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Growing evidence indicates that immune-related biomarkers play an important role in tumor processes. This study investigates
immune-related gene expression and its prognostic value in lung squamous cell carcinoma (LUSC). A cohort of 493 samples of
patients with LUSC was collected and analyzed from data generated by the TCGA Research Network and ImmPort database.
The R coxph package was employed to mine significant immune-related genes using univariate analysis. Lasso and stepwise
regression analyses were used to construct the LUSC prognosis prediction model, and clusterProfiler was used for gene
functional annotation and enrichment analysis. The Kaplan-Meier analysis and ROC were used to evaluate the model efficiency
in predicting and classifying LUSC case prognoses. We identified 14 immune-related genes to incorporate into our prognosis
model. The patients were divided into two subgroups (Risk-H and Risk-L) according to their risk score values. Compared to
Risk-L patients, Risk-H patients showed significantly improved overall survival (OS) in both training and testing sets.
Functional annotation indicated that the 14 identified genes were mainly enriched in several immune-related pathways. Our
results also revealed that a risk score value was correlated with various signaling pathways, such as the JAK-STA signaling
pathway. Establishment of a nomogram for clinical application demonstrated that our immune-related model exhibited good
predictive prognostic performance. Our predictive prognosis model based on immune signatures has potential clinical
implications for assessing the overall survival and precise treatment for patients with LUSC.

1. Introduction

Lung cancer remains the leading cause of cancer incidence
and mortality worldwide [1]. Non-small cell lung cancer
(NSCLC) is the most common type of lung cancer and is
classified into two major histological subtypes, lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma
(LUSC), each with distinct genomic and immunological pro-
files [2]. The discovery of epidermal growth factor receptor
(EGFR), anaplastic lymphoma kinase (ALK), and ROS
proto-oncogene 1 (ROS1) gene targets and the development
of corresponding target drugs have prolonged the survival of
patients with NSCLC [3]. Currently, progress has been slow
in the development of LUSC treatments due to the lack of
effective targets; however, continuous developments in
immunotherapy have provided a new direction for LUSC

treatment [4]. Immunocyte infiltration, which is speculated
to represent the active tumor response, can be detected
among most solid tumors in humans; specifically, lympho-
cyte infiltration in LUSC has certain survival benefits [5].
Therefore, understanding the immune gene signatures of
LUSC is highly significant as it could have predictive prog-
nosis implications.

At present, the tumor-node-metastasis (TNM) classifica-
tion system has been recognized as the most meaningful indi-
cator for prognosis and can inform therapeutic decisions for
LUAD as well as LUSC treatment [6]. Nonetheless, this clas-
sification system is imprecise because various progression
levels and overall survival (OS) results can be observed
among cases in the same stage. Therefore, novel markers
are urgently needed to recognize patients with high recur-
rence risk. A precisely indicated prognosis significantly
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affects a clinician’s decision to recommend adjuvant therapy.
Additionally, there is increasing need to improve prognosis
prediction tools.

Biomarkers can reliably predict disease prognosis as well
as patient survival. As a result, they are meaningful in the
decision-making process for clinical LUSC treatment. In
recent years, an increasing number of articles have recom-
mended that gene expression profiles can be applied to pre-
dict and stratify the survival prognosis of LUSC cases [7, 8].
However, the role of immune-related genes in LUSC is
unclear. Therefore, openly accessible large databases that
contain gene expression profiles allow us to mine creditable
biomarkers for predicting and classifying LUSC prognosis.

This study aimed at establishing and verifying a progno-
sis prediction model for LUSC based on genes related to
immunity and patient clinical features derived from the
Cancer Genome Atlas (TCGA) Research Network and
ImmPort database.

2. Materials and Methods

2.1. Data Collection. Gene expression and clinical LUSC
patient data were downloaded from the TCGA Research
Network (https://www.cancer.gov/tcga), and the gene set
related to immunity was obtained from the ImmPort data-
base (https://www.immport.org). The raw data were prepro-
cessed as follows: (1) samples without clinical data were
removed; (2) normal tissue sample data were removed; (3)
genes with fragments per kilobase per million reads (FPKM)
values of 0 in more than half the samples were removed; and
(4) the expression profiles of immune-related genes were
saved. After preprocessing, 493 samples comprising 1421
immune-related genes were utilized for further model anal-
ysis. The 493 samples were randomized into training and
test sets. All samples underwent 500 iterations of random
grouping with replacement to eliminate the impact of ran-
dom allocation bias on model stability. Data in the training
(n = 245) and test (n = 248) sets are presented in Table 1.
There was no statistically significant difference between the
two sets, which indicated reasonable sample grouping.

