model developed as a thin muscle film to monitor muscle contractility was fitted in a 

24-well plate and can be easily scalable to 96-well plate format[231].

In terms of 3D tissue, the throughput of culture and testing are slightly lower[33] due to the 

complexity of the platform. However, compared to monolayer cultures and MTF, the 3D 

engineered tissues have demonstrated advanced maturation in genetic, functional and 

structural aspects, which can improve the physiological relevance of the results. With non-

invasive long-term monitoring, a chronic cardiotoxicity from catecholamine was 

demonstrated with this platform recapitulating hallmarks of heart failure (e.g., contractile 

dysfunction, cardiomyocyte death, and release of N-terminal pro B-type natriuretic peptide)

[33]. Biowire II platform has been scaled up from 8 microtissues per 10 cm culture dish, to 

the format of 96-well plate, which facilitates tissue culture and drug testing in a much higher 

throughput[58]. Schneider et al [232] demonstrated a centrifugally-assisted cell loading 

approach to robustly construct and culture 8 individual cardiac microtissues at single 

seeding. Tissues cultured in the centrifugal chip can be maintained for 1 month, with 

calculation of temporal and spatial beating kinetics observed by an optical method. This 

study innovated an automated cell loading system, which standardizes the tissue culture 

procedures, eliminates the inconsistency of the conventional manual cell seeding method, 

and enables the generation of multiple reproducible cardiac tissues. Nevertheless, more non-

invasive functional assessments need to be incorporated into the system. [232]

There are still many remaining challenges to the use of heart-on-a-chip technology for drug 

discovery. First is to standardize the tissue culture and testing protocol for reliable tissue 

manufacture with reproducible, high throughput, and high content functional readouts. 

Culture and testing platform should be amenable to chamber-specific cardiac tissues for 
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targeted drug responses. At the same time, the connections between functional readouts from 

in vitro platform and clinical assessments should be established. With the proper translation, 

drug safety and toxicity can be obtained and understood prior to the clinical trials and 

therefore significantly improve the success rate.

Microscale fabrication technologies and their applications in heart-on-a-chip

Significant advances have been made in current microscale technologies, such as additive 

manufacturing and micropatterning methods. These powerful fabrication methods can build 

complex microstructures with various designed chemical and mechanical properties to create 

customized microphysiological environment for heart-on-a-chip, resulting in the significant 

advances for cardiac tissue models.

Lind et al developed a cardiac microphysiological device by multimaterial 3D printing with 

six customized inks.[233] By an innovative combination of these ink materials, a high-

conductance carbon black/thermoplastic polyurethane composite was used to fabricate the 

device. The device has a biocompatible culture surface for cardiomyocytes, and a highly 

conductive inner material with piezo-resistive shield to sense the contractile function of the 

seeded cardiac tissues. 3D printing technology can also incorporate cells directly. Lee et al 
demonstrated 3D bioprinting of cardiac ventricles using cardiomyocytes and collagen 

hydrogel. The resulting constructs had synchronized contractions and directional action 

potential propagation.[234] To further increase the cell seeding density to a physiologically 

relevant level, organoids in hydrogels were printed instead of cellular suspensions using 

sacrificial writing. [235] The resulting tissue constructs had high cell density of 180 

million/mL and customized perfusable vascular channels.

Another commonly used technology is soft-lithography. The method is commonly used to 

produce micropatterned molds with ultra-high resolutions. For example, Ribeiro et al 
demonstrated Matrigel micropatterns generated by microcontact printing from PDMS 

molds. Customized shape generated from Matrigel micropatterns and appropriate stiffness of 

polyacrylamide substrate induced myofibril alignment and affected the contractility of single 

iPSC-derived cardiomyocytes by increasing translation of sarcomere shortening.[236] The 

platform also allows the in situ force measurement through analyzing videos of live-cell 

imaging.[237] Huebsch et al presented a cardiac microphyciological system with 2500 

cardiomyocytes per construct on micropatterned PDMS template. This miniaturized cardiac 

system promotes cardiomyocyte alignment and uniaxial tissue contraction.[238] “I-wire” 

platform provided two conductive rigid wires as anchor points. The force probe was placed 

at the center of the cardiac tissue to measure the force of contraction.[239–241]

Challenges and Future Steps

Technological challenges

To date, ventricular tissue models are the most established and most intensively investigated 

in vitro models. Because of their similarities in tissue organization and functions, atrial 

tissue models can be improved by adaptation and modification of the existing ventricular 

tissue models, including the tissue formation on platforms and maturation strategies. 
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However, proper adjustments are needed based on the atriums physiological characteristics. 

