
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

Impact of extreme weather events on urban human flow: A perspective from
location-based service data
Zhenhua Chena,⁎, Zhaoya Gongb,⁎, Shan Yanga, Qiwei Mac, Changcheng Kand

a City and Regional Planning, The Ohio State University, Columbus, OH, USA
b School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
c School of Architecture, Tsinghua University, Beijing, China
d Baidu Online Network Technology (Beijing) Co., Ltd, Beijing, China

A R T I C L E I N F O

Keywords:
Disaster analysis
Urban human flow
Location-based service data
AMOEBA
Baidu map

A B S T R A C T

This study investigates the impact of extreme weather events on urban human flow disruptions using location-
based service data obtained from Baidu Map. Utilizing the 2018 Typhoon Mangkhut as an example, the spatial
and temporal variations of urban human flow patterns in Shenzhen are examined using GIS and spatial flow
analysis. In addition, the variation of human flow by different urban functions (e.g. transport, recreational,
institutional, commercial and residential related facilities) is also examined through an integration of flow data
and point-of-interest (POI) data. The study reveals that urban flow patterns varied substantially before, during,
and after the typhoon. Specifically, urban flows were found to have reduced by 39% during the disruption.
Conversely, 56% of flows increased immediately after the disruption. In terms of functional variation, the as-
sessment reveals that fundamental urban functions, such as industrial (work) and institutional - (education)
related trips experienced less disruption, whereas the typhoon event appears to have a relatively larger negative
influence on recreational related trips. Overall, the study provides implications for planners and policy makers to
enhance urban resilience to disasters through a better understanding of the urban vulnerability to disruptive
events.

1. Introduction

Cities have experienced a rising number of disruptions from various
types of unexpected weather events due to changes in climate and the
environment. The occurrence of extreme weather events such as
snowstorms, typhoons, and large rainstorms has not only caused da-
mages on properties and urban infrastructure systems, human activities
can also be severely affected. For instance, human mobility is sig-
nificantly affected by the shutdown of major airports and railway sta-
tions. Urban activities such as tourism and sporting events can also be
severely affected or cancelled in order to avoid further negative con-
sequences. In addition, extreme weather events may lead to power
outages or damage to infrastructure, which may further exacerbate the
disruptions of urban functions and human activities. In fact, the da-
mages caused by natural disasters to human society have increased
substantially over the past six decades (Berke, 1995; Mileti, 1999;
Dewan, 2013). In particular, the frequency and severity of hurricanes
and typhoons has increased substantially, which has caused major da-
mage to numerous cities along coastal areas in Asia-Pacific regions

(Smith & Katz 2013). As a result, it has become a key challenge for
urban planners handling emergency response and management to un-
derstand the impact of extreme weather events on human activities, in
order to allow for the development of smart, resilient, and sustainable
cities. Although an increasing number of studies have attempted to
quantify the impacts of extreme weather events on the damages of
physical infrastructure systems, such as transportation, energy, and
water supplies, it remains unclear to what extent urban human activ-
ities are affected. One of the major challenges is due to the limitation of
data. For instance, the traditional data source is often household sur-
veys. Despite the advantage of revealing detailed behavioral changes in
human activities before and after the occurrence of a disruptive event,
such data also have limitations. For instance, the cost of data collection
is very high and sample sizes are generally considerably small. In ad-
dition, the data is often collected in an ad hoc manner (e.g. collected
during a specific time period and/or with a specific geographic focus).
As a result, the dynamic spatiotemporal evolution of human activities
due to the influence of extreme weather events can hardly be captured.

Conversely, the wide adoption of information and communications
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technology (ICT), such as GPS-based sensors and smart phones, has
facilitated the sharing and application of geospatial information con-
siderably. In addition, a large volume of data are also generated from
location-based services (LBS) at an unprecedented pace in terms of
velocity, variety, and veracity through various types of social mobile
apps, such as Twitter, WeChat, and Google apps. Although such data
have provided new opportunities for urban analysts and planners to
examine human dynamics, particularly in the context of disaster re-
sponse and management (Shaw et al., 2016), there is still a lack of
understanding in terms of how such data can be effectively adopted to
address key issues related to urban disaster response and management.

To fill this research gap, this study provides an empirical assessment
of the impact of extreme weather event on urban human flows. Using
human mobility data collected by Baidu Maps, one of the biggest LBS
providers in China, our study contributes to the field of geospatial big
data analytics for smart cities in the following aspects:

Firstly, our study provides an in-depth assessment of the impact of
extreme weather events on urban human flow changes through cap-
turing dynamic evolutional patterns over time. Using Typhoon
Mangkhut in Shenzhen as an example, for the first time the daily dy-
namics of human mobility and the impact of the disruption at a fine
spatial scale (500 m × 500 m) were analyzed from the period of
September 11–23, 2018 that covers the days before, during, and after
the storm.

Secondly, the spatial and functional variations in human mobility
flows were examined over time using both classic GIS methods and
spatial flow analysis. A novel measure for comparing the spatial flow
patterns over time was developed to quantify the temporal change in
spatial flow structures and assess the impact of disruptions on urban
flow. Through a combination of flow data with point-of-interest data,
our analysis provides a detailed assessment of flow volume changes by
different categories of urban functions (including commercial, in-
dustrial, institutional, recreational, residential, and transport). The as-
sessment of urban flow variations among different urban functions
enables planners to understand the impact of disruptive events on
various types of human activities, which may provide evidence for land
use planning and identify social and economic impacts from a new
angle.

Thirdly, the analytical framework provides implications for urban
vulnerability and resilience assessments under various unexpected
events using location-based big data. In addition, the application in-
troduced in this paper also has the potential to be utilized in the
planning practice, given that such an analysis may help emergency
management agencies identify vulnerable locations and time periods in
consideration of human flow quantitatively. This could allow resources
to be allocated more effectively in order to avoid or reduce the damage
from a given disruptive event.

The rest of the paper is organized as follows. Section 2 identifies the
research gaps through a comprehensive review of relevant literature.
Sections 3 and 4 present the data and methodology, respectively.
Section 5 discusses the analytical results, whereas section 6 summarizes
and concludes.

