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Devon Knight 4,5, Emma Sexton 4,5, Lacey Smith 4,5, Beth Sheidley4,5, Michael Field 6, Ingrid A. Holm 2,3,7,
Catherine A. Brownstein2,3,7, Pankaj B. Agrawal2,3,7,8, Susan Kornetsky9, Annapurna Poduri 3,4,5, Scott B. Snapper3,6,
Alan H. Beggs 2,3,7, Timothy W. Yu2,3,7, David A. Williams3,10 and Piotr Sliz 1,2,3✉

While genomic data is frequently collected under distinct research protocols and disparate clinical and research regimes, there is a
benefit in streamlining sequencing strategies to create harmonized databases, particularly in the area of pediatric rare disease.
Research hospitals seeking to implement unified genomics workflows for research and clinical practice face numerous challenges,
as they need to address the unique requirements and goals of the distinct environments and many stakeholders, including
clinicians, researchers and sequencing providers. Here, we present outcomes of the first phase of the Children’s Rare Disease
Cohorts initiative (CRDC) that was completed at Boston Children’s Hospital (BCH). We have developed a broadly sharable database
of 2441 exomes from 15 pediatric rare disease cohorts, with major contributions from early onset epilepsy and early onset
inflammatory bowel disease. All sequencing data is integrated and combined with phenotypic and research data in a genomics
learning system (GLS). Phenotypes were both manually annotated and pulled automatically from patient medical records.
Deployment of a genomically-ordered relational database allowed us to provide a modular and robust platform for centralized
storage and analysis of research and clinical data, currently totaling 8516 exomes and 112 genomes. The GLS integrates analytical
systems, including machine learning algorithms for automated variant classification and prioritization, as well as phenotype
extraction via natural language processing (NLP) of clinical notes. This GLS is extensible to additional analytic systems and growing
research and clinical collections of genomic and other types of data.
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INTRODUCTION
Ten million children are affected by a rare disease with a genetic
etiology1,2. Yet, treatments for rare diseases are scarce due to the
unique challenges of rare disease research1,3, including the small
size of patient cohorts and the identification of precise genetic
etiologies of disease. Of the demonstrated applications of
genomics for patient care in rare disease cohorts4–8, most do
not address the specific challenges of the pediatric population.
Rare disease pediatric patients are few in number and tend to be
geographically widely distributed9, and therefore combining small
cohorts within an institution or with other institutions can be
valuable7,8,10–15. Existing inter-institutional networks have increas-
ingly focused on integration of genomic data, with some focused
on pediatric populations16,17 and others focused on national
enrollment12,13. Therefore it is increasingly important for individual
institutions to develop approaches that are compatible with
integration to these larger efforts.
Institutional and national initiatives face common challenges in

their decisions around patient selection, sequencing and analyses.
These decisions shape gene discovery and genetic diagnosis
outcomes. Family-based or trio-based sequencing has been
shown to be substantially more effective in various patient
populations than singleton sequencing,18–24 and researchers can
identify rare variation leveraging extended pedigrees25,26. Whole

genome sequencing (WGS) and whole exome sequencing (WES)
have been shown to be more effective at diagnosing patients with
suspected genetic diseases than other technologies20,27–30.
Hospital-based sequencing analyses have been shown to be more
effective than reference-lab-based analyses,27 because it often
occurs at academic medical centers and in a research environment
where analysts have more access to deep phenotypic information
about patients, better ability to re-contact patients and their
clinicians, and more domain-specific expertise. Many studies have
also argued in support of the added utility of iterative re-analyses
of sequencing data31–38 and highlighted the importance of these
factors in20,27,28 pediatric and neonatal populations18–20,36,38–41.
Institutional and national initiatives must consider additional
questions around consenting mechanisms and language. Initia-
tives may opt to sequence patients using research sequencing or
Clinical Laboratory Improvement Amendments (CLIA)-compliant
standards. The computational burden of analyzing genomic data
raises questions regarding how to develop infrastructure to
analyze data.
Of all of the challenges facing the community, perhaps none is

as profound as that of consenting, particularly in the realm of data
provenance and use. Within institutions, and even more so as data
sources are combined across institutions, incompatibilities in
research consenting practices limit the ability to combine data
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sources, especially given that once consent is obtained it cannot
be readily modified. Many consent forms developed in the past
and still used today do not support broad use of research data and
instead restrict data use to disease-specific research, creating
barriers to sharing data within and between institutions. Many
studies have shown that most research participants are supportive
of data sharing across the research community42–47. Data sharing
issues are widely recognized and have prompted efforts such as
Platform for Engaging Everyone Responsibly (PEER),48 National
Institutes of Health’s Genomic Data Sharing Policy,49 and the
Global Alliance for Genomics and Health (GA4GH) Data Use
Ontology50 to find more elegant solutions. Adopting those
recommendations across an institution (including modifying
existing studies) would accelerate general readiness to engage
in academic collaborations within the United States and
internationally. During this adoption process, there is also
additional opportunity to align consenting with the specific needs
of clinical processes including access to identified data, clinical
confirmation of findings, and access to data by patients.
Although hospital-based analyses frequently leverage genomic

data together with phenotypic information collected through
clinical practice and by the research laboratory, these data
typically remain siloed in multiple locations51. While valid privacy
and regulatory policy considerations have historically necessitated
the separation of data from the laboratory and the clinic, as well as
data from different cohorts, these distinctions pose barriers to the
utilization of multiple data sources to accelerate scientific
discoveries and pediatric precision medicine. Whole exome and
genome sequencing data are not yet readily incorporated into
patient medical records52,53, and even the limited variant data
contained in clinical reports from reference laboratories are often
stored by Electronic Health Records (EHRs) in a manner that is not
automatically searchable (e.g., as scanned PDFs). Thus, though re-
analyses, and in particular hospital-based re-analyses, of clinical
sequencing data can lead to improved gene discovery and
diagnosis rates, these re-analyses rarely happen in practice. These
realities necessitate the creation of institutional data warehouses
to store genomic and phenotypic information and provide unified
infrastructure for the interrogation of full raw sequencing data,
which is otherwise impossible or very time consuming for
researchers and clinicians. Increasingly, research and clinical
genomics overlap to provide patients with the latest discoveries,
particularly in the translation of research findings to the clinic and
in the treatment of raw sequencing data like other unprocessed
measurements, reviewable by clinicians. As research and clinical
sequencing require similar infrastructure to review genomic data,
there is an opportunity to foster intra-institutional synergy
through use of a unified platform that accommodates the unique
regulatory requirements of each.
Patient enrollment in genomic research has been ongoing at