For example, due to the shorter refractiveness of atrial cells, maturation of atrial tissues 

should be electrically conditioned at a much faster ramp up protocol.[28] Similarly, cells 

from SA node have automaticity and will require different maturation strategies and 

evaluation criteria. Thus, developing standard strategies to mature cardiac cells is therefore 

utmost important, especially when understanding disease models. This is because most of 

the cardiac diseases associated with aging and environmental factors are often manifest to 

adult patients. Nevertheless, native adult CMs from different cardiac compartments should 

always be used as the benchmarks for tissue maturity.

Taking a step further, once these matured engineered tissues from different cardiac 

compartments are readily available, building integrated tissue with cells from different 

chamber origins can improve drug screening efficiency and set foundations for an integrated 

heart-on-a-chip platform. The recently published paper in Cell is the first to report a 

heteropolar tissue model made with functional atrial and ventricular zones using Biowire II 

platform.[28] This model is suitable for duo assessments of drug responses on AP and 

calcium transients (potentiometric or calcium dye) in single preparation. Serotonin and 

ranolazine have been used to demonstrate their atrial-selective drug responses on the 

heteropolar tissue. By monitoring the calcium transients, this heteropolar tissue model is the 

first to demonstrate the inotropic responses of these drugs. However, the atrial and 

ventricular chambers in the heart are connected with atrioventricular conduction system 

(Purkinje fiber). Therefore, a better heteropolar platform that incorporates the conductive 

system to electrically connect two chamber-specific tissues is needed and will provide a 

more physiological-relevant drug response.

Furthermore, conventional drug testing protocol introduces pharmaceutical compounds by 

directly bathing the tissues in different doses of the drugs in culture media. In reality, these 

drugs are delivered to the tissue through the vascular system. Interactions between drugs and 

endothelial cells can provide new insights on cardiovascular adverse events. Therefore, a 

sophisticated functional vasculature network would be beneficial in emulating a more 

physiological-relevant drug delivery. However, cardiac tissue with vasculature is a more 

complicated system to recapitulate. Simple co-culture of CMs with endothelial cells will 

only result in premature lumen structures embedded within the tissue.[101] These micro-

vasculatures are not sufficient to support perfusion.[101] On the other hand, designing a 

defined vasculature within the parenchymal space requires biomaterials with adequate 

mechanical stability.[53, 55] The rigidity of the materials reduces the flexibility of the 

cellular organization and the tissue shortening during contraction would be obstructed. 

Moreover, the setup is difficult to fabricate and standardize. The functional readouts for drug 

testing with these vascularized cardiac tissues is more difficult to interpret and less likely to 

enable high throughput assessment. Therefore, more effort should be focused on 

incorporating stable, native-like vasculatures within cardiac tissue while facilitating its 

highly compacted, aligned, fully contractible cellular organization.

To sum up, an ideal heart on a chip system should be envisioned as a multi-compartment 

tissue with pacemaker cells, Purkinje conduction system, and several chamber-specific 

myocardium integrated with a built-in vasculature for proper drug delivery. By utilizing 
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standardized maturation protocol, tissues from each compartment would achieve adult-like 

phenotypes and functions to provide drug testing results relevant to human native 

physiology. During drug testing, tested compound perfused through the vasculature network 

will emulate the actual drug entry route and interactions between the drug and endothelial 

cells. At the same time, chamber-specific tissues will be assessed and analyzed for chamber-

specific drug responses. In addition, uniquely designed conditioning protocol, such as tuning 

the cardiac workload, hormone level, blood sugar level, would be customized after the 

maturation process to trigger disease phenotypes in these tissues by emulating 

environmental factors of polygenic diseases.

To realize this ultimate goal, a multi-disciplinary collaboration between cell engineers and 

platform engineers is therefore needed. Cell engineers are tasked with developing more 

sophisticated strategies to obtain matured, purified cardiac cell population, whereas, 

platform engineers are assigned to create a versatile platform that can provide physiological 

relevant microenvironment while maintaining user-friendly interface with an aim for high 

throughput culturing and testing efficiency.

