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A B S T R A C T

Recently, we demonstrated an integrated photoacoustic (PA) and ultrasound (PAUS) system using a kHz-rate
wavelength-tunable laser and a swept-beam delivery approach. It irradiates a medium using a narrow laser beam
swept at high repetition rate (∼1 kHz) over the desired imaging area, in contrast to the conventional PA ap-
proach using broad-beam illumination at a low repetition rate (10−50Hz). Here, we present a method to correct
the wavelength-dependent fluence distribution and demonstrate its performance in phantom studies using a
conventional limited view/bandwidth hand-held US probe. We adopted analytic fluence models, extending
diffusion theory for the case of a pencil beam obliquely incident on an optically homogenous turbid medium, and
developed a robust method to estimate fluence attenuation in the medium using PA measurements acquired from
multiple fiber-irradiation positions swept at a kHz rate. We conducted comprehensive simulation tests and
phantom studies using well-known contrast-agents to validate the reliability of the fluence model and its spectral
corrections.

1. Introduction

Quantitative spectroscopic photoacoustic (PA) imaging relies on the
known optical absorption spectrum of target chromophores to estimate
their concentrations. The PA signal, however, depends not only on the
optical absorption spectrum of a target but also on the wavelength-
dependent optical fluence at the same site. A critical challenge for in
vivo, PA spectroscopic imaging is predicting light transport non-
invasively in a turbid medium [1,2]. The spatial distribution of fluence
depends on the optical absorption and scattering properties of that
medium, but they are usually unknown in advance. In addition, since
light attenuation in a medium is a function of wavelength, the medium
induces spectral distortion (sometimes called ‘coloring’) between the
nominal PA-measured optical absorption spectrum and the true target’s
spectrum [1]. Therefore, for true quantitative spectroscopic (or multi-
wavelength) PA imaging that can identify molecular constituents in the
medium under study, the optical fluence must be simultaneously esti-
mated and compensated. This requires not only an appropriate fluence
model, but also an effective method to estimate the fluence distribution
at each wavelength from PA measurements.

Fluence correction methods have been proposed for homogenous
absorption and scattering media such that the light distribution and PA
measurements can be closely represented by simple formulas or

mathematical expressions [3–7]. Unfortunately, very few of them
translate into clinical tools because most explicitly depend on prior
knowledge of the medium’s optical properties. Indeed, optical constants
reported in the literature may vary a few orders of magnitude de-
pending on the measurement technique, tissue condition, and geometry
[8]. Background tissue properties may also change dynamically based
on tissue blood content and oxygenation level. Optical constants mea-
sured even with the same device, the same experimental conditions,
and for the same person may vary. Furthermore, these properties may
change during medical procedures and interventions.

Many groups have also proposed laser fluence correction techniques
without prior knowledge of tissue optical properties [9–20]. Most rely
on absorbing structures restored by tomographic array detectors (i.e.,
fully surrounding the target) or a large planar array detector. Typically,
model-based schemes invert background tissue optical properties with
approximated light transport models [9–12]. However, they are very
sensitive to the geometry of both the background and targets and re-
quire full view and bandwidth detection.

Many recent studies have shown the potential of deep learning
schemes to access more complex tissue structures and heterogeneous
optical properties within a short computation time [13–19]. Their pri-
mary challenge is the generation of realistic training data/images. De-
spite success in simulations, they have not been shown yet to work
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broadly for in-vitro or in-vivo conditions.
Unfortunately, full view and bandwidth systems used for small an-

imal PA imaging cannot be easily adapted to most clinical applications
in humans. Due to limited light penetration, PA systems intended for
most clinical applications must use hand-held, limited view array
transducers [21], leading to strong artifacts in structural PA images
[22]. Diagnostic ultrasound (US) co-registered with PA (e.g. PAUS
methods) has many advantages for clinical translation of PA tech-
nology, but the limited view/bandwidth of US arrays degrades PA re-
construction. Even with these constraints, PA imaging, particularly
spectroscopic imaging, brings a molecular dimension to US. However,
there have been no successful demonstrations to date of wavelength-
dependent laser fluence correction for these systems that is appropriate
for in vivo, let alone ex vivo, applications.

This study focuses on wavelength-dependent laser fluence correc-
tion for PA imaging using a limited view/bandwidth diagnostic US
probe [21] appropriate for real-time monitoring of interventional pro-
cedures. The main target is identifying small and sparse absorbers such
as labelled drugs and contrast agents or quantifying functional changes
in microvessels in quasi-homogenous optically turbid tissue. In this
geometry, fluence correction should be constrained and physics-based
because limited view and narrow bandwidth lose some low-frequency
components during reconstruction (beamforming) of light-absorbing
structures [23]. Note that laser fluence estimation without the help of
other tools and at near real-time rates is highly desirable.