BCH for close to three decades, yet data generated across research
teams have historically not been available for collective analysis.
Here, we describe the Children’s Rare Disease Cohorts (CRDC)
initiative, a program at BCH integrating genomic, research, and
clinical data to expedite pediatric precision medicine. Within its
first year, the CRDC launched 15 studies of rare pediatric-onset
Mendelian diseases, including epilepsy and inflammatory bowel
disease (IBD). Together, these studies enrolled 2441 participants
and collected genotypic data and phenotypic data from the
medical record and research surveys. We developed a genomics
learning system (GLS) for storage and use of the data. By
developing institutional infrastructure, leveraging a uniform
sequencing provider, and aligning IRB protocols with consistent
and broad consenting principles, the de-identified genomic and
phenotypic data of the CRDC was made available for collective
analysis across the institution in the GLS. In addition to supporting
the CRDC, the GLS was used to analyze clinical and research data
of an additional set of 6075 exomes and 112 genomes. CRDC data

in the GLS are accessible to translational researchers for gene
discovery, to basic science researchers for functional studies of
candidate genes, and to clinicians for accelerated hospital-based
patient diagnoses.

RESULTS
Process
The mechanisms, processes and technologies implemented at
BCH during the first phase of the CRDC were focused on enabling
hospital-based analysis and re-analysis of genomic data to
accelerate rates of discovery and patient diagnoses. This project
involved a strategic, internally-funded investment in CLIA-
compliant research sequencing of disease-specific cohorts. The
project was informed by a series of faculty town hall meetings and
the formation of a Genomics Blue Ribbon Committee who
developed specific recommendations to the hospital leadership
that resulted in institutional funding. Subsequently, a cohorts sub-
committee was formed, which surveyed the BCH community in
October 2017 requesting estimates regarding cohorts of pediatric
patients that would benefit from sequencing. A total of 26,148
patients in 83 disease cohorts from 23 departments or divisions
were estimated with an additional 4692 patients predicted to be
diagnosed with those diseases at BCH in 2018. Two of these
cohorts (epilepsy and IBD) anticipated high diagnosis rates (500
patients each) in 2018 and were selected by the cohort committee
to pilot processes and technologies for cohort sequencing. Sample
collection started in October 2018 and by January 2019, the cohort
committee initiated a request for application (RFA) for additional
cohorts. Applications from investigators across the institution
included 36 investigators in 19 departments regarding 11,810
patients with 7987 that would be eligible for enrollment in 2019.
An additional 13 pediatric-onset Mendelian disease cohorts were
selected from the applications, expanding the engagement of the
CRDC in phase I (October 2018-September 2019) to 15 cohorts.
Implementation of phase I of CRDC was completed as a
multidisciplinary effort across research teams, institutional leader-
ship, the Research Computing (RC) group, which is embedded
within the Information Services Department and affiliated with the
Computational Health Informatics Program (CHIP), and members
of the Manton Center for Orphan Disease Research54.

Consenting alignment
The integration of data sources at scale for collective analysis
necessitated the development of standard approaches to
consenting patients and family members. In order to facilitate
data sharing at BCH, the CRDC implementation team developed a
consenting framework that aligned with the GA4GH guidelines for
international data sharing55. This consenting framework was
subsequently integrated into 15 IRB protocols and informed
consent documents. The framework was designed to address four
major aspects: (1) to empower the rights and interests of the
research participants, (2) to support sample and data flow
considerations, (3) to enable the use of data across the institution,
and (4) to facilitate engagement with other academic networks
and industry sponsors to accelerate discovery and therapeutics
development (Table 1 and Supplementary Table 1). Many of these
aspects were already partially incorporated into the first two
participating research teams’ protocols, as well as other research
protocols at BCH, such as the Manton Center and the Precision
Link Biobank. Modifications of the first two protocols streamlined
facets of CLIA-compliant sequencing and data return processes.
The framework was comprised of informed consent, protocol, and
IRB form language templates that could be added to existing
research protocols or incorporated into new protocols. All
participants were consented to be re-contacted to request
additional data/samples and regarding their interest in being
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offered enrollment in other research studies. In order to support
potential clinical follow-up, patients were offered the option to list
a clinician in the research consent form to be involved in potential
clinical orders. The framework was reviewed by the BCH IRB in the
context of the first two protocols, and approved with the
understanding that it would be suitable for other protocols. As a
result of the RFA, the framework was applied to 13 other
protocols, many of which were originally not in alignment with the
framework, and approved by the IRB (Supplementary Table 2).

Recruitment, sample collection, and sequencing
In order to facilitate high volumes of participant enrollment, we
developed a workflow to scale up consenting that relies on
research team expertise in identifying research participants. All
enrolled patients have been diagnosed with a rare disease that
one of the research teams are studying. Each research team
identifies patients that match their recruitment criteria by
completing reviews of internal patient registries, further supple-
mented by analysis of medical records. The research teams then
contact patients and their families. Internal estimates of patient
counts were cross-validated by analysis of BCH patient population
in TriNetX56, which is utilized as a research database at BCH (Fig.
1). Priority for enrollment within each cohort is at the discretion of
the primary investigator (PI) and is governed by each IRB protocol.
Factors that are commonly considered include severity of disease,
age of patient, lack of informative genetic testing having been
previously performed and extreme and/or syndromal phenotypes.
Patients are recruited from outpatient clinics and inpatient
settings and offered either buccal swabs or blood draws, as
governed by each IRB protocol.
Interested participants were initially consented using our

standard paper forms, but during the later stage of phase I,

research teams were also offered the option to consent using
electronic consenting on tablets. On-site consenting was further
supplemented by a remote process, which was uniquely
supportive of the context and constraints experienced by both
study participants and research teams (for example, if a patient
did not have an upcoming appointment at BCH or lived far away).
In these cases, research teams consented participants over the
phone, utilizing mail, email or fax to send blank and signed
consent forms.
In a similar fashion to the CRDC recruitment process, the CRDC

sample collection aligned IRB protocols and sample labeling
systems. Sample collection is supported by BCH research teams
(Fig. 2). Samples are sent to GeneDx (Gaithersburg, MD), a CLIA-
certified testing facility, where DNA is extracted and sequenced.
All samples undergo CLIA-compliant WES, generating raw data (in
the form of FASTQ files), and remaining DNA extracted from each
sample is stored in a CLIA-compliant manner. This ensures that
excess DNA can be used for future clinical confirmation (i.e.,
Sanger confirmation and clinical interpretation of clinically
relevant variants) or reflex testing without requiring an additional
sample (Supplementary Table 1).