2. Literature review

Location-based service (LBS) data has been extensive applied to
study human flow patterns in recent years. Compared to traditional
survey data, this new form can be collected much more easily (Chen
and Schintler, 2015). The data also includes useful information such as
flow trajectories with a spatial-temporal dimension (Brockmann et al.,
2006, Gonzalez et al., 2008, Liang et al., 2012, Lee and Holme, 2015,
Calabrese et al., 2010, Oliveira et al., 2016, Rhee et al., 2011, Xu et al.,
2019, Papandrea et al., 2016, Yuan et al., 2012, Wang et al., 2017). The
most common adoption of LBS data is to understand the spatial dis-
tribution patterns of human mobility. For instance, based on the ana-
lysis of call detail records (CDRs) of anonymized mobile phone users,

Gonzalez et al. (2008) revealed that the power law distribution reflects
the patterns of individual mobility in normal conditions. Conversely,
through an assessment of the location-based data of bank notes,
Brockmann et al. (2006) found that human mobility follows a power-
law with a heavy-tailed distribution. In addition, based on an analysis
of more than 20 million taxi trajectories in Beijing, Liang et al. (2012)
revealed that the movement of taxis in normal conditions followed an
exponential distribution instead of a power-law; in other words, they
suggested that the displacement of taxis decays exponentially in an
urban environment. Similarly, Yuan et al. (2012) examined the regional
functions of Beijing utilizing similar datasets. Their study found that the
pattern is very similar to land-use maps and they indicated that such
data enables us to understand the distributional patterns of Points of
Interest (POIs) and the intensity of human mobility in urban environ-
ments.

LBS data has also been adopted to understand the linkages between
land use and human mobility patterns. For instance, Lee and Holme
(2015) showed that mobility could be predicted through a combination
of land-use maps and Origin-Destination (OD) survey data, given the
fact that a strong linkage between land use and human mobility was
identified. Similarly, Calabrese et al. (2010) predicted individual's lo-
cations based on both individual and collective behaviors using land
use maps and a dataset of mobile phone locations in the Boston me-
tropolitan area. The land use maps were classified using POIs data. In
addition, Oliveira et al. (2016) investigated the locations of GPS users
and its associated coverage time at given POIs using various data
sources, including CDRs, GeoLife data, and OpenStreetMap data. Their
study revealed that human mobility has a similar regularity and tends
to be confined to certain areas among different cities. The movement of
individuals was also analyzed by Papandrea et al. (2016) using both
POI data and CDR data. Their study showed that an individual's mo-
bility is primarily determined by the locations of their home and
workplace. In general, the majority of human flows were found to be
less than 10 km in urban areas. Such a pattern possesses similar sta-
tistical features to Levy walk, which is characterized by the distribution
of heavy-tail flight and pause-time (Rhee et al., 2011).

Although many studies have attempted to examine the patterns of
human mobility in normal conditions using LBS data, there is still a
limited understanding of to what extent the patterns of urban human
flow may differ under unexpected events, such as man-made disrup-
tions (e.g. strikes and protests), natural disasters, and technological
system failures. Among a few exceptions, Ahmouda et al. (2019) sug-
gest that power-law models within the Lévy walk distributional pattern
provide an effective applicability to examine human mobility patterns,
both in normal and abnormal conditions. Similarly, Wang and Taylor
(2016) also confirmed that individual mobility follows the power-law
distribution (Levy flight model) in most disaster cases.

In terms of the application of different types of LBS data, Table 1
summarizes a few relevant studies based on LBS data for human flow-
related disaster analysis. Specifically, three types of LBS data are
commonly adopted to investigate the patterns of human mobility in
disaster scenarios. The first one is geotagged social media data. For
instance, geotagged Twitter data has been extensively adopted to ex-
amine how human mobility is affected by hurricanes (Ahmouda et al.,
2019; Martín et al., 2017; Roy et al., 2019; Wang and Taylor, 2014).
Some studies, such as Han et al. (2019) and Yabe et al. (2019a), ex-
amined this issue with a particular focus on evacuation and returning
behaviors after disasters. Spatial statistical analysis and spatiotemporal
comparative analysis are the most common approaches for their as-
sessments.

The second most widely-adopted LBS data is mobile phone tower
data, which is also known as cellular signaling data. The data, such as
call detail records, is generated through the communication between
cell phones and cellular tower stations. These data have also been fre-
quently adopted to estimate human mobility and evacuation behaviors
before disasters (Bengtsson et al., 2011; Khaefi et al., 2018, Lu et al.,
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2012). In terms of research methods, while spatiotemporal estimations
and comparisons have generally been used, new methods such as ma-
chine learning have also been adopted for the prediction of mobility
patterns using this type of data.

The third one is location-based service data, or mobile data col-
lected from smartphones. The data can be collected based on either
GPS, Wi-Fi signals, or cellular signals. Various types of LBS data have
been adopted for disaster related human mobility analysis. For instance,
Joo et al. (2019) studied the factors that affect evacuation behaviors
during floods using one of the major types of LBS data, based in Japan,
called Agoop. Similarly, Yabe et al. (2019b) investigated evacuation
behaviors after earthquakes using the LBS data of Yahoo in Japan. Their
study revealed that the probability of an individual's evacuation is
strongly dependent on the seismic intensity they experience. Another
LBS data called Tencent was applied to examine the collective human
activities during typhoons in China. Their study revealed that there are
significant spatial differences in the recovery duration of human ac-
tivities after typhoons.

In sum, although a rising number of studies have attempted to re-
veal human mobility patterns both in normal conditions and disaster
scenarios, the understanding of how urban human flow varies tempo-
rally and spatially (e.g. by different spatial clusters) in extreme weather
events remains limited. In addition, it remains unclear to what extent
human flow may vary among different urban functions, manifested by
land use patterns of origins and destinations. It is also unclear how LBS
data can be utilized to evaluate the vulnerability and resilience of urban
systems to various unexpected circumstances, such as extreme weather
events.1

Hence, this study fills these research gaps with a focus on addressing
the following research questions: to what extent are urban human ac-
tivities disrupted under extreme weather conditions? How does urban
human flow vary spatially and functionally as a response to extreme
weather conditions over time? And finally, what are the implications of
LBS data for urban risk management and resilience capacity develop-
ment?