In Ref. [24], point source tissue illumination from different posi-
tions along the tissue surface was proposed to calculate the laser fluence
distribution within the medium and then apply the estimated fluence
for PA spectral decomposition. However, the authors did not show how
to integrate this method into real-time PA scanners since broad beam
illumination is most commonly used in PA imaging systems [24].
Leveraging the results of this study, we recently introduced a real-time
interleaved photoacoustic-ultrasound (PAUS) fast-sweep scanner [25],
where unlike previous delivery systems coupling laser pulses into all
fibers in a bundle simultaneously, light is coupled into individual fibers
sequentially (see Fig. 1), but at a very high rate.

A unique diode-pumped wavelength tunable (700 nm - 900 nm)
laser emitting about 1mJ pulses at 1000Hz, with wavelength switching
in less than 1 ms for any arbitrary wavelength order, was designed
especially for the fast-sweep PAUS scanner. To maximize exposure, we
illuminate with a narrow (∼ 1 mm in diameter) beam and switch it
from fiber-to-fiber at 1000 Hz, resulting in one loop around the US
probe per single-wavelength frame in only 20ms (Fig. 1). The next loop
uses another wavelength without delay; the procedure repeats over all
wavelengths. That is, instead of illuminating with a broad beam, we use

fast-scanning (or fast-sweep) over the same illumination area.
In our PAUS system, ten fibers are uniformly spaced along each

elevational edge of the US array (e.g. 20 fibers in total, Figs. 1,2). Every
laser shot from a single fiber is followed by a sub-image reconstruction,
i.e. 20 sub-images in all, which are then coherently summed to form the
full PA frame. The kHz rate enables 50 full ‘loops’ of the laser beam
around the probe per second, resulting in a 50 Hz PA frame rate. For
stable spectral decomposition, 10 wavelengths (i.e., 700, 715−875 nm
every 20 nm) form the spectroscopic sequence. More details on the
system can be found in Ref [25].

Here we describe in detail how to use partial PA images from every
fiber to estimate laser fluence. Indeed, when light emerges from dif-
ferent fibers, it propagates different distances to a target and, therefore,
the amplitude of a partial PA image reconstructed from a single fiber
illumination will depend on that fiber’s position around the US probe
(see Fig. 2). For every fiber light source, we adopted analytical fluence
models extending diffusion theory for narrow beam (pencil beam) il-
lumination obliquely incident on a semi-infinite homogeneous scat-
tering medium [26]. Using this model, we explore methods to extract
optical parameters to assess the fluence distribution within the medium
using data acquired at different fiber positions and wavelengths. In
particular, estimated parameters include the effective light attenuation
coefficient µeff , and reduced light scattering µs coefficients of a turbid
medium.

Building on the basic analytic model, we then explore robust
methods to estimate these parameters from noisy data. Simulations
were conducted to clarify quantitative errors arising from adopted op-
tical fluence models, variations in medium properties, and measure-
ment noise levels. Finally, we demonstrate the reliability of the cor-
rection methods via phantom studies.

2. Model

2.1. Photoacoustic signal

Acoustic pressure obtained for the k th optical fiber, optical wave-
length j at discrete position ri can be denoted as

=p µr r r( ) ¯ ( ) ( ),j k i a
j

j k i,
( )

i , (1)

where …k {1, 2, ,20} and …j {0,1, , 9}, is the Gr ünesien para-
meter, is the optical absorption coefficient of a target and is the light
fluence. We assume here that the parameter r( ) governing PA effi-
ciency is constant over space = x y zr r r{ | ( , , ), } and wavelength.
This assumption is not critical for relative spectroscopic measurements,
but is important for absolute concentration estimates of specific

Fig. 1. Real-time integrated photo-
acoustic and ultrasound (PAUS) system
used in these studies. The ultrasound
system programmably controls the
laser, motor controller, and US trans-
ducer. The motor controller synchro-
nizes emission with the centers of 20
fibers in the bundle, delivering a
trigger to the US system when properly
aligned for each fiber. The US system
then externally triggers the compact
laser, transmitting a pulse at about a 1
kHz repetition rate with a wavelength
switchable from pulse-to-pulse over the
range from 700 nm to 900 nm. With
absolute position control, a precise rate
is not needed for external laser trig-
gering, ensuring maximal light delivery
to each fiber. Motor speed variations

only slightly alter the overall frame rate of 50Hz. A total of 20 fibers are arranged on two sides of the linear array US transducer, as shown in the zoomed front view
in the bottom right corner. The system mixes laser beam and focused US transmissions for interleaved PA spectroscopic imaging and US B-mode imaging.
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chromophores producing the PA signal. The fluence distribution r( )j k,
depends on the optical properties of the medium. Absorption arising
from imaged targets µ̄a also disturbs the fluence, but the effect is in-
significant if the target is small [27]. We thus assume that the acoustic
pressure (PA signal) is linearly proportional to the absorption coeffi-
cient of the target.

The absorption spectrum is given as

=
=

µ Cr r¯ ( ) ( ),a
j

i
l

L

l
j

l i
( )

1

( )

(2)

where L is the number of chromophore (absorber) types and Cl and l
j( )

are the concentration and absorption coefficient of the l th chromo-
phore type, respectively. The ultimate goal of quantitative spectro-
scopic PA imaging is to estimate the relative, or absolute, concentration
of a particular chromophore of interest at each position within the
imaging field from measurements given the known absorption spectrum

l
j( ) of that chromophore. Thus, correct modeling and computation of

the wavelength-dependent optical fluence distribution r( )j k i, at every
source position is required to guarantee accurate quantification of the
target chromophore.