2.2. Prognostic Signature. The correlation of immune-related
gene expression with patient OS was assessed through the
univariate Cox proportional hazards regression analysis
using the survival coxph function of the R package. Genes
with p values < 0.05 were identified as candidate genes. Sub-
sequently, the number of candidate genes was reduced
according to the least absolute shrinkage and selection oper-
ator lasso-Cox method using the glmnet and MASS function
of the R package. Genes most significantly related to immu-
nity were selected to construct the prognosis risk score
model. The risk score model was formulated as follows:

Risk score = 〠
n

i=0
βi × Xi, ð1Þ

where βi represents the coefficient of every gene and χi
stands for gene expression level (FPKM). The median risk
score value was the threshold for classifying samples into

high-risk (Risk-H) or low-risk (Risk-L) groups. ROC and
the Kaplan-Meier (KM) analyses were carried out to evaluate
model efficiency, stability, and accuracy in predicting and
classifying LUSC case prognoses.

2.3. Functional Annotations. Eventually, 14 genes were
selected and their gene families annotated according to

Table 1: Patient characteristics with lung squamous cell carcinoma
in training and testing sets.

Clinical features Overall Training set Testing set p value

OS 493 245 248 0.9383

Event 493 245 248 0.9293

Alive 284 140 144

Dead 209 105 104

T 493 245 248 0.4717

T1 114 49 65

T2 286 146 140

T3 70 40 30

T4 23 10 13

N 493 242 246 0.7437

N0 316 160 156

N1 127 62 65

N2 40 19 21

N3 5 1 4

NX 5 3 2

M 493 208 204 0.6093

M0 405 206 199

M1 7 2 5

MX 81 37 44

Stage 493 244 245 0.4364

I 241 116 125

II 158 88 70

III 83 38 45

IV 7 2 5

X 4 1 3

Age 493 245 248 0.6387

0~50 22 9 13

50~60 73 40 33

60~70 181 85 96

70~80 191 97 94

80~100 26 14 12

Subdivision 493 235 240 0.8473

Bronchial 10 5 5

L-Lower 74 33 41

L-Upper 135 68 67

R-Lower 106 52 54

R-Middle 18 10 8

R-Upper 132 67 65

Gender 493 245 248 0.9648

Female 128 63 65

Male 365 182 183
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human gene classification within the HUGO Gene Nomen-
clature (HGNC) database. The R package clusterProfiler
was employed to carry out enrichment analysis on the 14
screened genes related to immunity and specific to prognosis.
The KEGG enrichment analysis score was evaluated using
the ssGSEA function of the R package GSVA [9]. Association
with the risk score value was also calculated. Clustering
analysis was then carried out according to the pathway
enrichment score for each sample.

2.4. Association between Risk Score Value and Clinical
Features. Associations between relevant clinical factors (such
as stage (T, N, or M), subdivision, age, and smoking habit)
and risk score value were analyzed. Then, a nomogram
model was constructed, and a forest plot was drawn accord-
ing to relevant clinical features and risk score values. The
associations between risk score value and clinical features
related to patient survival were also analyzed.

2.5. Statistical Analyses. Independent subgroups were ana-
lyzed using the Chi-square test or Fisher’s exact test. Univar-
iate and multivariate analyses were performed using the Cox
regression. Differences in OS between high- and low-risk
groups were evaluated according to the Kaplan-Meier sur-
vival curve. The sensitivity and specificity of the diagnosis
and prognosis prediction model were determined and
assessed using the ROC area under the curve (AUC). The
Kruskal-Wallis test was used to evaluate the relationships of
risk score with different clinical factors. A two-tailed p value
of < 0.05 was recognized as statistically significant. Statistical
analyses were performed using the R software (Version 3.5.5;
R Core Team, 2016).

3. Results

3.1. Data Processing. Sixty-six immune-related, prognosis-
specific genes were mined. The p value relationships of the

0.8 0.9 1.0 1.1 1.2
HR

−l
og

10
 (p

 v
al

ue
)

0

1

2

3

4

(a)

lo
g2

 (E
XP

)

1 6 11 16 21 26 31 36 41 46 51 56 61 66

0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 1: Differential gene expression in lung squamous cell carcinoma. (a) The relationships of the -log10 (p values) and HR. (b) The
expression levels of 66 differentially expressed genes. Red dots represent significantly different immune-related genes (p < 0:05) regarding
prognosis.
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66 genes with hazard ratios (HRs) and expression levels are
displayed in Figure 1.