3. Data and study area

3.1. Typhoon Mangkhut

Typhoon Mangkhut was one of the major disruptive weather events
and a category 5 super typhoon occurred in 2018. It is one of the most
powerful tropical cyclones ever recorded in the Asian-Pacific region and
caused widespread damage among several Southeast Asian countries
and regions such as Guam, the Philippines, Malaysia, Vietnam, and
South China. Typhoon Mangkhut formed on September 6, 2018 over
the Pacific Ocean and its magnitude and power grew as it moved to-
wards Southeast Asia. It approached closest to South China on
September 15, 2018. The meteorological bureaus of most cities in
Guangdong province in China issued red alerts, which are the highest
level, for Typhoon Mangkhu. Specifically, the Meteorological Bureau of
Shenzhen issued a red alert for rainstorms on September 16, 2018.

The occurrence of Typhoon Mangkhut also caused massive disrup-
tions of urban human activities. For instance, it is reported that over
2.45 million people were relocated in Guangdong province (Liang,
2018). The storm also caused a series of damages to the urban infra-
structure system in Shenzhen. For instance, power failures occurred in
over 13 location, many streets flooded, and over 248 trees were up-
rooted, which also caused disruptions to urban roadway systems (Han,

2018).

3.2. Data for the analysis

To provide a comprehensive assessment of the spatiotemporal var-
iation of urban human flow in the city during the typhoon, three types
of data were adopted in our assessment:

Urban flow data: The daily flow data for the study period were
obtained from mobile device positioning by Baidu Maps, one of the
largest location-based service providers in China (similar to Google
Maps). For instance, the LBS platform of Baidu Maps holds the largest
share (52.98%) of the LBS market in China (Li, 2018) and has more
than 400 million monthly active user devices on average. Hence,
these data provide a much broader representation of urban human
mobility than other types of LBS data. The dataset includes more
than 89 million flows among the location cell in Shenzhen. Each
location is defined as a grid of 500 m × 500 m cell, which is a re-
latively high spatial resolution at which this type of data can be
provided due to the concern of data privacy. Each flow record in-
cludes two types of information: the geospatial information of the
centroids of its associated origin and destination (OD) cells, and the
number of trips made by mobile device users moving from one origin
to a different destination within one day. Therefore, trips made
within the same grid are not included. Such an assumption is rea-
sonable as the analysis was conducted based on the data with a re-
lative high spatial resolution. As the flow volume is measured by
count, the dataset does not differentiate individual users, as it can
reflect multiple trips made by one user in a single day.

The data covers the period of September 10–23, 2018 (14 days). It
includes seven days before the severe disruption of Typhoon Mangkhut
(9.10–9.15), two days during the event (9.16–9.17) and five days after
(9.18–9.23). The definition of the typhoon-affected period was based on
typhoon alerts from the Meteorological Bureau of Shenzhen.

Point-of-interest (POI) data: Over 840,000 of POI data in Shenzhen
was also obtained from Baidu Maps. The data include detailed spatial
information of each POI. As shown in Table 2, POI is classified as 19
categories of urban functions.

Population density: The data is generated based on user check-ins
on Baidu Maps. It can be used to reflect the vitality of different districts
in a city. The data is primarily used for visualization to understand the
spatial distribution of human activities in cities.

3.3. Study area

Shenzhen, with a total area of 1992 km2, is one of the major sub-
provincial cities in Guangdong Province in China. The city locates in the
core of the Guangdong – Hong Kong and Macau Great Bay Area and it is
considered one of the most vibrant cities in China due to its fast-
growing economy and well-developed high-tech sectors. While the ci-
ties attract millions of visitors and people every year, the city also
suffers from tropical storms and typhoons during summer seasons.

The temporal distribution of urban flows is summarized in Fig. 1.
The average daily flow volume is around 6.4 million. However, it is
quite clear that during the two days of disruption from Typhoon
Mangkhut, the volume of urban flows decreased substantially.

Fig. 2 summarizes the spatial distributions of urban human activities
based on various LBS data. The figure in general depicts a polycentric
urban structure in Shenzhen (Liu et al., 2018). Specifically, Fig. 2(a)
and (b) reveal the distribution of population density in Shenzhen. It is
clear that the central (Luohu, Futian, and Longhua) and western
(Nanshan and Bao'an) regions have relatively higher levels of human
activity, whereas the levels are generally lower in the rest of the city.
Such a spatial pattern is also confirmed in Fig. 2(c), which is based on
POI data. In addition, Fig. 2(c) also reveals that while commercial fa-
cilities cover mostly areas with high density, industrial facilitates are
generally located in the north side of the city. In addition, to provide a

1 Vulnerability is generally defined as the susceptibility to perturbations,
which focuses on the consequence component of risk (Taylor, 2017). Con-
versely, resilience is a concept that reflects an ability of the economic and social
system to maintain its function and/or hasten the speed of recovery after a
shock from a disaster (Rose, 2004).
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better visualization of the major urban flows within the city, all flows
with a value greater than “50” are presented in Fig. 2(d). It is evident
that while some long distance trips are sporadically scattered with
linkages between the east and the west, most of the flows have rela-
tively short trip distances. Again, these activities are primarily con-
centrated in central and western districts where the level of human
activities is generally high.

4. Methodology

4.1. Analytical framework

The analytical framework of spatiotemporal and functional flow
pattern extraction is illustrated in Fig. 3. To begin with, the POI data
and flow data were processed and cleaned by removing any abnormal
records, such as outliers. The cleaned data were then adopted for both
GIS analysis and spatial flow analysis. Specifically, various spatial maps
were generated based on the cleaned data in order to provide a vi-
sualization of the spatial distribution of urban functions and flow ac-
tivities. Next, the POI data were integrated with the flow data, based on
the classification of land use type of the origin and destination of each
flow. Meanwhile, global flow patterns of spatial association and local
flow clustering were examined and compared over time. In the end, the
identified functional and spatial patterns of the flow data were

combined to assess the influence of the typhoon.