Phenotyping and phenotype data processing
Since analysis of genomic data benefits from access to phenotypic
information, we phenotyped participants using automated and
manual processes drawing from EHR and research data. Project-
specific registries were developed in REDCap57, which BCH uses
widely as a research Electronic Data Capture (EDC) system. These
registries were used to track phenotypic data derived from four
sources: (1) manually from research notes (information directly
added by the study team); (2) manually from clinical notes or
unstructured EHR files; (3) self-reported by the participant to

Table 1. Summary of protocol changes implemented by the CRDC to support patient rights and operations.

Aspects Consenting principles implemented under CRDC Use in consent forms prior
to CRDC on-boarding

Rights and interests of the patient Identified variants are clinically confirmed Sometimes

Rights and interests of the patient Patient opts for return of primary results, primary and secondary/incidental,
or neither

Very rarely

Rights and interests of the patient Patient consents to re-contact to request additional data/samples and
being offered enrollment in other research studies

Sometimes

Rights and interests of the patient Patient data protected by NIH certificate of confidentiality Rarely

Sample and data flow Research consents contain language regarding the use of previously
collected clinical data

Very rarely

Sample and data flow Remote consenting and e-consenting are available Very rarely

Sample and data flow Supports Biobanking at the BCH Biobank Rarely

Sample and data flow Consent allows the identification of genetic factors Sometimes

Sample and data flow Consent enables identified CLIA sequencing upfront for streamlined
confirmation

Never

BCH data use (secondary use, control
sample across population)

Samples and data (genomic sequences, medical record information, and
registry data) may be used for many types of non-restricted research,
including biological and genetic research related and unrelated to the
reason for participation in study

Rarely

BCH data use (secondary use, control
sample across population)

Identified data can be shared with collaborators on IRB protocol and
others at BCH

Rarely

Broad data use Language of consent allows engagement with other academic networks
and industry sponsors to accelerate discovery and therapeutics
development

Sometimes

Use of the consenting principles in Table 1 prior to the CRDC was evaluated on 26 research protocols, 10 of which have now incorporated the CRDC
consenting principles, 8 of which are in the process of incorporating the principles, and 8 for which incorporation was not preferred or impossible. Very rarely
incorporated principles were present in <20% of consent forms, rarely incorporated principles were present in <40% of consent forms, and sometimes
incorporated principles were present in <60% of consent forms.
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research staff, including via questionnaires; and (4) pulled
automatically from the EHR (Supplementary Tables 3 and 4). We
harmonized information collected from different research teams’
registries in a central EDC and assigned unique de-identifiers to
each participant. Collected phenotypes were mapped to Human
Phenotype Ontology (HPO)58 terms and stored in the central EDC.
Since each research team organized and collected phenotypic
data differently, we developed software to integrate data from
each research team’s registry and share it to the GLS, as well as
GeneDx. The phenotypic information collected by the research
teams was very extensive. For example, the IBD team collected
project-specific, detailed health information regarding baseline
and follow-up visits in their registry. These data included family
history, different physical presentations of IBD, classification scores
including Pediatric Ulcerative Colitis Activity Index (PUCAI) severity
scores59,60, dates of specific symptoms and medical interventions,
information on medications and patients’ reactions, structured
fields automatically sourced from the EHR, and information on
past surgeries and hospitalizations.

Integrative analyses in a GLS
To facilitate analysis, we developed a GLS (Fig. 3) that integrates
phenotypic and genotypic data in WuXi NextCODE’s Genomically
Ordered Relational database (GORdb)61 to support rapid analysis
of large cohorts. GORdb’s architecture, which has been previously
applied to population scale projects in Iceland62,63 and Ireland64,
readily extended to our current collection. Phenotypic information
was derived from the EDC through a validated extract, transform,
load (ETL) process (Supplementary Tables 3 and 4) and migrated
to GORdb. In addition, de-identified structured EHR data was
loaded in Informatics for Integrating Biology and the Bedside

(i2b2) star schema65,66, which includes diagnoses, medicines,
procedures, labs, allergies, vitals, demographics, and specimens
(Supplementary Table 5), as well as partially redacted dates for
each event. Separately, data from 462 types of unstructured
clinical notes were processed by Clinithink’s CLiX Focus software67,
which uses natural language processing (NLP) to extract HPO
terms (Supplementary Tables 6 and 7). As expected, the NLP
system was more efficient than manual annotation. Based on a
subset of 775 patients with both CLiX Focus and manually
annotated HPO terms, we see more HPO terms from CLiX Focus
than as were annotated manually. Raw data from the sequencing
provider were processed by the bioinformatics pipeline into BAM,
GVCF, VCF, and gzipped genomically ordered relational (GORZ)
files. As a next step, the processed files were loaded via data
import application programming interface (API) into GORdb,
where the genomic data was made available alongside pheno-
typic data on a per-participant basis.
As depicted in Fig. 3, various systems at BCH are integrated with

the GLS by connecting to raw data files, harmonized data files, or
through direct access to GORdb. WuXi NextCODE also manages
the back-end infrastructure in Amazon Web Services (AWS) for
GORdb. Most researchers used graphical user interfaces (GUIs) to
interact with GORdb, making use of modules that perform
different analytic functions. For example, one frequently used
module performs analysis of rare variants in affected individuals
by integrating genomic information, reference data resources, and
inheritance calculations. Other built-in modules enable association
tests, regression analysis and linkage disequilibrium calculations.
We have extended these built-in modules by developing custom
modules using GORdb queries to include cohort family analyses
that pool inheritance information, reference data and genomic