Commercialization challenges

Heart-on-a-chip technology poses superior advantages for the applications in drug screening 

and personalized medicine. Many pioneers in the field have recognized the growing 

opportunity and have initiated the commercialization efforts of the heart-on-a-chip products 

in the past 5–10 years, through companies such as TARA Biosystems, myriamed, EHT 

Technologies, NovoHeart etc. Novoheart, EHT technologies and myriamed are using post-

based platforms, whereas TARA biosystems exploits the platform using elastic wires for 

cultivation of strips of human myocardium. These companies can provide both products as 

well as testing services for academic collaborators and industrial partners. During the early 

technological development, the start-up companies commonly seek interest and 

collaborations from pharmaceutical industry and regulatory departments to tailor the 

technology development for better usability and clinical translation. At this stage, tissue-

based drug screening platforms can effectively be used to answer specific questions on the 

mechanism of action or drug toxicity. However, they cannot be used alone in the process of 

bringing a drug to the market due to the current regulatory framework and the need to 

further validate these systems.

One persisting question from the pharmaceutical industry is focused on proving that the 

organ-on-a-chip platforms are better than the current approaches that rely on cell lines in 2D 

culture and animal models. Moreover, as commercial products, reproducibility among 

batches of hearts-on-a-chip is essential. In some cases, this may be difficult to achieve due to 

the large biological variability of various iPSC lines and iPSC derived cell products. 

Although cell suppliers, such as Cellular dynamics and Ncardia, have done an impressive 

quality control, biological variability still contributes significantly to the variability of the 

tissue-based platforms despite the incorporation of GMP. Patient-specific tissue models have 

become the primary focus of several companies, however, many disease phenotypes only 

manifest after the adult-like maturation or aging, which may be difficult to achieve over a 
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short time in culture (e.g. several weeks) in these tissue-based platform. These are the 

challenges for the field going forward.

Conclusions

In summary, this review highlighted and discussed the current progress in cardiac tissue 

engineering of different compartments of the heart, ventricular, atrial and SA nodal and their 

uses in drug testing applications. As the most established cardiac tissue model, ventricular 

tissues have shown similar maturity and drug responses that are comparable to bench mark 

of native adult CMs. Recent progress in stem cell differentiation has demonstrated atrial 

CMs can be generated in high purity and atrial tissues generated from these cells displayed 

atrial-like features and response to atrial specific drugs. However, better maturation 

strategies and removal of pacemaker cells side populations are still critical to produce high 

fidelity atrial tissue. More work remains before the generation of physiological-relevant 

Purkinje fiber-like tissues and SA nodal tissue. Finally, proof-of-concept study demonstrated 

the possibility to model polygenic diseases in vitro, which further substantiate the necessity 

of matured CMs for disease modeling and personalized medicine.
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Figure 1. Heart anatomy and chamber-specific physiology.
A) Anatomy of the heart. B) Chamber-specific action potential profiles and ion channels. [1] 

C) Atrial-specific protein, MLC2a, and ventricular-specific protein, MLC2v, in native 

human tissues. [2] Figures are adapted with permission from their original references.
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Figure 2. Representative template-guided heart-on-a-chip devices.
Cardiomyocytes can compact A) adhering as muscle thin films on top of 3D printed 

sensors[57, 62], B) within microgrooves[59], C) along patterned perfusable channels [62, 

63], D) around single suture template [62, 64], E) around double elastic force sensors[28], 

and F) upside down force-sensing posts[32]. Figures are adapted with permission from their 

original references.
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Figure 3. Atrial tissue engineering and drug testing.
Carbachol-induced atrial-specific responses on action potential parameters in A) native 

human heart tissues; engineered human heart tissues on the B, C) post-based platform[2], 

and D-I) Biowire II tissues[28]. Figures are adapted with permission from their original 

references.
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Figure 4. Disease modeling with heart-on-a-chip.
A) Engineered PSC-CM microtissues with titin mutations have impaired intrinsic 

contractility and responses to stress. [212] a) Schematic of the cardiac sarcomere with titin 

(orange), b) Images of bright field and Phalloidin labelled tissues suspended between two 

PDMS pillars, c) twitch forces comparison between wild type and mutant tissues. B) 

Depressed contractile stress generation [213] by a) diseased myocardial tissue constructs 

(mitochondrial protein taffazin mutation) demonstrated with muscle thin film (MTF) 

platform. Cardiomyocyte stress generation reduces the radius of curvature of the construct as 

it contracts from diastole to peak systole. b) Twitch stress and peak systolic stress generated 

by MTFs from patient-derived PSC-CMs and control PSC-CMs. Figures are reproduced 

with permission from their original references.
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Table 1.