4.2. Functional flow distribution

To examine to what extent urban flows vary by urban function, the
land use information of origin and destination and flow information
were connected. Specifically, following previous studies such as Hu
et al. (2016), Liu et al. (2017), Zhang et al. (2017), and Yang et al.
(2019), the data was processed based on the following assumptions.
First, we assume that the function of urban flow can be classified based
on the land use type of the parcel of its origin and destination (OD).
Second, POI data is assumed to be more relevant than the land use
zoning data to reveal urban vitality given that the information tends to
be updated more frequently than the traditional land use data. Ac-
cording to the standards of land use, urban land classification, planning,
and construction, urban functions, urban function is reclassified into 6
essential categories based on information from the secondary classifi-
cation of POIs from Baidu Maps: residential, commercial, industrial,
institutional, recreational, and transport. Third, although POI data can
be updated frequently, our assessment was conducted based on the
assumption that the information of POI didn't change during the time
period of this study.

Next, the POI data was aggregated at a block level. The block is
defined by the same grid of 500 m × 500 m cells that the flow data use.

Table 2
Classification of land function.

Function of land Secondary classification of POIs

Residential Residential area, dormitory
Commercial Restaurant, snack bar, cake dessert shop, cafe, bar, star hotel, express hotel, apartment hotel, shopping center, department store, supermarket, convenience

store, home building material, home appliances digital, shop, market, communication business hall, post office, logistics company, ticket office, laundry,
graphic fast printing shop, photo studio, real estate agency, public utility, maintenance point, housekeeping service, funeral service, lottery sales point, pet
service, newsstand, public toilet, beauty, hairdressing, manicure, body beauty, resorts, farmyard, cinema, KTV, theater, dance hall, internet cafe, gaming
venue, bathing massage, leisure plaza, sports venue, extreme sports venue, fitness center, car sale, car repair, car beauty, auto part, car rental, car inspection
field, bank, ATM, credit union, investment and wealth management, pawnshop, office building

Industrial Company, park, agriculture, forestry, horticulture, factory, and mine
Institutional Institution of higher learning, middle school, primary school, kindergarten, adult education, parent-child education, special education school, intermediary,

research institution, training institution, library, science and technology museum, Press and publication, radio and television, art group, art gallery, exhibition
hall, cultural palace, General hospital, specialist hospital, clinic, pharmacy, medical examination institution, nursing home, emergency center, disease control
center, central institution, governments at all level, administrative unit, public security agencies, foreign-related institution, party organization, welfare
agency, political and educational institution

Recreational Park, zoo, botanical garden, amusement park, museum, aquarium, bathing beache, heritage site, church, scenic area, island, mountain, water system
Transport Airport, railway station, subway station, subway line, long-distance bus station, bus station, bus line, port, parking lot, refueling station, service area, toll

station, bridge, charging station, roadside parking space, highway exit, highway entrance, airport exit, airport entrance, station exit, station entrance, parking
lot entrance and exit

Source: Authors' classification based on Baidu Map.
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Fig. 1. Temporal distribution of flow volume during the investigation period.
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Fig. 2. Spatial distributions of the LBS data in shenzhen.
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The major urban function of each block is defined by the land function
type with the highest share in each block. For instance, assuming Sn
represents the aggregate number of POIs of the n category of land

function in a certain block. The land function with the largest number
of POIs is defined as =S Smaxhigh

n
n

[1,2,..,6]
. Hence, the urban function can

be defined by the land function with the highest percent of POIs (Phigh),

Fig. 2. (continued)
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which can be calculated through the following equation:

= ×
=

P
S

S
100%high

high

i n1
6

(1)

One should note that there are several caveats of such a calculation.
Firstly, the calculation is based on the quantity of POIs instead of the
actual size of land uses. Secondly, the major urban function of each
block is essentially determined by the function of land with the highest
rate, which may not be realistically appropriate in a case where the
shares of more than two types of land are equal.2 Nevertheless, such a
calculation provides a straightforward approach to identify the major
function of each block.

Then, the urban flow with information of urban function was de-
veloped by joining each spatial flow with its corresponding major urban
functions of its origin and destination blocks, respectively. In the end, a
matrix that summarizes functional flows by type was generated to re-
present the functional distribution of flows.

4.3. Spatiotemporal flow pattern extraction

4.3.1. Global flow pattern of spatial association
The global flow pattern of spatial association needs to be extracted

for each day of the entire period, which enables a longitudinal com-
parison of global spatial patterns of flow on a daily basis. To examine
the global flow patterns of spatial association, the Getis-Ord General G

statistic was adopted (Getis and Ord, 1992). This General G statistic is
given by Eq. 2.

= = =

= =
G

w x x
x x

i j,i
n

j
n

ij i j

i
n

j
n

i j

1 1

1 1 (2)

where xi represents the flow value of a flow i; wij is the spatial weight
between flows i and j representing the spatial proximity between them.
This statistic measures the global concentration of high or low flow
values in the study area via the output G value and the associated Z-
score and p-value.

To accommodate this classic statistic of high/low value clustering
designed for point and areal data in the context of flow data, a formal
definition of proximity for flows are crucial. We employ the neighbor-
hood definition for flow data in Tao and Thill (2018). For a target flow
A, its neighbors are defined according to following rules:

• Rule 1: Flows have the same origin and same destination as a;
• Rule 2: Flows have the same origin (destination) as a but a desti-

nation (origin) as the contiguous neighbor of a's destination (origin);
• Rule 3: Flows have both origin and destination as the contiguous

neighbors of a's origin and destination;
• Rule 4: Flows have the origin and destination different from those of
a and they are also not the contiguous neighbors of a's origin and
destination.

As demonstrated in Fig. 4, flow a’ shares the same origin and des-
tination with flow a (Rule 1). The flow labelled as b (b’) shares the same
origin (destination) with flow a, and has a contiguous destination
(origin) with destination of flow a (Rule 2). The flow c has both origin
and destination contiguous to those of flow a (Rule 3). Neither the
origin nor destination of flow d is the same or contiguous to flow a
(Rule 4). Therefore, flow a’ should be aggregated with flow a (Rule 1);
flow b and flow c are considered neighbors of flow a (Rules 2 and 3),
while flow d is not (Rule 4).

4.3.2. Local flow clustering
The global flow pattern of spatial association cannot exhibit spatial

clustering of flows at the local level due to the existence of spatial
heterogeneity (Anselin, 1995). It necessitates detecting the spatial
concentration of flows with similar flow values at the local level,
namely hot or cold spots of flows. To extract the local flow pattern for
each day of the period, a robust flow clustering method, flowAMOEBA
(Tao and Thill, 2018), was adopted. FlowAMOEBA is a data-driven and
bottom-up spatial statistic method for identifying spatial flow clusters

Fig. 3. A framework of spatiotemporal and functional flow pattern extraction.