Fig. 1 Sample collection. Samples from patients enrolled in disease cohorts. The graphs contain weekly enrollment counts, normalized to
average enrollment over the duration of their inclusion in the CRDC; the total number of pediatric patients that have been seen at BCH in the
last year with the same ICD10 code; the number of individuals whose samples were submitted for sequencing with the CRDC at GeneDx; and
the number of sequenced participants who were affected by the cohort disease.
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data across many families to enable researchers to ask questions
about genetic carriers and inheritance patterns within a cohort of
interest. GORdb is powered by GOR, a full-featured interpreted
programming language which combines SQL-like genomic
queries with shell scripting to create a diversity of genomics
tools. While GOR is designed for genomic investigations, the
language has a rich standard library, and provides general tools
for mathematics, statistics, and large operations on data tables.
GOR programs can be easily packaged into modules and shared
with other users, or even other organizations. Users can also select
participants matching phenotypic criteria for downstream analy-
sis, leveraging the EHR and other phenotypic information loaded
into GORdb, or use a Matchmaker Exchange11—like mechanism to
seed collaborations. In order to remove nonpathogenic, cohort-
specific common variants and optimize analyses68, we have also
been able to leverage the cohorts together to curate a variant
exclusion blacklist that could be applied across the cohorts to filter
variants prior to research analysis.
The GLS incorporates standard processes for data governance,

including auditing of actions and API access. Other systems that
are integrated with the GLS access harmonized data files directly
from AWS and return data to GORdb. One system in this category

is Emedgene69, a machine learning and automated variant
classification application used by researchers to prioritize variants
in family analyses. Emedgene generates a shortlist of potential
causative variants along with supporting evidence, using an
automated machine learning engine and a knowledge graph
containing gene-disease relationships (Supplementary Fig. 1) and
polymorphism variant information. Emedgene’s knowledge
graphs are created on a regular basis through the application of
NLP to a variety of data sources, including 21,000,000 research
articles and hundreds of public databases and proprietary data.
This knowledge base currently generates 254,000,000 public
domain variants, 179,000 known pathogenic variants, and 26,000
gene-disease connections and is being used to stimulate analyses
from all cohorts. Additional systems are similarly connected that
provide interfaces to facilitate analysis by users with different
needs, including i2b2/tranSMART70, TriNetX and Seqr71.
The GLS provides access to three distinct types of data: (1) raw

data in the precise format that was received from the sequencing
provider, (2) harmonized data files that have been processed with
a standard bioinformatics pipeline, and (3) integrated data stored
in GORdb which includes genomic data, registry data from an EDC,
and EHR data that incorporates clinical notes processed by CLiX

Fig. 2 Research to clinical workflow. Patients with or without previous clinical testing were consented to harmonized research protocols.
Patients were offered standardized sample collection mechanisms and most patients were dual consented to the Precision Link Biobank to
support the collection of additional leftover clinical samples. Patient samples were CLIA sequenced by our sequencing provider (GeneDx) and
data was returned to AWS where it was loaded into CRDC infrastructure for analysis. Once research teams identified a candidate variant,
analysts worked with clinicians to order the clinical confirmation from the sequencing provider. Clinical confirmations were returned to BCH,
added to the patient’s medical record, and communicated to the patient.

Fig. 3 Data flow diagram of genomics learning system. Raw data is processed by secondary pipelines into harmonized data which is
ingested into GORdb by the data import API. Phenotypic data from the EDC and EHR are also incorporated. Built-in GORdb queries, as well as
institutionally-developed queries operate on the merged data, and can be executed by calling GORdb API or through the WuXi NextCODE
user interface. Raw and harmonized data are also made available to other analytic systems and BCH researchers. Information from these
systems are fed back into GORdb. Aspects of the GLS are connected by a Python web server, which executes data transfer to/from the GLS
components, sends automated alerts to researchers about new data availability and warnings to bioinformaticians about potential metadata
errors (for instance, duplicate subject enrollment).
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Focus (Fig. 3). Systems can interface with GORdb by performing
standard GORdb queries. Aside from supporting the CRDC
projects, implementation of GORdb has allowed us to create
controlled, audited instances for datasets that are not broadly
consented, including clinical data returned to the hospital and
collections from non-CRDC genomic studies being analyzed in
GORdb. This accounted for an additional 6075 exomes and 112
genomes being added to the GLS, expanding the entire system to
8516 exomes and 112 genomes. The GLS has also been
configured in a way that it is able to present unified data for
other advanced analyses by specialized research and bioinfor-
matics teams internally and potentially externally; it also provides
a robust platform that can be extended to support external
consortia and integrate with additional technologies (e.g., the
Genomics Research and Innovation Network16, i2b2/TranSMART,
TriNetX).

Genomic findings
In order to fully utilize the GLS for gene discovery, the CRDC relied
on the disease-specific analysis expertise of each research team.
Each team had different internal procedures to identify variants of
interest for interdisciplinary review. To further supplement their
expertise, bioinformaticians engaged individual study teams to
support CRDC research and GLS development, and developed
educational courses. Collaboratively with analysts in each of the
research teams, the bioinformaticians developed in-house work-
flows leveraging Emedgene along with manually-curated and
CLiX-derived HPO terms to automate, extend and accelerate
family-based variant identification (Fig. 4, Table 2 and Supple-
mentary Table 8). They also collaboratively developed in-house
workflows leveraging WuXi NextCODE together with phenotypic
data from research REDCap databases, CLiX Focus HPO terms, and
structured data from the EHR to identify candidate genes between
cohorts. In an approach to gene discovery similar to the model
developed by the Broad Center for Mendelian Genomics (CMG)72,
bioinformaticians and analysts within each research team

reviewed each case in parallel. These workflows culminated in
automated alerts to research team analysts about variants that
were considered to be of high importance or of potential interest.
Moreover, we have also utilized this team approach to identify
potentially clinically relevant variants. In these cases, variants of
interest were clinically confirmed using stored DNA extracted from
the original sample. Clinical confirmations were returned to BCH,
added to the patient’s medical record, and communicated to the
patient. In addition, clinically confirmed variants were deposited
into ClinVar by GeneDx.
The first batches of data in the GLS have recently been returned