3.2. Establishment of the Prognosis Prediction Model. Sixty-
six immune-related genes were identified, although that
number was inappropriately high for use in clinical detec-
tion. Therefore, the scope of genes related to immunity was
narrowed to maintain high accuracy. The 66 genes were com-
pressed through lasso regression to reduce the number of
genes incorporated in the risk model. The variation trajecto-
ries for all independent variables (Figure 2(a)) suggested that
the coefficients of a larger number of independent parame-
ters were close to 0 as lambda gradually increased. The con-

fidence interval (CI) under every lambda (Figure 2(b))
revealed that the best model was obtained at a lambda value
of 0.03, which was consequently chosen for the eventual
model that included 26 immunity-related genes. In addition,
the MASS of the R package was utilized in stepwise regres-
sion analysis based on Akaike data criteria to obtain 14 genes
used to construct the risk model.

Each sample from the training cohort was then incorpo-
rated into the formula for calculating the risk score value. The
OS for all samples is shown in Figure S1. Analysis of the
model efficiency in predicting the 1-5-year OS resulted in a
mean AUC value reaching 0.703 (Figure 3(a)). Sample
distributions in Risk-H and Risk-L groups under different
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Figure 2: Construction of the prognosis prediction model for LUSC patients by LASSO. (a) The changing trajectory of each independent
variable. The horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of
the independent variable. (b) Confidence intervals for each lambda.
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Figure 3: Verification of the stability of the prognosis prediction model for patients with lung squamous cell carcinoma in the training cohort.
(a) Survival predicted ROC curves for the training cohort. (b) Distribution of samples in Risk-H and Risk-L groups of the training cohort
divided by different OS. (c) The proportion of low-risk samples in total samples varies with OS. (d) Clustering results of the training
cohort. (e) Differences in risk score values between Risk-H and Risk-L groups clustered by gene expression in the training cohort.
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Figure 4: Continued.
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OS durations suggested that the 5-year sample size of the
Risk-H group was reduced relative to that of Risk-L group
(Figures 3(b) and 3(c)). The sample clustering results in
the training cohort are presented in Figure 3(d). The 14
genes were clustered into high and low expression groups
(Figure 3(e)). To verify the credibility of the prognosis
prediction model, the expression profiles of the 14 genes
were collected from the test cohort and incorporated into
the verification model. The risk score values for the samples
in the test cohort corresponded with those in the training
cohort (Figure S2). To further verify model creditability and
stability in prognosis prediction, the expression profiles of
the 14 genes collected from 493 samples were incorporated
into the model to calculate the risk score values. The results
were consistent with the test set validation results (Figure S3).
Taken together, the prognosis prediction model based on 14
immune-related gene expression profiles displayed superb

stability and predictive accuracy in identifying immune-
related characteristics.

KM survival curves were plotted for the risk model based
on 14 genes in the Risk-H and Risk-L groups of the training
cohort, test cohort, and the whole dataset (combined cohort).
The KM survival curves of the training, test, and combined
cohorts are displayed in Figure 4(a) (p < 0:001), Figure 4(b)
(p = 0:003), and Figure 4(c) (p < 0:001), respectively.

3.3. Functional Annotation of Immunity-Related Genes. The
14 gene families annotated based on human gene classifica-
tion in the HGNC database (Table 2) were enriched in the
endogenous ligands and latent transforming growth factor
β-binding proteins (LTBP) gene families. Moreover, the
expression levels of four genes (END2, CXCL5, APLN, and
LTBP2) from these two gene families differed significantly
between the Risk-H and Risk-L groups (Figure 5).
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Figure 4: The Kaplan-Meier survival curve of the 14-gene risk model in predicting the Risk-H and Risk-L groups on the training set (a),
testing set (b), and all samples (c).

Table 2: Gene function annotation results.

Gene family Genes p value

Endogenous ligands EDN2/CXCL5/APLN 0.0003

Latent transforming growth factor beta-binding proteins LTBP2 0.0030

Heat shock 70 kDa proteins HSPA5 0.0108

M10 matrix metallopeptidases MMP9 0.0150

Caspase recruitment domain containing MAVS 0.0185

SH2 domain containing PTPN11 0.0599

Pleckstrin homology domain containing AKT2 0.1180

Unknown IGLV8.61/IGHV3.73/IGLV4.60/PLAU/IGKV1.6: 1
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Figure 5: The expression differences of the EDN2 (a), CXCL5 (b), APLN (c), and LTBP2 (d) between the Risk-H and Risk-L groups.
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3.4. Association between Risk Score Value, Signal Pathways,
and Sample Clinical Features. The KEGG functional enrich-
ment scores of all samples analyzed using the ssGSEA func-
tion of the R software GSVA package were correlated with
risk score values and resulted in the acquisition of 41 relevant
KEGG pathways. Cluster analysis was performed according
to enrichment scores as shown in Figure 6. The most corre-
lated pathway was the JAK/STAT signaling pathway.