Fig. 4. Different cases of flow neighbor relationship.

2 There are two possibilities to address such a limitation. The first approach is
to validate and update the outcomes based on other data sources, such as the
land use data. The second approach is to improve the calculation formula by
introducing a weight factor, such as area size of the facilities.
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of high or low-value flows with irregular shapes, for the grouping of
origin and destination locations. The method extends the classical
spatial clustering method AMOEBA (Aldstadt and Getis, 2006) to allow
areal data to work with flow data by properly defining spatial flow
neighborhoods, as previously described.

To identify flow clusters, the algorithm starts from an arbitrary seed
flow and attempts to iteratively expand the cluster towards neighboring
flows with the aim of maximizing or minimizing the local Gi

∗statistic
(Getis and Ord, 1992; Ord and Getis, 1995), defined as follows:

=

=

=
=

=

( )G w x x w S
N w w

N
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x
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x

/
1

, wherei j

N
ij j j

N
ij

j
N

ij j
N

ij

j
N

j

1 1
1

2
1

2

1
2

2
(3)

In this study, we set the spatial weight wij equal to 1 if flow j
neighbors flow i, and 0 otherwise. N is the total number of flows, xj is
the value of flow j, and x is the mean value of all flows. With the
identified flow clusters from all predetermined seeds, they are sorted by
their absolute Gi

∗ values. The ones with the highest values without any
spatial overlaps were preserved. Finally, Monte-Carlo simulations were
carried out to select the flow clusters that pass statistical significance
tests as the final results.

Once the local flow clustering patterns were extracted for every day,
how to compare the clustering patterns on a daily basis became a
challenge. As the local flow clustering patterns for each day are re-
presented by a set of flow clusters, with each cluster including a number
of flows, it is a nontrivial task to compare the structures of two or more
clustering patterns. Although simple statistics of each flow clustering
pattern can be generated for a preliminary comparison, such as the
number of clusters, min/max flow volume for single flow clusters, and
total and mean flow volume for all clusters, there is a lack of measures
that compare the spatial distribution of flow clusters for clustering
patterns. All existing measures of clustering comparison assume the
same set of data, based on which two clustering patterns are compared
(Meilă, 2007). However, local flow clustering patterns extracted for
different days in our study are from different data sets. Specifically,
denote fi, jd as the flow from location i to j for the date d (i, j ∈ L; d∈D; L
is the set of locations in the study area and D is the set of dates for the
period in this study) and Fd is the set of flows for date d. Then, we have:

=f
if f F
otherwise

1,
0,i j

d i j
d d

,
,

(4)

After applying flowAMOEBA to Fd, a set of local flow clusters
Pd ⊂ Fd was extracted, where Pd is a subset of Fd. Therefore, for two
flow patterns PA and PB for two dates respectively, they may include the
same or different set of flows, which could violate the above assumption
of existing measures. To remedy this issue, a Global Preservation Ratio
(GPR) was for the first time developed to measure the general similarity
of two patterns following the idea of the Jaccard index (Ben-Hur et al.,
2001), which is known as the Intersection over Union of two sets of
flows.

=GPR P P
P P

A B

A B (5)

where ∣ ∗ ∣ = ∑i∑jfi, jd, fi, jd ∈ ∗, ∗ is a set of flows. Then, the similarity of
the two patterns needed to be further examined at the individual cluster
level, but only within the intersection set of the two patterns
IAB = PA ∩ PB. Hence, given PA and PB, the intersection set IAB can be
represented as two partitions, namely {p1,p2,…,pk,…} based on PA and
{q1,q2,…,ql,…} based on PB, respectively. Inspired by the Variation of
Information (VI) measure (Meilă, 2007), a Local Preservation Ratio can
be defined as:

=LPR
p q

I
p q
p qk l

k l
AB

k l

k l (6)

where the first item p q
I
k l

AB serves as a local weight reflecting the
density of the overlap between two clusters from different partitions,
while the second item p q

p q
k l
k l

is a local version of the Jaccard index.
Similar to VI, LPR is weighted by the local density of the overlap be-
tween any two clusters from different partitions, representing the im-
portance of the similarity of two clusters at the local level. Unlike VI,
which uses an information-entropy-based distance measure as the
second item, LPR measures the local similarity based on the set theory
which is consistent with that of GPR. Furthermore, it allows the values
of GPR and LPR to be more straightforward and interpretable, as they
are naturally bounded between 0 and 1. However, VI needs to be
normalized to achieve this. Consequently, it enables the combination of
the GPR and LPR as a Total Preservation Ratio (TPR), which can be
formulated as:

=TPR GPR LPR (7)

5. Results

5.1. Spatial-temporal flow patterns

Table 3 shows the General G statistic as an indicator of the global
flow pattern of spatial association for each day in the study period. It
indicates that only six days (11th, 19th, 20th, 21st, 22nd, and 23rd of
September) exhibited a significant global spatial concentration of high-
volume human mobility flows. For the rest of the dates, the spatial
distribution of human mobility flows seemed to follow a random pat-
tern. For the day of disruption (16th), it does not show a distinct pattern
from those of the adjacent days.

As discussed before, indicators for the global pattern of spatial as-
sociation cannot reflect spatial clustering at the local level.
FlowAMOEBA is applied to extract local clusters of high-volume flows
for each day in the study period. The same method settings are used for
consistency, such as the significance level (99%) and number of per-
mutations (1000). Fig. 5 displays daily variations of local flow clusters
generated from the analysis. The visualization of flow clusters provides
a straightforward approach to understanding the spatial distribution of
urban flow clusters and its evolution over time. The comparison of daily
flow clusters reveals that the flow clusters of human mobility on Sep-
tember 16th did exhibit distinct characteristics from other days, as both
the number of clusters and the flow volume were reduced significantly
due to the disruption from Typhoon Mangkhut.

To further compare the spatial distribution of local flow clusters on
different days, Preservation Ratios were computed for the local flow
patterns of two consecutive days (Fig. 6) to reflect the temporal

Table 3
General G statistics for global flow pattern of spatial association.