to researchers for further evaluation. Though this analysis will
continue to expand, we have identified 253 variants of interest in
168 genes leveraging the variant annotation workflow described
in Fig. 4 and GORdb modules that identify reported pathogenic
and likely pathogenic variants in the most recent secondary
findings recommendations from the American College of Medical
Genomics (ACMG)73. The workflow annotated one or multiple
variants for review in about a quarter of families evaluated. Of
these variants, preliminary review indicates that one in five (n=
57) were known disease-causing variants, two thirds (n= 171)
were new variants in genes known to cause disease, and the
remaining variants (n= 25) were phenotype expansions. Further,
two in five had either a known drug/disease/gene interaction or
an existing relevant clinical trial. The Emedgene-automated ACMG
classification scored 20% of the variants as pathogenic or likely
pathogenic (P/LP), and the remaining as variants of uncertain
significance (VUS).
Research teams’ analyses have led to the clinical confirmation

of 43 variants in 32 patients that are new genetic diagnoses and
confirmed etiological Mendelian associations (Supplementary
Tables 8 and 9) in 29 genes. Some of these patients had atypical
or mild presentations and would not typically receive clinical
sequencing as a diagnostic for their disease. The research teams
that had the highest percentage of their analyzed cases yielding
clinical confirmations were those that had the most pre-existing

Fig. 4 RC variant annotation workflow using Emedgene. Flowchart workflow for evaluating variants prioritized by Emedgene using
manually curated HPO terms, as well as CLiX Focus-derived HPO terms.

Table 2. Identification of variants by different methods.

Emedgene WuXi NextCODE

Variants analyzed Average days between upload
and variant identification

Variants analyzed Average days between upload
and variant identification

RC analysts 239 26 N/A N/A

Research team analysts 13 73 36 87
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expertise in handling these kinds of data, though research teams
with limited prior experience with these kinds of analyses were
able to provide meaningful genomic information to their patients
through the clinical confirmation of variants. We will continue
working with those teams and utilize general reporting to
accelerate the clinical confirmation of variants. Reaffirmingly,
most (86%) of the clinical confirmations yielded the same ACMG
classification as was provided by Emedgene, validating our
approach to engage with Emedgene and demonstrating that
automation of the research pipeline can streamline and accel-
erate clinical care. Most importantly, in addition to clinical
confirmation we observe many other activities accelerated by
the GLS, including greater evaluation of genomic data on a per-
cohort and cross-cohort basis. Other variants are in various stages
of review by research team analysts, interdisciplinary research
teams, or have been submitted to Matchmaker Exchange11, and a
handful of new genotype-phenotype associations and many
phenotype expansions have been preliminarily identified. Further,
new collaborations and functional studies have been initiated.
Beyond providing clinical confirmations to families, research
teams also connected families with other services. For example,
one family with two affected children were connected to a clinical
trial at a nearby hospital for which they were eligible based on
their genetic diagnosis and another could enable a patient with
an atypical presentation to be seen at a specialized multi-
disciplinary clinic.

DISCUSSION
In this report, we outlined how a genomic medicine initiative
forged consensus across the institution, how rapid collection of
uniform data accelerated the refinement of a comprehensive
analysis platform, and how these processes and technologies lend
themselves to accelerated utilization of genomic data in support
of research and patient treatment. As the strategic initiative
finished its first phase, we streamlined the consent model, sample
collection process, and technologies used at BCH, lowered the
barrier to entry for new investigators conducting genomics
research, and reduced the bioinformatics burden for researchers
with ongoing genomics research. We created a database of
broadly available genomic, research, and clinical data, improving
access to genomic data for clinicians and researchers; to our
knowledge, this is the most comprehensive database of genomics
and phenotypic data focused on pediatric rare disease patients.
We deployed collaborative analytic tools, merged genomic data
into preparatory-to-research queries, and streamlined research
to clinical pipelines enabling precision medicine results faster
and with fewer blood draws. The CRDC establishes a technical and
administrative roadmap for hospitals establishing integrated
genomics learning systems; the future of rare disease precision
medicine research will hinge upon national and international
collaborative systems.
Though researchers have been conducting genetic and

genomic research at BCH for three decades, the establishment
of the GLS by the CRDC represents the first implementation of
harmonized and shared genomic, research and clinical data at
scale. The GLS we have developed will continue to be extended
and improved to meet the needs of researchers and clinicians.
Each of our decisions around consenting, sequencing, and analysis
has shaped downstream processes and introduced opportunities
and challenges which we will discuss here.
One of the biggest opportunities that was underscored by the

project was the ability to effectively merge consenting across the
institution and bring them to a unified framework. Our approach
of modifying research teams’ protocols with the CRDC genomic
framework was fairly quick and compatible with dual enrollment
into Biobank. In contrast, the use of a centralized consenting
approach, such as the institution-wide Precision Link Biobank or

the Manton Center protocols, was not positioned to swiftly secure
genomic research consents across all of the supported studies.
The main constraints pertained to return of results (not part of the
Precision Link protocol) and complexities in consenting prove-
nance. Additional benefits of the current multi-protocol approach
include reliance on the participating study teams for enrollment,
sample collection, education, and follow-up and that it allowed us
to bootstrap the project without establishing a separate core. This
current model will continue to be evaluated as the project
continues, and we recognize that a centralized approach, such as
the institution-wide Precision Link Biobank protocol10, could
potentially lead to additional efficiencies and might further
improve the quality of clinical follow-up. A centralized consenting
approach would also have the added benefit of standardizing how
we address secondary clinical findings where the initiating study
team is lacking expertise and capacity for those findings.
Not surprisingly, given close interactions between BCH clin-

icians, researchers, and patients, the rates of enrollment were high
in phase I. We believe that the use of buccal swabs and remote
consenting helped greatly with enrolling more participants and
sequencing more complete families. Even when patients visited a
BCH clinic, many families had at least one family member who was
remotely consented, as frequently only one parent attended the
hospital visit. In order to further support the remote consenting
process we introduced an electronic remote consenting system,
which is similar to the electronic consenting system used at BCH
locations and also utilizes REDCap. Notably, though most of the
research teams still prefer in-person paper consenting to
electronic consenting on tablets, they are enthusiastic about
electronic remote consenting options. We will continue to grow
these cohorts in phase II of the initiative; in cases where the BCH
population is not significant, we may extend them with data from
other pediatric institutions.
The narrowing of the gap in pricing between CLIA-compliant