2.2. Optical fluence model

Light illumination in a medium can be simply expressed using the
diffusion approximation,

=Q µr r r r r( ) ( ) ( ) [D( ) ( )],a (3)

where Q denotes the source, µa denotes the absorption coefficient
within a medium, and denotes the fluence [26]. The parameter D is
the diffusion coefficient given as

= =D
µ

µ µ g1
3

, (1 ),
s

s s'
'

(4)

where µs is the scattering coefficient of the medium, µs is the reduced
scattering coefficient and g is the anisotropy factor. This expression is
derived from the radiative transfer equation (RTE) for high scattering
(µ µ )s a and a nearly isotropic medium [26]. We assume that biolo-
gical tissue can be regarded as ‘macro-homogeneous’. If the scale of
optical micro-heterogeneities is smaller than a few photon transport
mean free paths, light fluence will be smooth and can be characterized
by a macro-homogeneous medium model [28]. For a homogeneous

medium = = =D D µ µ µ µr r r( ( ) , ( ) , ( ) )a a s s and a point source
( =Q r r r( ) ( )), the solution to the diffusion equation using the
Green’s function is given as

=
D

µr
r r

r r( ) 1
4 | |

exp( | |),eff (5)

where =µ µ µ3eff a s [29–31] is the effective attenuation coefficient and
r is the spatial position of the source.

The solution can be modified for our acquisition environment in
which a pencil beam is obliquely incident on a semi-infinite scattering
medium. As illustrated in Fig. 2, the beam can be converted into two
isotropic point sources mirror-symmetric about the extrapolated
boundary =z zb due to the refractive-index mismatch between media
[26]. The source below the boundary helps describe the transition from
ballistic to scattering regimes, and its symmetrical source is added to
satisfy a boundary condition described in Appendix A1. Note that every
fiber is mounted on the transducer and covered by a thick acrylic holder
and protection glass (BK-7 optical glass). Thus, the main contributor to
the mismatch with the scattering medium is the solid transducer rather
than the ambient medium (air). Appendix A1 describes the detailed
computation of zb using the refractive indexes n of the media.

The relative positions of the point sources with respect to the
boundary are determined by the transport mean free path =lt µ

1

s
[26].

For the k th fiber whose tip position is = x y zr ( , , )k k k k and incident
angle , the fluence solution can be expressed as

=
+

+

µ
D

µ
D

r
r r

r r
r r

r r
( )

exp( | |)
4 | |

exp( | |)
4 | |

,eff k

k

eff k

k
k 1

(6)

where 1 is a scalar, = ++ x y l z lr ( , sin , cos )k k k t k t
' ' and

= x y l z l zr ( , sin , cos 2 )k k k t k t b
' ' . Note that the unknown para-

meters are 1, µs
' and µeff . Other parameters can be derived from them or

known initially.
If the positions of two imaginary isotropic sources in Fig.2 are close

to each other due to a very small lt (e.g. very high µs), the fluence can be
simplified to an asymptotic expression

=
+z µ

µr
r r

r r
r r( )

(1 | |)
| |

exp( | |),
k eff k

effk 2
k

3 k (7)

where 2 is a scalar. The derivation is presented in Appendix (B). Here,
unknown parameters are only 2 and µeff , i.e. µeff is the only parameter

Fig. 2. Schematic diagram of laser
sources and bulk media. Each fiber is
mounted on the side of a linear-array
transducer in an ambient medium
(Medium II), and irradiation at the tip
of the fiber into a scattering medium
(Medium I) is modeled as a pencil
beam. The center position of the face
between the transducer and Medium I
is (0,0,0). The image plane is (y=0).
The y-directional position of every ir-
radiation point is either 5.68mm or
-5.68mm, and the tilt angle of the laser
beam is = °35 . The pencil beam can be
represented as two isotropic point
sources satisfying the boundary condi-
tion that light propagation from <z zb
into >z zb is approximately 0. The ex-
trapolated boundary =z zb is de-
termined by the refractive indexes of
the two media and the transducer. The
sign of imaginary sources indicates
their polarity. Source positions are de-
termined by the transport mean free

path lt .
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defining the relative distribution of laser fluence in the medium. Held
et al. employed this model [22].

In this paper, analytic fluence expressions in Eqs. (6) and (7) are
called Model I and II, respectively. Thus, when Model II is quite accu-
rate, it makes fluence estimation from experimental data very simple
and stable. We will explore below how well both models compare to
Monte-Carlo simulations, and under what conditions these models can
be used for laser fluence assessment from swept-beam PA measure-
ments.