Date G value P-value Z-value

Sep-10-2018 0.000359 0.459028 0.103
Sep-11-2018 0.000513 0⁎ 17.360
Sep-12-2018 0.00035 0.477715 0.056
Sep-13-2018 0.000392 0.375192 0.318
Sep-14-2018 0.000358 0.457267 0.107
Sep-15-2018 0.000351 0.474665 0.064
Sep-16-2018 0.000187 0.456697 −0.109
Sep-17-2018 0.000349 0.463495 0.092
Sep-18-2018 0.000273 0.46399 −0.090
Sep-19-2018 0.000471 5.67E-05⁎ 3.860
Sep-20-2018 0.000535 0⁎ 61.108
Sep-21-2018 0.000525 0⁎ 61.982
Sep-22-2018 0.000555 0⁎ 58.015
Sep-23-2018 0.000465 0⁎ 37.806

⁎ 99% significance level.
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changes. Two disruptions are identified in Fig. 6. The first is around the
15th and 16th, where low values of all three preservation ratios in-
dicate a dissimilarity in patterns between the 15th and 16th and the
16th and 17th. In other words, the spatial distribution and clustering of
human mobility flows on 16th is significantly different from those for
the day before (15th) and the day after (17th). This can reflect a process
of normal-disruption-recovery that occurred during the three con-
secutive days. It should be noted that among the common flows (GPR)
identified in the flow clustering between two consecutive days, the local
spatial clustering pattern (LPR) is less different between 15th and 16th
than the 16th and 17th. This can be attributed to the fact that the 15th
and 16th were the weekend and share more commonalities in term of
human mobility than with 17th (Monday).

The second identified disruption was on the 20th, shown by the low
preservation ratios between the 19th and 20th. Unlike the first

disruption, the local spatial flow pattern for the 20th is similar to that
for the 21st, which means there is not a recovery on the day after the
disruption. This disruption is unexpected, as it is just three days after
the recovery from the disruption on the 16th. To further examine the
validity and cause of this disruption, a pairwise comparison between
the local flow patterns of each day was conducted and the results are
presented in the form of a similarity matrix plot (Fig. 7). First, the
disruption on the 16th caused by Typhoon Mangkhut is confirmed. The
comparison between GPR and LPR indicates that the dissimilarity lies
more in the unshared flows than the grouping of the shared set of flows
into clusters. In other words, the disruption from the storm caused
many flows to disappear. Secondly, the disruption that began on the
20th was also confirmed and this disruption continued for the rest of
the study period. It is evidenced by the inter-group pattern differences
between flow patterns for the sub-period of the 20th – 23rd and those

Fig. 5. Daily variation of local flow clustering (Sep 10–23, 2018).
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for the sub-period of the 10th – 19th (excluding the 16th), and by the
relatively high similarity between flow patterns within each sub-period.
The fairly high similarity between patterns from the 20th – 23rd is also
reflected by the General G statistics in Table 3, which are more similar
to days within this sub-period rather than the days outside of it. Ex-
perientially, this disruption could be attributed to the fact that the Mid-
Autumn Festival was on the 24th, which is one of the most important
national holidays for family reunions. To make sure they are able to
return to their hometown on that day, people in China usually begin
their travels several days earlier, which collectively leads to a large
number of human mobility flows towards transportation stations, hubs,
and ports, thus leading to distinctly different flow patterns from normal

days.

5.2. Functional flow patterns

Table 4 provides a summary of the flow change by urban function
during Typhoon Mangkhut based on the entire observations of flow.
Specifically, Table 4(a) summarizes the percent change of urban flow
from one type of urban function to another one on the first day (Sep 16,
2018). The percent change was calculated by comparing the corre-
sponding day of a week either before or after the typhoon event. It is
clear that the occurrence of Typhoon Mangkhut had a substantial im-
pact on urban flow in Shenzhen, as volume was reduced by an average
of 60.8% on the first day of the storm. The most affected functions
include commercial, recreational, and transport-related flows. Con-
versely, the flows with either an institutional or industrial-related
origin/destination were found to have a relatively lower average re-
duction on the first day of the event.

Table 4(b) summarizes the change in urban flow by function in the
second day of the typhoon event. It is evident that the level of disrup-
tion on the second day is much lower than the first day, as only 11.1%
of the flows were reduced. Similarly, flows that either originated or
ended at recreational areas such as parks, museums, and scenic sites
were found to have experienced relatively higher decreases than other
function categories. Conversely, flows that involve a function such as
institutional and residential were found to have a much lower decrease.
Such results confirm that during extreme weather or disaster events,
flows related to fundamental urban functions such as businesses,
manufacturing, education, hospitals, and media agencies tend to ex-
perience a relatively lower level of disruption, whereas flows that in-
volve leisure and recreational functions are more likely to experience a

Fig. 6. Variation of the preservation ratios, GPR, LPR, and TPR, over time.

Fig. 7. Correlation matrix of daily spatial cluster patterns based on preservation ratios.
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Table 4
Urban flow change by function during the typhoon event. (Comparison with the corresponding weekday.)

(a) The first day of the typhoon event (Sep 16, 2018)

Destination

Type Commercial Industrial Institutional Recreational Residential Transport Total

Origin Commercial −64.0% −59.2% −63.0% −70.8% −64.9% −67.4% −63.3%
Industrial −59.5% −49.5% −43.2% −50.8% −57.7% −53.9% −55.6%
Institutional −63.9% −42.9% −48.0% −67.1% −57.8% −59.2% −57.2%
Recreational −70.9% −51.8% −64.3% −69.6% −67.0% −64.0% −64.2%
Residential −64.0% −56.9% −57.9% −64.0% −56.3% −61.3% −61.3%
Transport −65.5% −52.8% −58.8% −62.2% −60.4% −55.9% −60.8%
Total −63.1% −55.3% −56.7% −63.5% −61.9% −62.2% −60.8%
1. The calculation is based on: (Flowsep.16 – Flowsep.23)/ Flowsep.23 × 100%
2. The summary was calculated based on the 89 million of flow samples.
3. Exclude other types of urban functions.