and research sequencing creates unique opportunities for
research hospitals. Here, we opted to sequence samples under
CLIA guidelines. The Center for Medicare and Medicaid Services
(CMS) regulates that all laboratory testing (except research)
performed on humans in the United States occur in a CLIA-
compliant manner74. CLIA sequencing laboratories are responsible
for rigorous sample tracking processes and quality controls,
therefore sequencing services provided under CLIA have been
more expensive and more rarely used in research. Benefits of
following CLIA workflows include cost avoidance of additional
sample extraction, as well as added speed and simplicity when
performing follow-up clinical testing. Moreover, research sequen-
cing benefits when captured in a CLIA-compliant manner from
improved pre-analytic handling of samples and quality control75.
As the gap between CLIA and research sequencing costs is closing,
the additional costs of CLIA sequencing have been endorsed by
BCH clinicians and others13,76. We expect that CLIA sequencing
providers will close the gap to adjust to increased research
demand. More broadly, the distinction between research and
clinical genomics is blurring; research findings are being
integrated into clinical application when analyzed in the appro-
priate environment and data from clinical sequencing is being
used for research. Increasingly, clinicians at BCH are reviewing
clinical genomic data through the GLS. As these data are readily
shared to researchers when consent is obtained, the GLS forms a
basis for combined clinical-research workflows. With access to the
GLS, clinicians may leverage shared modules for analysis, existing
research data, and methodologies in their evaluations. Utilizing
CLIA sequencing processes upfront enables rapid and seamless
return of findings from researchers. We expect that researchers
and institutions will find increasing relevance of CLIA processes,
with potential long-term benefits including avoidance of addi-
tional sample collection and testing and suitability to creating
merged genotypic, phenotypic and clinically sourced databases.
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WES is the most frequently used NGS modality in clinical
application and is particularly effective at identifying single
nucleotide variants and small indels in coding exons, as well as
flanking intronic sequences involved in normal splicing77. Of the
253 variants of interest we have thus far identified, 14 were
outside of exons. Access to the entire genome would enable the
broad identification of variants in non-coding regions, as well as
improved identification of copy-number variants (CNVs)78,79. A
shift to WGS would necessitate the collection of whole blood to
increase sensitivity, particularly when calling CNVs80. Utilizing
blood collection would also enable the analysis of other biological
molecules (e.g., RNA-seq), which currently would only occur
through the collection of a second research sample at the time of
enrollment or via patient re-contact. CLIA WES costs less than
research WGS, allowing us to maintain a rigorous CLIA process at
scale. Moreover, data storage and transit costs are lower as the
average size of a WES BAM file is many times smaller than that of a
typical WGS BAM. These data management considerations also
translate to compute costs as BAM files are processed to VCFs and
integrated into GORdb. Most importantly, the approach to utilize
buccal swabs in support of WES allowed us to dramatically scale
up rates of sample collection, particularly in pediatric patients
unable to donate blood and second parents that are not typically
present at the hospital at the time of enrollment. In the CRDC’s
second phase, we plan to pilot transitioning CRDC sequencing
to WGS.
The development of the GLS as a centralized institutional

resource has enabled research teams to offload maintenance and
information technology work, allowing them to focus on research.
Research teams confirmed that the GLS functionality, interfaces,
training and support met their needs. While other integrated
genomic data systems are available, such as Hail81 and Genome
Query Language,82 GORdb benefits from integration of back-end
infrastructure, APIs, modules and GUI for the platform. This is
integral for the project because WuXi NextCODE’s GORdb robustly
handles large repositories with many thousands of samples, while
remaining accessible to clinicians, researchers, and liberating
bioinformaticians from the task of managing compute clusters
directly. Because of the extensible nature of the system, additional
modalities, such as methylation, immunoprecipitation, chromatin
capture and microbiome analyses, can be readily incorporated
and integrated together. Extending the other facets of the GLS to
these additional modalities would leverage similar workflows as
the existing WES/WGS infrastructure: raw data is processed into
harmonized data that is uploaded to GORdb and other systems.
These extensions would require deploying additional algorithms
to the bioinformatics pipeline, and development, testing, valida-
tions and deployments of new GORdb queries, which would be
used to integrate additional data with existing merged informa-
tion in GORdb. WuXi NextCODE has already developed built-in
modules for the analysis of CNVs and RNA-seq data. We have
started using the CNV modules and incorporated 19 CNV profiles
in the GLS. Further, the built-in GORdb API enables analyses that
leverage the compendium of common bioinformatics tools, such
as those available through Bioconductor83 or Bioconda84. Users
can create and share custom modules within GORdb and less
experienced researchers can leverage existing modules. Since de-
identified genomic, research and clinical data is merged within
GORdb and shared across BCH, the merged GORdb data lends
itself to analyses aggregated across cohorts, such as reviewing if
any patients in different cohorts cluster together or producing
adequate statistical power for association studies. Unified analyses
of standardized homogeneously collected genomic and pheno-
typic data from large cohorts of different rare or Mendelian
diseases has been shown to be a powerful approach for genetic
discovery13,85.
Carefully reviewed use of commercial vendors generally

accelerates the use of cutting-edge technologies, mitigates costs,

and allows research teams to remain focused around their leading
expertise in rare diseases and discovery science. Some of the
critical commercial contributions to the CRDC include CLIA-
compliant research sequencing by GeneDx, secondary and tertiary
analysis of datasets by WuXi NextCODE in an Amazon AWS Cloud
environment, Emedgene variant prioritization with machine
learning algorithms and AI knowledge graphs, and NLP of clinical
notes by CLiX Focus. Systems such as TriNetX and i2b2/
TranSMART, developed at Harvard in collaboration with BCH’s
Computational Health Informatics Program, and other tools and
utilities developed at BCH, extend and interconnect various CRDC
platform components and will allow us to support potential data
sharing with other institutions. Taken together, we find that a
heterogeneous infrastructure combining systems and modules
developed in-house with third-parties allowed us to rapidly meet
requirements specific to BCH researchers or processes, while
simultaneously retaining the ability to scale without needing to
fundamentally reconfigure our architecture. The strategy we
deployed to develop a GLS that integrated commercial technol-
ogies and in-house pipelines enabled us to rapidly deploy new
systems while maintaining a lean in-house team of bioinforma-
ticians. Licensing WuXi NextCODE, Emedgene and Clinithink
enabled our GLS to have the scalability of GORdb, the AI of
Emedgene and the NLP of CLiX Focus, each of which would have
required large bioinformatics teams to have developed in-house
and maintain, freeing CRDC bioinformaticians to focus on BCH
context specific tasks. While challenges around data security and
patients’ privacy86 persist, we conclude that in order to accelerate
the pace of genomic research at pediatric research hospitals, a
delicate interplay between academic and commercial entities will
continue to be necessary.
While the cost of genomic sequencing continues to decrease,

