Skip to main content
. 2020 Jun 22;8(6):e17648. doi: 10.2196/17648

Table 2.

Macroaveraged scores for the machine learning algorithms.

Models Precision, % Recall, % F1 score, % Accuracy, %
Data set 1: MIMIC-IIIa (intravenous push patients)        
  Random forest 68.96 68.75 68.70 68.75
  Adaptive boosting 74.37 72.92 72.80 72.92
  Support vector machine 85.19 73.33 73.79 73.33
  Extreme gradient boosting 79.27 76.25 77.58 76.25
  Shallow neural network 88.05 86.67 87.26 86.67
Data set 2: MIMIC-III (intravenous drip patients)        
  Random forest 66.71 65.33 65.06 65.33
  Adaptive boosting 77.29 77.33 77.30 77.33
  Support vector machine 84.59 71.33 71.71 71.33
  Extreme gradient boosting 77.45 77.33 77.38 77.33
  Shallow neural network 85.99 86.00 85.98 86.00
Data set 3: eICUb (intravenous drip patients)        
  Random forest 66.77 66.56 65.59 68.06
  Adaptive boosting 78.03 77.78 77.65 77.78
  Support vector machine 84.74 76.39 76.19 76.39
  Extreme gradient boosting 79.16 79.17 78.85 79.17
  Shallow neural network 87.80 87.50 87.55 87.50

aMultiparameter Intelligent Monitoring In Intensive Care III database.

beICU: e–Intensive Care Unit database.