The relationship between different clinical parameters
(including stage (T, N, or M), gender, subdivision, age, and
smoking habit) and risk score value was explored
(Figure S4). The clinical features did not reveal a
relationship with risk score value, except for age, indicating
that risk score was relatively independent of the evaluated
clinical characteristics.

3.5. Nomogram Prediction Model Establishment. Risk score
value was used in combination with clinical features to estab-
lish the nomogram model (Figure 7) in which risk score
exhibited a pronounced association, with the greatest influ-
ence on survival rate prediction. This suggested that the risk
model based on 14 genes displayed favorable performance in
predicting the prognosis of LUSC. The forest plot based on
risk score value and clinical features (Figure 8) indicated a
risk score HR of 1.54 (p < 0:001).

4. Discussion

Our study developed a novel prognostic model employing 14
immune-related genes using data from the TCGA Research
Network and ImmPort database. This prognostic model
successfully predicted LUSC patient prognosis.

Surgical resection offers the most effective treatment for
early-stage LUSC [10]. Adjuvant chemotherapy or EGFR-
TKI improves the survival of stage II–III lung cancer patients
after surgery [11, 12]. Therefore, adjuvant chemotherapy has
been the standard care for resected stage II–III LUSC patients
albeit many patients do not benefit from this form of chemo-
therapy. This phenomenon may be related to tumor hetero-
geneity. Our prediction model accurately identified early
LUSC patients at high risk of recurrence.

The association between the immune system and patho-
genesis, as well as the progression of malignancies, has drawn
increasing attention in recent years. Unlike the rapid devel-
opment of LUAD treatment strategies, LUSC treatment
options have progressed more slowly. Recently, immune
checkpoint inhibitors that target programmed cell death 1
(PD-1) and its ligand (PD-L1) have shifted the paradigm in
LUSC treatment. To date, several anti-PD-1/PD-L1 antibod-
ies have been approved for patients with advanced NSCLC
[13–15]. Emerging evidence indicates that PD-L1 expression
could predict anti-PD-1/PD-L1 therapy response in patients
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with NSCLC [16]. Inspiringly, the latest reports have demon-
strated that gene profiling has the potential to predict patient
response to immune checkpoint inhibitors [17–19]. In addi-
tion, the association of risk score value with relevant signal
pathways was explored with JAK/STAT revealed as the most
significantly correlated pathway. A previous study indicated
that the JAK/STAT signaling pathway plays an important
role in immunity regulation in the tumor microenvironment
[20]. Given our results, drug-induced interference with the
expression of this pathway may provide a new direction for
LUSC treatment.

Distribution of the 14 immune-related genes was investi-
gated in Risk-H and Risk-L samples. Seven of the 14 genes,
including PTPN11, MAVS, CXCL5, PLAU, MMP9, AKT2,
and HSPA5, reportedly participate in the pathological pro-
cesses of the immune microenvironment, as well as the
pathogenesis, malignant transformation, and progression
of LUSC, which exhibited marked correlation with patient
survival and prognosis [21–26]. Our results demonstrated
that bioinformatics mining using available research is
highly reliable and accurate. Nonetheless, the association
between LUSC and EDN2 and LTBP2 genes, which may
be enriched in the endogenous ligand and LTBP gene fam-
ilies, has not been verified in either basic or clinical studies.
EDN2 is reportedly involved in regulating malignant cancer
cell proliferation and invasion, which can affect cytokine-
mediated signaling pathways as well as modulate the activa-
tion and chemotaxis of immunocytes [27]. At the same
time, LTBP2 has been established as a prognostic marker
for diverse cancer types and can control tumor cell sensitiv-
ity to immunotherapy [28, 29]. Elucidation of the roles of
END2 and LTBP2 in NSCLC is currently underway in our
laboratory.

There were several limitations of the present study. First,
our study was based on data from public datasets without
prospective testing. Second, of the immune-related genes
used in the prognostic model, the roles of seven genes in
NSCLC are unclear. Their prognostic value should be vali-
dated by other cohorts. Third, whether patients received
immunotherapy is uncertain; therefore, the predictive value
of the prognostic model for immunotherapy could not be
directly evaluated.

5. Conclusions

We identified new prognostic markers for LUSC that
contribute to classifying patients with LUSC based on their
immune molecular subtypes. Our predictive prognosis model
based on immune signatures has potential clinical implica-
tions for assessing the overall survival. These findings should
be validated in prospective studies.
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