other expenses, including patient recruitment, data management
and data analysis, remain largely unchanged. In order to
accelerate genomic research, all research hospitals face challenges
in identifying potential funding sources, third-party vendors, and
commercial partners to advance the use of data for therapeutic
development. The hospital decided to support the current project
in order to stimulate the use of genomic data in research, the
clinic and education. As an outcome, all CRDC datasets remain the
property of BCH and third-party vendors can only access data in
support of BCH-contracted work, as per the terms of the BCH
Business Associate Agreement (BAA). Though the hospital has not
yet decided to share the genomic data with other academic or
commercial entities, all enrolled patients have consented to such
data sharing, with the understanding that this would be reviewed
by BCH’s Institutional Genomic Oversight Committee for use in the
development of new therapeutics and to further our under-
standing of human disease. Moreover, legal documentation (e.g.,
Data Use Agreement, BAA) required to share data would be
secured and filed with the IRB. Perhaps most importantly, while
the majority of technical and procedural processes have been
streamlined, we are only now entering the phase of the project
where the collected genomic data can be fully exploited and
utilized by an extensive network of research laboratories at BCH,
potentially in collaborations with scientists from other academic
institutions. These partnerships have the potential to translate
emerging findings, in line with recent projects from BCH3.
In this report, we describe how we scaled workflows and

infrastructure for cohort sequencing at BCH to provide support for
genomics research. We describe the data that was collected and
how it was integrated into a GLS, combining commercial
applications and custom development in a secure and transparent
manner. We discussed the value of these data and the GLS to
patients, researchers and clinicians. We have provided a model for
institutional integration of data to support both discovery and
clinical use. This work shows that there is value in aligning
consent, developing a modular GLS and integrating clinical and
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research data sources and that being able to do this depends on
the contributions of many stakeholders. We have demonstrated
the viability of this system by rapidly enrolling, sequencing and
reviewing data from over 2400 participants, and research is
ongoing. The first phase of the project established the collection,
integration, and sharing of research, clinical and genomic data
within the GLS. In the next phase, the focus will shift to data
analysis, integration with other institutions and integration of
other modalities, including WGS. The approaches and lessons
from our work serve as an example for developing institutional
workflows for the integrated analysis of research, clinical, and
genomic data. Adoption of comparable strategies by other
institutions will further enhance research and clinician collabora-
tions, provide greater power for genomic analyses and accelerate
pediatric precision medicine.

METHODS
Study design
This work describes processes and results from the first year of Boston
Children’s Hospital’s (BCH) Children’s Rare Disease Cohorts initiative. Phase
I of this initiative began on October 1, 2018 and continued through
September 30, 2019 at BCH, Boston, MA, USA. Phase II is ongoing and
began on October 1, 2019. In Phase I, 2441 participants were enrolled.
Genomic findings presented in this work strictly relate to these 2441 CRDC
participants. This paper also describes our work in creating a common
genomics learning system (GLS) for research and clinical genomics activity
at BCH. The GLS contains a wide range of research and clinical genomic
data. We integrated 6075 additional, non-CRDC exomes and 112 genomes
during the first phase of the CRDC. These patients and family members
were enrolled in studies that began prior to the CRDC initiative, and their
data are not in general shareable. We do not present any results from
analysis of these patients. The BCH IRB approved all research related to this
study and written informed consent was obtained from all research
participants.

Sample collection
Samples for the CRDC were collected as blood (n= 146) or buccal swabs
(n= 2093). The remaining participants had previous or upcoming clinical
sequencing scheduled (n= 72) or did not complete the sample collection
process (n= 130). Buccal swabs were collected either in clinics or at home.
Patients who were consented remotely were typically mailed self-
administered buccal swab kits with a return envelope included.

Sequencing
GeneDx extracted DNA using IDT xGen probes. The average coverage
across the WES was 100× and more than 95% of targets were covered at
20×. The GeneDx medical exome (4500 genes) had 99.4% of targets
covered at 20× and an average depth of 114×. All sequencing data passed
specific minimal quality control requirements, including pass-filtered
sequencing yield of 4GB, thresholds for mapping percent to hg19
(>95%), target coverage at 10× (90%, 97–98% typical), mean target
coverage (50×, average 100–120×), duplicate read percentage (<30%,
<10% typical), and read-quality metrics (80% Q30).

Phenotyping and phenotype data processing
The de-identifiers were configured for each family and participant based
on their relationship to the proband. The vast majority of fields were
manually sourced from research notes, followed by manually sourced from
clinical notes or the unstructured EHR. The least frequently used source of
data was self-reported. For example, race87 was derived from a self-
reported questionnaire in the IBD cohort, originated from research notes
for the epilepsy cohort, and was pulled from the EHR for other cohorts.
Fields such as name, date of birth (DOB), or gender were frequently
manually curated from clinical notes, but in some cases, they were pulled
automatically from the EHR. Others (such as medical record number (MRN),
family relationship information, and tracking information, including date
consented, date and type of sample collected, sample collected location)
originated from research records, many of which were added to REDCap
databases during CRDC on-boarding (Supplementary Table 4). The

remaining fields that were collected (e.g., ethnicity87, disease condition
information) were sourced heterogeneously. Like the consenting and
sample collection processes, patient phenotyping relied on research team
expertise. Though timestamps for each event are stored in the EHR, the
collection of temporal phenotype data in the research team’s registry is at
the discretion of each research team and depends on disease specific
characteristics.