2.3. Optical fluence estimation

PA measurement can be expressed as

= +y p nr r r( ) ( ) ( ),j k i j k k, , i i (8)

where j and k are wavelength and optical fiber indexes, respectively. nk
is the system noise containing a DC component bk and zero-mean
Gaussian noise nk. Control data were recorded by assigning zero laser
power at the first wavelength ( j = 0) to estimate the noise bias as

=b y r( )k k i
1

| | i 0, , where | | is the cardinality of the entire domain .
The unbiased measurement can then be obtained as

= = + …y y b p n jr r r r( ) ( ) ( ) ( ), {1,2, ,9},j k i j k i k j k i k i, , , (9)

Note that the unknown parameters needed to estimate p r( )j k, i are µs
j( ),

µeff
j( ), and = µ r¯ ( )i j a i, 1

(j) provided Model I is employed. To enhance
estimation efficiency, we selected position indexes as

= >i y r{ | ( ) }j k j k i, , where denotes the threshold value. Also, we
normalized measurements to reduce the degrees of freedom as
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where i , and y r( )j k i, now depends on two parameters, µs
j( ) and µeff

j( )

for every i, j and k.
The normalized version of fluence =

=
r( )i

r

rj,k
( )

( )
j k i

k j k i

,

1
20

,
ranges from 0

to 1. The optimal parameters for the j th wavelength can be estimated
as

=
= =

µ µ w y r
r

r
( ˆ , ˆ ) argmin ( )

( )
( )eff

j
s

j

µ
i

k
j k i

jk i

k jk ir

( ) '( )

( , µ ) 1

20

,
1

20

2

j j
ieff

( )
s
'( ) (11)

where =w y r( )i j k j k i, , is the weight such that a position with higher
SNR contributes more to the estimate. Likewise, Model II can be used
for estimation, but the search parameter is only µ̂eff

j( ) for every wave-
length index j. The fluence estimate rˆ ( )j k i, can be obtained by sub-
stituting optical parameter estimates into either Model I or II.

2.4. Fluence correction of light absorption spectrum

Assume that one type of chromophore is located at a local position

of interest and its absorption spectrum is known as j. The optical ab-
sorption spectrum obtained from PA measurements =d yj k j k, is dis-
torted due to the wavelength-dependent fluence of the surrounding
turbid medium (biological tissue, for example), as shown in Eq. (1). The
spectrum can be corrected using the fluence estimate ˆ j k, as

=cj
y( ˆ )

ˆ
k jk j k

k jk

,
2 , obtained by solving the least-squares problem,

= +y c nˆj k j jk k, , for every wavelength j. By comparing normalized dj
and cj with aj, fluence estimation accuracy can be computed.

3. Numerical simulations

3.1. Simulation parameters

The primary purpose of simulations is to verify the proposed fluence
models and associated estimation methods described in Sections 2.2
and 2.3. First, Models I and II were compared to ground truth Monte
Carlo simulations. We adopted the medium geometry of Fig. 2 for all
simulations. All media were approximately represented as cubical
shapes. Their sizes, optical parameters, and refractive indexes are
summarized in Table 1. We assumed that one of the fibers transmits
light into the scattering medium at the interface. The location and tilt
angle of the fiber tip are (0 mm, 5.68 mm, 0 mm) and 35 , respectively.
The total number of photon packets for Monte Carlo tests is 20 million.
The simulation used the open source program, MCX Studio [32].

We also compared errors in parameter estimation for Model I
compared to Model II at a fixed optical wavelength. We generated
synthetic data using Model I (Eq. (6)) assuming that Model I is very
close to ground truth. The noise power is set to zero to find the con-
tribution of model difference to the error. We assumed a point target
located at position = x zr{ ( mm, 0 mm, mm)} in a scattering medium
whose optical parameters are µa, µs and µeff . For every (z , µs), we
conducted 100 simulation tests to estimate µeff by randomly changing
values of other parameters in the range. A fractional error sample for
every test is given as = ×µ µ µ( ˆ )/ 100eff eff eff (%), where µ̂eff denotes
the estimate from Model I. We averaged 100 error samples for every (z,
µs) to monitor the mean error pattern z¯ ( , µ )s over penetration depth
and scattering coefficient.

In the last simulation, we investigated the accuracy of parameter
estimation for different wavelengths in a turbid medium where µa and
µs are wavelength dependent. We generated synthetic data using Model
I as in the previous simulation, and added white Gaussian noise to
mimic experimental conditions and explore reconstruction algorithm
stability to noise. The total number of SNR levels was 15, ranging from
20 dB to 50 dB, and the number of test data sets for each SNR was 100.
SNR is defined as

=
=

pSNR 10log 1
20

/ ,
k k n10 1

20 2
2

(12)

where n
2 is the noise variance. For every test, we assumed SNR is

constant over wavelength. A point target is located at position
=r{ (0, 0,10 mm)}i in a scattering medium whose optical parameters

are µs
j( ), µa

j( ) and µeff
j( ) at the j th wavelength.

According to the literature [8,33], the scattering coefficient in brain
varies the most over wavelength of all tissue types

=µ ( ) 40.8( /500 nm) ,s
' 3.089 (13)

providing the most complicated conditions for light absorption spec-
trum reconstruction using PA signals. We used this scattering function
for the test medium in the third simulation but assumed the absorption
coefficient =µ ( 0.03 cm )a

j( ) 1 is constant for all wavelengths. This does
not reduce the generality of the results because (as we show below)
reconstruction error is not highly sensitive to variations in light ab-
sorption.