Maturation Benchmarks Set by Native CMs and Current Progress of PSC-CM

Maturation 
Parameters

Human Adult 
CMs

Human Neonatal 
CMs

Human Fetal 
CMs PSC-CM PSC-CM after 

Maturation

Cell Volume (μm3) 
(Area μm2)

⩾80000 [94] (Area 
1000–2500 [95])

5,854 ± 818 (0–
1yr) [94]

Similar to PSC-
CM[77]

(Area 500–600 [39, 
67, 96])

(Area 917–1700 [39, 67, 
96])

Cell Shape Rod-like[66] Rod-like[66] Rod-like[97] Spherical[66] Rod-like [39]

Cell Surface Area 
(μm2) 10,212–14,418 [98] 4395 ±436 [98] 1171–1261 [77] 1445 ± 74.39 [77] 2169 ± 110.2 [77]

Binucleation 25%–30%[4, 99] 25% [4] None[65, 100] ~0–15% [68, 69] ~0–20% [32, 68, 101]

Sarcomere 
Structure

Z-, I-, A-, H-, and 
M-bands[102]

Z-, I-, A-, H-, and 
M-bands[81, 103]

Missing M-band 
[81, 103]

Z-, I- and A-bands[80, 
104]

Z-, I-, A-, H-, and M-
bands o

Sarcomere Length 
(μm) 2.15 [105] 2.2 [88] 1.8 [77] 1.6 – 1.7 [78] 2.2 [32]

T-tubule Fully Developed Fully developed by 
2–3 weeks [106] Minimal [107] None [106, 108] Present [28, 32]

Gap Junction Anisotropic [70–
72]

Gradually more 
anisotropic [71, 

106, 109]

Cell edges, 
punctate [106] Cell edges [70–72] Cell edges [28]; 

Anisotropic ends [32]

Conduction 
Velocity (cm/s) 30–100 [29] 30 [110] 40–70 [111] 1–15 [73, 74] 31.8 ± 7.9 [28]

Action potential 
Duration (ms) 228–259 [112] 324–416 [76] 200–500 [73–77] 100–150 [39]

Action potential 
Amplitude (mV) 102–110 [112] 20–27 [76] 77–116 [75–77] ~70 [39] or ~100 [28]

Vmax (V/s) 254–303 [112] 150 [113] 5–13 [76] 6–40 [75–77]
176–201 [78] or 125 
[39] Or 108.8 ± 19.6 

[28]

Resting Membrane 
Potentials (mV) −90 [114] −37–40 [76] 37–71 [76–78] −66–70 [78] or −100 

[39]

Automaticity No[81] No[82] Yes[82] Yes[81–83] No[32] or minimal [39]

Contractile Forces 
(mN/mm2) 51±8[105] 0.8–1.7 (<2week 

neonatal)[88, 108]
0.4 (second 

trimester) [77] 0.15–0.30 [84, 85] 0.05–23.2 [28, 31–33]

FFR (1–3 Hz) yes[86] Improving from 
flat to positive [88] Flat[88] Negative[89, 90, 115] Positive [28, 32, 33, 90, 

116]

PRP yes[87] Improving from 
minimal Minimal [32] yes [28, 32, 90]

Metabolic activity β-oxidation of fatty 
acids [92]

β-oxidation of fatty 
acids after 7 days 

[117, 118]
Glycolysis [93] Glycolysis[91]

Glycolysis and β-
oxidation of fatty acids 

[28, 32]

Presence of 
Mitochondria

Highly organized 
and occupy 20–

40% intracellular 
space[67]

More developed, 
ovular shape[117, 

118]

Immature, round 
[93]

Immature and 
randomly distributed

More developed, packed 
along the sarcomeres. 

[32]

~
estimated from graphs in the original reference
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Table 2.

Maturation Strategies and Tissue Improvement

External Stimulus Parameter approaching the adult 
level Other improved Parameters

Static or Dynamic Stretch N/A

Better cellular alignment, cell area and higher expression of 
MYH7, TNNT2, NPPA, NPPB, CACNA1C, RYR2 and 
ATP2A2[129]
More Cx43 and TnT proteins [132]

Mechanical and Electrical 
Stimulation (Fixed pacing 
frequency at 1–2 Hz)

N/A
Improved cell areas and Frank-Starling mechanism and FFR, 
improved expression of SR-related proteins [131] Higher 
contractile forces and better structural proteins[130]

β-adrenergic N/A Improved contractile forces, structural proteins, gene expression 
of ANF and MYH7/MYH6 [129] Cell Hypertrophy[104]

Triiodothyronine APD90
Contractile stress and cell surface area are higher than human 
fetal control[77]; Improved AP parameters and sarcomere 
length[77]

Dynamic Culture (nutrient 
availability and shear stress)

Near adult level contractile force 23.2 
± 1.6 mN/mm2 and conduction 
velocity 25.8±1.2 cm/s [31]