Bioinformatic pipeline and harmonized data access
Once sequencing was completed, the raw WES data were returned within
four weeks via an automated upload of FASTQ files to BCH’s Amazon Web
Services (AWS) account and archived in a Simple Storage Service (S3)
bucket (Fig. 3). There the WES datasets were uniformly processed through
a standard variant calling pipeline managed by WuXi NextCODE61 in a
research environment. Adapters were trimmed using Skewer v0.2.188,
FASTQ analysis was performed by FastQC v0.11.789 and base quality was
calculated using BBMap v37.9790. Read alignment, read depth calculation,
realignment, recalibration, and variant calling were performed by Sentieon
v201808.0391: BWA, HSMetricsAlgo, WGSMetricsAlgo, markduplication and
Realigner, QualCal, Haplotyper and GVCFtyper91. Verifybamid 1.1.392 was
used to check contamination and GATK 4.1.2.093 to count reads in bins.
WuXi NextCODE GORpipe 4.3.061 converted other variant data to
genomically ordered relational (GOR) format and annotated variants with
VEP 96.294 and custom tools. Processed data (BAM/VCF files) were stored in
AWS S3 buckets and are used to support other institutional databases such
as i2b2/TranSMART70 and the Precision Link Biobank10. In the future, with
an oversight from BCH and IRB, this access could be extended to other
cross-institutional projects, such as Genomics Research and Innovation
Network (GRIN)16 (Fig. 3). S3 or API access was provided to each system to
avoid duplication of data storage.

Data governance
The GLS contains de-identified data from many studies, and the EDC and
EHR components manipulate personally identifiable information (PII).
Therefore, there are federal and institutional regulations that control
access to this data. Each of the components of our workflow have features
for access control that we were able to leverage in the GLS. PII is stored
only in the EDC and EHR. Policies around data access in research team
REDCap databases are institutional. Each REDCap project is tied to a
specific IRB protocol, and access is only permitted to researchers on that
protocol. Within a REDCap project, access can be further configured by
using REDCap data access groups. Data in GORdb and the GLS analysis
systems are all de-identified and built-in facilities are used for user
authentication and data siloing. GORdb, Emedgene and Seqr are each able
to employ project-based access control and user and administrative
actions are logged in all systems. Data consistency across systems is
maintained with regularly scheduled (daily or weekly) synchronization
from our central REDCap database, managed by the Python web server,
which runs a set of automated jobs. This REDcap acts as a source of truth
for the entire GLS: data is pushed out from it to the downstream services.
Data is fed into the central GLS REDCap from smaller cohort-specific or
clinical REDCaps, but this data is validated and filtered before becoming
integrated with the GLS.
Harmonized genomic data is made available to systems via Identity and

Access Management (IAM) policies in AWS, which control read-only access
to the S3 buckets. Harmonized and raw data is also available to research
teams via investigator-requested read-only access to cloud storage. Data
standardization and quality controls are handled with a number of
overlapping methods. Sample and subject metadata is managed through a
central REDCap and a Python web server, which records and validates
subject consent, sample collection, receipt of raw sequencing, and data
harmonization. The web server that handles data transfer from EDC to
GORdb performs basic validation and error-checking on raw participant
data from the research lab. Further, this server unifies data formatting
across all cohorts by enforcing a common data structure for all participant
data (Supplementary Table 3). Automated error reporting alerts CRDC
bioinformaticians to potential data errors, and validations are performed
with other BCH clinical and research datasets from the EHR and the BCH
Biobank to find other inconsistencies.

Clinithink CLiX Focus quality control
CLiX Focus extracts HPO terms on a per note basis and provides a note-
frequency ranked list of HPO terms for each patient. The HPO terms at the

S. Rockowitz et al.

9

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2020)    29 



top of the frequency ranked list are those that CLiX Focus found most
often in clinical notes. HPO terms that were infrequently identified in notes
are less likely than those identified multiple times to be a phenotype
observed by clinicians. Unlike manual processes, CLiX Focus annotates
patients with all relevant parent HPO terms in the hierarchy rather than
just the most specific terms (e.g., where manual processes would annotate
only focal seizures (HP:0007359), CLiX Focus’ CNLP would annotate focal
seizures (HP:0007359), seizures (HP:0001250), and abnormality of the
nervous system (HP:0000707)). Even though terms higher in the hierarchy
are also annotated, more than half of the annotated HPO terms are
terminal terms, and do not have a child term in the results.
Extensive validations have previously been conducted to optimize

application of the CLiX Focus methodology for pediatric rare disease
diagnosis in a separate health care system41, including validation regarding
the use of hierarchical parents of extracted terms. We tuned the CLiX Focus
system to BCH’s EHR construct and tested and validated the results
utilizing a cohort of rare disease cases from The Manton Center for Orphan
Disease Research. We applied the CLiX Focus NLP engine to individuals for
whom detailed HPO annotation had already been conducted manually by
trained researchers. For six test cases, the CLiX Focus output was compared
with the manually extracted HPO terms and CLiX-derived HPO terms were
scored as a true or false positive. We were able to leverage manually
annotated HPO terms to determine a comparable recall as has been
previously reported for CLiX Focus HPO terms (85%)41, but this comparison
does not lend itself to meaningful precision or sensitivity calculations. This
analysis was the basis for discussions on how to update the CLiX ENRICH
rules and what types of notes should be included or excluded from the
processing based on commonly identified problems. Some rule changes
were necessitated by the specific structure of BCH clinical notes. Common
reasons for false positives included imputation of specific eponymous
diseases based on the names of patients or their health care providers,
assignment of terms based on checklists of findings reported absent
following a colon, and diagnoses associated with gene symbols contained
in a differential list of diagnoses. Based on this analysis, the selection of
input document types was also adjusted to retain intake and discharge
notes while excluding in-patient status updates, pre-MRI screening
questionnaires, nursing notes with checklists of potential findings, and
other document types with repetitive nature and/or low information
content (Supplementary Table 6).
Using the above filtering criteria, the average CRDC patient had 510.8

clinical notes in their medical records and CLiX Focus extracted 191.9 HPO
terms on average, including parent terms. On average the top HPO term
found in patient notes was found in 44.6% of notes. For example, a patient
enrolled in the epilepsy cohort with 176 processed clinical notes was
observed to have 50% (n= 88) of their notes containing terms that
mapped to seizures (HP:0001250). Before being loaded to GORdb, an
additional frequency-based filter was leveraged to take advantage of the
high number of notes per patient at BCH and to further enrich for
phenotypes that had been observed by multiple clinicians. We applied
heuristic filters to the HPO terms extracted by CLiX Focus and applied
different filter cutoffs for patients with low (<20), moderate (20–50), or
high (>50) HPO terms extracted (Supplementary Table 7), yielding an
average of 45.9 HPO terms per patient.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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