Optical parameters were estimated from noise contaminated data

Table 1
Range of parameters in numerical simulations.

Cuboid size
× ×x y z( mm mm mm)

µa
(cm )1

µs
(cm )1

Refractive
index n

Ambient
medium

× ×(50 50 50) 0.0 0.00 1.00

Scattering
medium

× ×(50 50 50) 0.01 0.05 5 35 1.33

Transducer
medium

× ×(30 20 30) 1000.0 1000.0 1.49
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using Eq. (11) based on either Model I or II. Then, the fluence estimate
rˆ ( )j k i, was compared with ground truth r( )j k i, using the correlation

coefficient as

=
( ˆ )

ˆ
,j j j

j j j j
2 2

(14)

where = r rˆ ˆ ( ) ˆ ( )j k j k i j k j k i,
1
9 , , and =j k

r r( ) ( )j k i j k j k i,
1
9 , , . We examined the mean correlation coefficient

using 100 samples for every SNR level.

3.2. Simulation results

Fig. 3(a) shows slices of a 3D fluence distribution x y z( , , ) from the
Monte Carlo simulation. We used the distribution of optical fluence

z(0,0, ) along the z axis as a reference to compare with corresponding
distributions calculated using Model I and Model II (given by Eqs. (6)
and (7) respectively). Fig. 3(c–e) show the distributions obtained for
different µs (2 cm 1, 5 cm 1 and 10 cm 1, respectively). The elevational
position y of the source is fixed at 5.70 mm, which corresponds to the
fiber positions in our experimental transducer array (see Fig. 2). For
extremely small =µ ( 2 cm )s

1 , Monte Carlo produces a spike since bal-
listic transport crosses the image plan. As expected, Model I is very

close to Monte Carlo results for diffusive conditions because scattering
dominates in the medium. Model II approximates Model I when the
measurement point is located at distances from the source and the in-
terface much larger than the transport mean free path lt. The higher the
scattering, the closer the agreement between Model II and Monte Carlo,
as shown in Fig. 3(d) and (e). We also compared fluence models at
different lateral source positions (y is 2.85 mm, 5.70 mm and 11.40
mm, see Fig. 3(f–h)). Scattering µs was set to 10 cm 1.

The position zmax of maximum optical fluence along the z axis in-
creases with increasing distance y between the image plane and light
source, and Model II converges quickly to Model I soon after zmax.
Fig. 3(b) summarizes the shift in zmax as a function of source position y
for different µs typical of biological tissue [8]. For the source position in
our system ( =y 5.7 mm), zmax barely changes for µs varying from 5-20
cm 1. This means that simplified Model II converges to MC and Model I
at very similar depths over a wide range of tissue scattering. For our
transducer configuration, zmax is around 3 mm. This fact is very im-
portant for practical fluence assessment because µs is not known a
priori.

Based on these initial simulations, it is clear that Model I can be
used as ground truth if the light source is located more than a distance lt
from the light source. We now focus on the difference in parameter
estimation error (bias) between Models I and II in more detail. The

Fig. 3. (a) Slices (planes) of 3D light fluence x y z( , , ) in a scattering medium. The magnitude distribution is obtained by Monte Carlo (MC) simulation. (b) Position
(axial) zmax of the maximum optical fluence location along line z(0,0, ) when a fiber source is located at different lateral positions y(0, , 0). The graphs represent zmax

over y for several scattering (e.g. different µs) conditions. (c-e) Distribution of optical fluence for different µs, but fixed source position y . (f-h) Distribution of optical
fluence for different source position y but fixed µs. The light absorption coefficient of the medium is =µa 0.03cm .1
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fractional error for Model II is defined as ×( )/ 100I II I( ) ( ) ( ) (%),
where I( ) and II( ) denote Model I and Model II, respectively. Fig. 4(a)
shows the error over z l/ t for several µs over the tissue range. The error is
under 10 % when z l/ t is larger than ∼10. Fig. 4(b) shows the error for
several assumed µa values. Note that the µa variation rarely changes the
error. Fig. 4(c) illustrates the fractional error z¯ ( , µ )s for

< <µ5 35 cms
1 and < <z0 40 mm when Model II is used to estimate

µeff . Fig. 4(d) displays pixel values of (c) over the z l/ t (= zµs) axis.
Fig. 5 presents optical parameter estimates using Models I and II

when data are contaminated by noise. We used Eq. (13) to set ground-
truth scattering coefficient variations over wavelength (715−875nm).
Fig. 5(a–c) show estimates when the SNR is the highest (50 dB).
Fig. 5(d) shows the correlation between the estimated optical fluence
spectrum and ground truth over a wide range of SNR. Model I esti-
mation error (bias and deviation) is only a function of measurement
noise. Estimates of µeff are unbiased at high SNR while those of µs are
biased and their errors are high even at this high SNR level. However,
despite large error in µs estimated by Model I, the correlation between
resultant fluence estimates and ground truth is close to 1. As shown in
Fig. 5(d), the lower SNR level causes lower correlation because both
estimation deviation and bias are higher. In Model II, estimation error is
caused by model discrepancy as well as measurement noise. Note that
Model II underestimates µeff at high SNR, but the ratio of estimate µ̂eff to
ground truth µeff remains almost constant over the wavelength range.
Thus, it provides competitive correlation between fluence estimate and
ground truth despite the bias. The lower SNR, of course, leads to lower
estimation performance (see Fig. 5(d)).