(b) The second day of the typhoon event (Sep 17, 2018)

Destination

Type Commercial Industrial Institutional Recreational Residential Transport Total

Origin Commercial −10.0% −9.1% −12.1% −17.0% −9.7% −11.2% −10.1%
Industrial −11.0% −8.3% −10.8% −10.5% −9.5% −13.1% −10.4%
Institutional −15.7% −13.0% −12.8% −25.5% −13.8% −14.9% −15.0%
Recreational −20.5% −13.9% −26.1% −23.0% −23.6% −15.6% −19.3%
Residential −10.4% −8.2% −10.6% −21.6% −6.3% −7.0% −9.7%
Transport −14.9% −13.7% −16.1% −17.4% −11.2% −15.0% −14.8%
Total −11.1% −9.5% −12.8% −16.8% −10.1% −12.4% −11.1%
1. The calculation is based on:(Flowsep.17 – Flowsep.10)/ Flowsep.10 × 100%
2. The summary was calculated based on the 89 million of flow samples.
3. Exclude other types of urban functions.

Table 5
Urban flow change by function during and after the typhoon event. (The comparison is based on the average level.)

(a) The average flow during the event (Sep. 16–17, 2018)/The average daily flow before the event (Sep. 10–15, 2018)

Destination

Type Commercial Industrial Institutional Recreational Residential Transport Total

Origin Commercial −40% −38% −41% −44% −39% −43% −40%
Industrial −40% −35% −34% −33% −37% −39% −38%
Institutional −44% −36% −37% −44% −40% −41% −41%
Recreational −46% −36% −44% −37% −43% −42% −43%
Residential −39% −36% −38% −41% −34% −38% −38%
Transport −44% −39% −42% −42% −40% −41% −42%
Total −40% −37% −39% −40% −38% −41% −39%
1. The calculation is based on (The average flow of Sep 16–17 – The average flow of Sep 10–15)/The average flow of Sep 10–15 × 100%.
2. The summary was calculated based on the 89 million of flow samples.
3. Exclude other types of urban functions.

(b) The average flow after the event (Sep. 18–23, 2018) /
The average daily flow during the event (Sep. 16–17, 2018)

Destination

Type Commercial Industrial Institutional Recreational Residential Transport Total

Origin Commercial 58% 53% 60% 71% 58% 63% 57%
Industrial 56% 46% 39% 45% 51% 53% 52%
Institutional 67% 43% 47% 82% 59% 56% 58%
Recreational 78% 49% 78% 70% 68% 66% 67%
Residential 58% 49% 53% 59% 49% 54% 55%
Transport 67% 53% 59% 65% 58% 55% 61%
Total 59% 51% 54% 62% 56% 59% 56%
1. The calculation is based on (The average flow of Sep 18–23 – The average flow of Sep 16–17) / The average flow of Sep 16–17 × 100%.
2. The summary was calculated based on the 89 million of flow samples.
3. Exclude other types of urban functions.
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higher disruption level.
To test the consistency of the research findings, Table 5 summarizes

urban flow change by function based on a comparison of the average
flow volume before, during, and after the typhoon based on a different
formula. Specifically, the change in flow by function presented in
Table 5(a) was calculated based on the difference of the average flow
volume change between the period of “during the typhoon” (September
16–17) and “before the typhoon” (September 10–15). This calculation
has the advantage of smoothing out the temporal variation caused by
different days of the week. Hence, the pattern is likely to be more re-
liable and consistent than the pattern revealed in the daily flow com-
parison. The overall impact of Typhoon Mangkhut on urban human
flows was found to be 39%, suggesting that during the two days the
storm was present, approximately 39% of urban flows in Shenzhen
were reduced.

In terms of the comparison by function of flow, the results were
found to be more consistent among different categories of functions. For
instance, the flows with destinations at commerce and recreation-re-
lated locations, such as restaurants, hotels, shopping centers, and parks,
generally experienced a reduction in average flow volume by 40%,
whereas the reduction was relatively lesser for fundamental functions
such as industry and residential.

Table 5(b) calculates the recovery of urban human flows by various
functions after the typhoon event. The calculation was conducted using
differences in the average flow during and after the duration of the
storm. In general, the results show that 56% of urban flows were re-
covered during the period immediately after the typhoon's departure.
Again, leisure and recreation-related flows experienced the highest
level of change. The flows related to commercial and transportation
purposes also experienced a relatively high level of recovery (given that
59% of flows were recovered after the disruptive event). Conversely,
the categories of flow with fundamental functions, such as business and
residence experienced a relatively low magnitude of change.

5.3. Functional patterns of flow clusters

The variations in urban flow by different functions was also ex-
amined with a focus on major clusters. These clusters were identified
using the FlowAMOEBA method. In total, the identified clusters account
for 4.4% of the total observed flows. One should note that the under-
standing of the spatial-temporal variation of flow clusters have im-
portant implications, given that flow clusters generally represent spatial
distributional patterns of major urban human activities. If we assume
the regions or areas with the highest volume of urban flows would
deserve more attention under disruptive events, the analysis outlined in
this study would be helpful to identify those locations easily and thus
provide with more targeted guidance for emergency response and
management. Following a similar approach, the change in flow clusters
by different functions was calculated based on the various days of the
typhoon. As shown in Tables 6 (a) and 6(b), around 90% of the flow
clusters were reduced on the first day of the event as compared with the
corresponding day in a normal circumstance, whereas only 19% of the
flow clusters were reduced on the second day of the event. Although
most flow clusters by different functions experience a negative change,
one should note that counterintuitive outcomes, such as a positive
change in certain flow clusters during the storm, were also observed.
This may be partially due to the relatively small number of observations
in the case of cluster calculation. Such an outcome may also be due to
the specific pattern of the selected reference day.

6. Discussion and conclusions

In the era of smart cities, the massive adoption of sensor-based ICT
technology and open LBS platforms have generated a large volume and
variety of spatial data at an unprecedented rapid pace. These data
provide urban planners and analysts with new sources to better un-
derstand challenging issues pertaining to resilience and sustainability.
This study evaluates the impact of extreme weather events on urban
human flow using location-based big data from Baidu Map. Using

Table 6
Urban flow change by function of clusters. (Comparison with the corresponding weekday.)