Cellular hypertrophy [31]

Electrical Stimulation (Step-up 
frequency from 2 to 6 Hz)

Positive FFR, t-tubule formation, M-
line, Oxidative metabolism, 
Mitochondria density 30% [32]
Conduction velocity 31.8±7.9 cm/s 
[28]

Pronounced Post-rest potentiation, better action potential 
profiles with Ito notch [28]

Prolonged culture Rod-like shape (90 day EB)[133] M-
lines (360 days EB)[119]

Improved AP profiles, cell morphology, % multinucleation, and 
sarcomere structure[29, 119, 133]

Co-culture with cardiac 
fibroblasts

Higher conduction velocity 25.1 ± 7.7 
cm/s[60]

Better tissue formation and improved gene expression of 
MYL7, MYL2, ANP, BNP, and MYH7/MYH6 [60] Improved 
APD[134]

~
estimated from graphs in the original reference
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Table 3.

Drug response comparison among PSC-CMs, matured PSC-CMs and Adult CMs.

Drug Matured PSC-CMs in 3D Tissues Human Adult CMs PSC-CMs in 2D or 3D Tissues

Isoproterenol

Both chronotropic and inotropic 
EC50~100nM [32]
Inotropic EC50 =10±1 nM while paced 
[33]
(>100% force increase)

EC50 = 11–80nM [141–144]

EC50 = 20–120nM [139]

(>100% force increase)

Minimal inotropic effect
Chronotropic effect at 1–10μM [30, 
119]
Chronotropic
EC50=12.9nM[145]

Inotropic EC50=750nM [34]

Dofetilide

EC50 between 10nM and 100nM 
(APD)
20–40% elongation of APD50 and 
APD90 at 100 and 1000 nM[28]

20% increase in repolarization at 
220nM[136]

Increased APD60 by 99 ± 77% at 30 
nM [146]
Increased APD90 by 1000% at 1000 
nM [137]

Lidocaine Reduced frequency by half at 
20μM[28] Na+ EC50=38 μM [138] Cessation of beating at 50 μM - 1mM 

[147]

Verapamil APD30 and APD50 EC50 ~ 0.1-
lnM[28]

Ca2+

EC50=4.2–24.2μM[148, 149]
Inotropic EC50= 0.14–0.79μM[139]

Inotropic EC50=0.61μM [34]

Diltiazem HCL Negative inotropic effect EC50 
between 10–20 μM[28]

EC50= 0.18–0.69 μM [139]
Inotropic EC50 is around 10μM [140]

Ca2+ EC50~0.4–1.2 nM [32]
EC50~0.5mN [33]

EC50=2.47±0.1μM (pCa=5.61±0.02)
[105]
pCa=5.67±0.02[150]

EC50 = 0.8–1.0mM [35, 151] or 
1.8mM[34] or 0.4mM [152]

Nifedipine
EC50=4.5±1.4μM for force and 
3.1±1.9μM for Ca2+ transients[28]

Ca2+ EC50=16nM [148]

EC50 = 50–200nM (inotropic; 
ventricular muscle)[139, 153]

Ca2+ EC50=39 nM [146]

EC50 <100nM (inotropic)[151]

~
estimated from graphs in the original reference
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Table 4.

Parameter comparison among atrial PSC CMs, atrial PSC-CM in 3D tissues and CMs in atrial adult tissue

Parameters Adult Atrial CMs or Myocardium Atrial PSC-CMs in Engineered Tissues Atrial PSC-CMs

Force (mN/mm2) 8–10[168] 0.12 [2] or 0.25 [116] or 1μN/ tissue at 
1Hz[28]

NA

FFR (1–3 Hz) Positive from 0.5–1.5 Hz and negative 
between 1.5Hz to 3Hz[169]

Flat [2, 28] NA

PRP Max at 10s after rest Increased over 
50%[168]

100% [2, 28] NA

APD90 (ms) 150–500 [157] 90–120 [28] 150 [166] or ~200 
[6]

APD30 (ms) ~10–20 [170] ~13–19[28] ~15[6]

APD50 (ms) ~100 [170] ~40–66[28] ~50 [6]

APD30/90 0.1[171–173] ~0.14[28] <0.3[6]

Action potential Vmax 150–300[157] 30[28] or 97[2] (measured by dye) 45[166]

MDP −65 to −80[157] −65 and −70 [2, 28] −65[166]

Amplitude Around 100 [174] 85–90 [2, 28] 80[166]

~
estimated from graphs in the original reference
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