4. Experiments

Phantom experiments produce realistic PA measurements to help
validate the proposed methods. We conducted two studies.

4.1. Phantom study I

In the first study, we explored the accuracy of optical fluence esti-
mates in a turbid medium using a human hair as the absorbing target.
Each hair was aligned parallel to the transducer elevational direction
(y-axis) so that it appears as a point target in the z-x image plane (see
Fig. 6(a)). The target was positioned in a cubic tank (open on top) filled
with an optical scattering medium, and a transducer was positioned at
the medium surface. The tank was sufficiently large so that boundary
effects from all faces except the top interface between media can be
neglected. The optical medium was an intralipid solution (20 % IV fat
emulsion, Fresenius Kabi, Deerfield, USA) with homogeneous scat-
tering. We diluted the original 20 % emulsion to 0.5 %–4 % ones to
control the scattering coefficient.

Radio frequency ultrasound data were recorded using the
Verasonics system and a 128 element linear-array transducer (LA 15/
128-1633, Vermon S.A. Tours, France). The transducer center fre-
quency is 15MHz and the 3-dB bandwidth is 11−19MHz. The array
element pitch is 0.1 mm. The laser pulse energy was between 0.4 mJ
and 0.5mJ at the tissue surface, depending on the wavelength. A little
(4% portion of it) was taken from the main path by a beam splitter and
recorded for every laser pulse with a photodetector located before the
fiber bundle. Thus, the energy of every laser pulse was measured to
compensate its dependence on wavelength and take into account pulse-

Fig. 4. (a) Fractional errors (relative percentage changes) of Model II with respect to Model I over z l/ t when the reduced scattering coefficient µs is 5, 10, 20 and
30 cm 1. The common light absorption coefficient µa is 0.03 cm 1. (b) Fractional error over z l/ t when the µa value is 0.01, 0.02, 0.03, 0.04 and 0.05 cm 1. The common
reduced scattering coefficient µs is 10 cm 1. (c) Mean fractional error z¯ ( , µ )s of µeff estimates with respect to ground truth over 2D domains, axial depth z, and
reduced scattering coefficient µs. (d) Mean fractional error z¯ ( , µ )s over 1D axis z l/ t = zµs . Pixel values of (c) are represented by dots on this graph.
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to-pulse energy variations (∼ 8%). The number of axial samples and
scan-lines were adjusted to the field of view (25.2mm × 12.7mm). One
PA data set consists of 2048 samples × 128 channels × 20 fibers × 10

wavelengths × 40 frames acquired at a 1 kHz repetition rate, re-
presenting a total acquisition period of 8 s. We averaged every data set
over frames to enhance SNR and processed PA signals using

Fig. 5. (a-c) Optical parameter estimates and fluence estimates over wavelength. The reduced scattering coefficient µs and the effective attenuation coefficient µeff of

the medium vary with wavelength. The measurement SNR is 50 dB. (a) Shows estimates of µ̂eff using Model I and Model II, and (b) shows estimated µ̂s using Model I.

(c) Shows r^ ( )k j k, i estimates at position ri using Model I and Model II. The markers (o) and ( ) indicate estimates using Model I and II, respectively. The dotted line
denotes ground truth r( )k j k, i . (d) Shows the strength of association between ground truth r( )k j k, i and its estimate r^ ( )k j k, i over the SNR range. The markers
(o) and ( ) indicate correlation coefficients using Model I and II, respectively.

Fig. 6. Experimental assessment of turbid medium optical properties using the fast-sweep concept. (a) Measurement diagram with a human hair as absorbing target
immersed in a turbid medium (intralipid solution of different concentrations as indicated in top right corners of panels). Optical properties (reduced scattering
coefficient µs and effective attenuation coefficient µeff ) of the medium were determined using Model I (orange) and Model II (blue - µeff only). The point and error bar
indicate estimation mean and standard deviation. A total of 8 samples (8 datasets) were used for statistics. The dotted line (µeff ) and the shaded region between dotted
lines (µs) indicate the estimated value and range, respectively, for the results of Ref. [24].
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conventional delay-and-sum beamforming to obtain an image (512 ×
128) for every fiber and wavelength. A Hilbert transform was then
applied to obtain the smooth envelope of axial image samples. The
enveloped image was used as yj k, in Eq. (8) for the k th fiber and j th
wavelength.