(a) The first day of the typhoon event (Sep 16, 2018)

Destination

Type Commercial Industrial Institutional Recreational Residential Transport Total

Origin Commercial −94% −91% −100% −100% −99% −88% −93%
Industrial −92% −90% 384% 98% −93% −45% −85%
Institutional −100% 101% −100% −47%
Recreational −100% 143% 13%
Residential −99% −98% −100% −100% −99%
Transport −87% −68% −100% −100% −100% −84%
Total −94% −87% 60% −10% −98% −83% −90%
1. The calculation is based on: (Flow sep.16 – Flowsep.23)/ Flowsep.23 × 100%.
2. The summary was calculated based on the flow clusters.
3. Exclude other types of urban functions.

(b) The second day of the typhoon event (Sep 17, 2018)

Destination

Type Commercial Industrial Institutional Recreational Residential Transport Total

Origin Commercial −5% −15% −91% −83% 0% −22% −11%
Industrial −21% −26% −11% −26% −19% −34% −25%
Institutional −79% −43% −56%
Recreational −42% −24% −100% −49%
Residential −30% −26% −100% −100% 405% 2% −26%
Transport −39% −46% −1% −7% −36%
Total −15% −23% −51% −57% −10% −23% −19%
1. The calculation is based on: (Flowsep.17 – Flowsep.10)/ Flowsep.10 × 100%.
2. The summary was calculated based on the flow clusters.
3. Exclude other types of urban functions.
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Typhoon Mangkhut as an example, the spatiotemporal and functional
variations of urban human flow in Shenzhen are examined using var-
ious methods, including GIS and spatial flow analysis methods. To our
limited knowledge, this is the first application using both flow data and
POI data to examine the impact of extreme weather events on human
flow changes, with a comparison of various urban functions.

The study revealed that urban flows have been impacted sub-
stantially not only in volume but also in terms of their spatial and
functional patterns during the typhoon event. In terms of the temporal
variation, our analysis reveals that urban flows were found to have
reduced by 39% during the disruption. Conversely, 56% of flows in-
creased immediately after the disruption. In terms of spatial pattern, the
disruptive weather event has caused a significant change of local spatial
clustering of mobility flows. In addition, one noteworthy pattern after
the landfall of the typhoon was also identified. During September 20
and 23, spatial flow patterns of both global spatial association and local
spatial clustering are found to be dramatically different from that of
other days, which suggests that there could be a different event rather
than underlying Typhoon Mangkhut. As discussed earlier, in this case,
the pattern may reflect a different pattern of mobility which may be
caused by the increased amount of family reunion trips for the Mid-
Autumn Festival (Sep 24). In short, our analysis provides a novel ap-
proach to evaluate the impacts of various disruptions on urban mobility
through coupling flow clustering methods (e.g., FlowAMOEBA) with
the new developed measure of pattern comparison. Such an approach
enables us to effectively quantify the dynamic change of spatial clus-
tering patterns of urban mobility and other flow-based geographic
phenomena, which was lacking in the existing GIS toolboxes.

In terms of functional variation, the assessment revealed that fun-
damental urban functions such as industrial (work) and institutional
(education) related trips experienced less disruption, whereas recrea-
tional related trips tend to receive a relatively larger influence by the
typhoon event. Overall, the research findings confirm that there is a
strong connection between urban flow and urban function. The result is
consistent with previous studies in terms of the relationship between
urban flow and urban functions (Calabrese et al., 2010; Lee and Holme,
2015; Pan et al., 2012; Yang et al., 2019; Yuan et al., 2012; Zhang et al.,
2017). One should note that most of these previous studies attempted to
reveal the linkage of human mobility with urban function in normal
conditions.

Our study, on the contrary, extends the assessment from the lit-
erature with a focus on examining the variations of human mobility in
different urban functions under abnormal condition. We believe such
an extension is important as it would help us recognize to what extent
the urban flow is disrupted due to unexpected events, which hence may
provide important implications for planners and policy makers to en-
hance urban disaster resilience through a better understanding of urban
vulnerability to various types of unexpected events, such as extreme
weather events and contagious disease outbreaks.

For instance, the LBS data and method developed in this study can
be used to evaluate the effectiveness of flow mobility by different urban
functions under a disruptive event, such as typhoon and flood event.
The outcome of these assessments would provide evidence and support
to allocate resources to restrict human activities and guarantee the
safety of human mobility. In addition, the analysis will also have a
potential to be applied for the evaluation and a temporary restriction of
flow movement in the case of human pandemic, such as the recent
outbreak of the 2019 novel coronavirus occurred in China. With the
capability of LBS data and analytical framework developed in this
study, human urban flow could be adopted as a GIS visualization
system to assist first responders to achieve dynamic monitoring,
tracking and assessing the human flow capacity of the urban infra-
structure systems. This may eventually facilitate the development of
more targeted emergency planning strategies that will enhance urban
resilience to various types of unexpected events in the future.

One should note that our study also has several limitations. First, the

research outcomes can be sensitive to the data used. For instance, the
different results found through the comparison of the functional pat-
terns of flow clusters to the total population suggest that it would be
better to adopt a more representative LBS data, in order to reveal a
more reliable calculation outcome in future analyses. In addition, the
POI data used in this study is mainly pertinent to commercial activities
and lacks adequate points for activities such as recreation, which may
cause bias when classifying land functions, regardless of the fact that
POI data is able to reflect the vitality of a city. Furthermore, a lack of
assigned weights on POI data could lead to biased identification of the
major urban functions in each block area. Hence, it would be worth-
while adopting different resources, such as both POIs and urban land
use maps, in order to generate a more accurate representation of urban
functions by different unit areas.

One should also note that the comparative framework could also be
improved in several aspects in future research. For instance, the results
would be more reliable if a longer-term data is adopted for a temporal
comparison of flow changes. In addition, the accuracy of the analysis
could be further improved if the data at hourly intervals could be uti-
lized. This would help to separate the influences of other factors, such
as weekly temporal effects or the effects of other special holiday events,
which hence may provide more useful information for planning prac-
tice and emergency response.

Thirdly, although for a demonstration purpose, our assessment fo-
cuses on a single city of evaluation, the study could be also expanded to
other cities and/or for different disruptive events. For instance, it would
be interesting to compare to what extent the responses of urban flow
vary among various cities with different urban spatial structure. Such
an assessment could be further linked to economic impact analysis for
an evaluation of the effectiveness of the existing urban spatial structure
under both normal and abnormal situations. These multidimensional
assessments would enable us to gain a more comprehensive under-
standing of both social and economic impacts of disruptive events as a
result of interruptions of urban flow activities.
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