Fig. 6(b) illustrates optical parameter estimates over the range of
laser wavelengths (715−875 nm) for the 0.5 % intralipid solution as
the scattering medium. Each marker and error bar indicate mean and
standard deviation of 8 samples, respectively. The reference spectrum
employed here was obtained from Ref. [24]. Since this spectrum was
measured for a 1.2 % intralipid concentration in [24], it was scaled here
to compare with the 0.5 % solution and plotted as dotted lines
(Fig. 6(c)). The expected reduced scattering coefficient shown on the
right is presented as a shaded region since reference papers [24,34–36]
give different measurement values. The scattering coefficient µs is
under 5 cm 1 over the measured wavelength range, close to the lower
edge of medium scattering used in numerical simulations. As shown in
Fig. 6(b,c), estimated µs , and µeff match very closely with those reported
in the literature under similar measurement conditions. Due to the
small µs , Model II provides a less accurate spectral estimate.

Estimates of effective attenuation coefficient for three higher in-
tralipid concentrations (0.5 %, 1% and 2%) are presented in Fig. 6(b),
(d) and (f) respectively. As expected, both Models I and II provide very
accurate assessment of µeff , whereas µs estimates from Model I are
clearly not accurate for these higher scattering media (Fig. 6(e,g)).
However, as shown in the numerical simulations, one parameter, µeff , is
enough when Model II is valid. Thus, inaccuracies in the reconstructed
µs do not significantly affect the accuracy of laser fluence estimates.

4.2. Phantom study II

The purpose of the second study is to (i) perform optical fluence
estimation in the medium, and (ii) apply optical fluence corrections to
spectroscopic PA measurements. For this test, the container held three
cylindrical tubes aligned parallel to the y-axis (see Fig. 7(a)). We in-
jected a nanoparticle solution (gold nanorods (GNR), width (11.4 nm),
length (44.8 nm), mass concentration (2.2 mg/mL), longitudinal peak
(776 nm), NanoHybrids Inc. Austin, USA) [25] and a black ink solution
(Higgines Black Magic Ink, Chartpark Inc., Leeds, USA) as absorbers in
Tubes I and III, respectively, where the absorption spectra of the solu-
tions are well-known. Also, we injected water into Tube II as a control.
The maximum absorption coefficients of the nanoparticle solution and
black ink solution are roughly 35 cm 1 and 82 cm 1, respectively, over
the wavelength range (715 nm to 875 nm). The container was filled
with a 1% intralipid solution as the scattering medium. We additionally
added customized Prussian blue ink [25] to the solution to increase
spectral distortion at the expense of high attenuation (low data SNR).

We used a total of 8 datasets and averaged them to improve SNR.
Fig. 7(a) presents PA images at three particular wavelengths, where
every pixel value is proportional to the photoacoustic signal magnitude
presented on a log scale. Due to the limited view and bandwidth of the
transducer, the signal only appears at the top and bottom of the tube.
The signal beneath the tubes is from a reverberant wave in the tube.
The region near Tube II has a weak signal because the tube material
itself weakly absorbs light over this wavelength range. The ranges of
SNR in Tube I and Tube III are 27.8–39.9 dB and 41.1–47.5 dB, re-
spectively, over the wavelength range.

Fig. 7(b) and (c) show estimation results using signals in Tube I and
Tube III for laser fluence assessment, respectively. In other words, we
demonstrate here that any target, independent of its absorption prop-
erties (for example, for a solution GNR or black ink), effectively ab-
sorbing light over the spectral range probed by the system can be used
for laser fluence estimation in the swept-beam concept. In practice,
such targets can be blood vessels, injected contrast agents or labelled
drugs, or other absorbing targets.

The first and second row in columns (b) and (c) of Fig. 7 show

effective light attenuation and reduced scattering coefficient estimates,
respectively. We smoothed all estimates over wavelength to reduce bias
and applied them for fluence compensation. Note that the signals in
Tube III provide more stable estimates than those in Tube I due to
higher SNR, as predicted in numerical simulations above. The third and
fourth row compare raw PA spectra and spectra after fluence correction
for nanoparticles and black ink, respectively. Corrected spectra more
closely reflect true absorption spectra and approach the ground truth.
As predicted in simulations, high SNR increases correction accuracy.
Note that laser fluence estimation was performed here using only PA
signals from a single target, yet reconstruction accuracy is already
reasonable. If a larger number of points within the PA image are used
simultaneously for fluence correction, then more accurate corrections
can be obtained without the need for signal averaging.

5. Discussion and conclusions

In simulations, we investigated optical parameter estimation using
measurements on chromophores acting as targets in a turbid medium.
Although we did not fully validate over a wide range of absorption
target types, simulations and phantom studies presented here yield
consistent estimation results. We can clearly infer that estimation using
more sparse targets can lead to lower bias and variance at any noise
level if their signal strengths are similar. Also, when multiple targets are
used for estimation, targets located near image edges will contribute
more to estimation results than those near the center because they
provide a wider range of distances r r| |k between target and source
positions.

We approximated the narrow beam as an ideal pencil beam. Even
though every fiber produces a diverging beam corresponding to their
NA=0.22, we found through MC simulations that the fractional error
in the fluence with respect to the true fluence (e.g. for the diverging
beam of the same diameter at the medium surface) is less than 3% in
the image domain. This minor discrepancy does not affect estimation
performance.

The primary advantage of Model I is that it more closely matches
the results of MC simulations when the source-target distance exceeds
the photon transport mean free path. Thus, estimates of µeff based on
this model are unbiased and accurate at zero noise levels, as shown in
Fig. 6. A disadvantage of this model is the additional parameter, µs , that
must be simultaneously estimated. A two-parameter search often pro-
duces higher estimation errors under real, not ideal, conditions, espe-
cially when experimental measurements are contaminated by noise.
Thus, using constraints for narrowing the search range of µs based on
prior knowledge would increase the performance under low SNR con-
ditions.

Model II is an approximate version of Model I where µs can be
considered high. In reality, this approximation works when a target is
located far (i.e. at distances much larger than lt) from all light sources
and interfaces. As shown in Figs. 3 and 4, within the range of typical
light scattering of biological tissue, Model II can be used for targets
located at depths deeper than 5−7mm from the medium surface, i.e. at
depths where the wavelength dependence of laser fluence starts af-
fecting spectroscopic measurements. As depth z increases, Model II
converges to Model I very quickly. Note, that the ratio of µ̂eff to µeff
remains mostly constant as µeff varies over wavelength, as shown in
Fig. 5, even though we used the highest variation of µs (for brain tissue)
from all biological tissue reported in the literature. Model II is a single
parameter model that provides fast and stable laser fluence estimates
for the range where it is valid.

In our signal model, we assumed that the only factor creating PA
intensity variation over fibers is the fluence. However, during data
acquisition using our system, every fiber delivered slightly different
laser pulse energy due to positioning deviations and pulse-to-pulse laser
emission fluctuations. Thus, we took into account pulse energy
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variations with simultaneous measurements of laser pulse energy for
every laser pulse to prevent additional estimation biases. Phantom
studies validated the overall performance of spectral corrections based
on optical parameter estimation. Fluence-corrected spectra closely
match ground-truth spectra, as shown in Figs. 6 and 7. Estimation
variance depends on SNR at each wavelength. Thus, estimates based on
the GNR target are less accurate because of relatively small signal
amplitude at the edges (715 nm and 875 nm wavelengths) of the GNA
absorption spectrum.

In our studies, we neglected shadowing (laser fluence at one ab-
sorber shadowed by another absorber) because absorbers are located
sparsely over the imaging field. However, in clinical applications, the
presence of large-scale absorbers such as arterial vessels can induce
unavoidable fluence attenuation in the entire image field. We con-
ducted simple MC simulations to explore this effect (Fig. 8(a, b)) as-
suming a cylindrical-shaped vessel close to a point target in a medium

(µeff =0.9 cm 1). When the vessel diameter is 2.4 mm, our estimation
method using noise-free measurements from the target position yields
µeff =1.57 cm 1.

Note that our primary purpose is estimating true fluence rather than
estimating true optical parameters of the medium. As shown in
Fig. 8(c), the actual in-depth fluence attenuation, calculated through
the target (as indicated in the upper left panel of Fig. 8(a)), is much
closer to our estimate than to the fluence without the vessel. Indeed, the
best fit to the ground-truth using the analytical fluence model (blue
dotted line) yields µeff =1.41 cm 1 (using the depth range 5−10mm).
Thus, our estimates are not perfect, but they account for large absorbers
and provide accurate compensation of fluence variations within the
medium. Our future studies will develop more detailed algorithms to
further improve reconstruction accuracy.

Our system emits around 1 mJ pulses at 1 kHz. This complies with
the maximum permissible exposure (MPE) for skin [37] over the

Fig. 7. Spectroscopic PA imaging of absorbing targets in a turbid medium. (a) Examples of PA images displayed on a log (dB) scale at 3 different wavelengths
(715 nm, 795 nm and 875 nm) for Phantom Study II. The first, second and third tubes were filled with GNR solution, water and black ink, respectively. The scattering
medium was a solution of intralipid and Prussian blue ink. The pixel value of the image is associated with the PA pressure. Dotted circles in the image indicate tube
cross-sections. (b) and (c) columns show parameter estimates using nanoparticle signals in Tube I and black signals in Tube III, respectively, and spectrum correction
results using the estimates. First and second rows represent estimates of effective light attenuation and reduced scattering coefficients in a turbid medium, re-
spectively. Points marked (o) and ( ) denote estimates using Model I and Model II, respectively. The dotted line is obtained by smoothing estimates over wavelength.
Third and fourth rows show absorption spectra of the nanoparticle and black ink, respectively. Magenta curves with points marked (◇) correspond to measured PA
absorption spectra, i.e. without fluence correction. Orange and blue curves with points marked (o) and ( ) respectively correspond to ink and GNR absorption spectra
obtained after applying fluence correction using Model I and Model II, respectively. Dotted lines indicate the reference target spectra measured independently with
optical spectrophotometry.
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wavelength range (700-900nm) given a small standoff between fiber
and skin. During data acquisition, the maximum laser pulse energy at
the fiber output was less than 1 mJ due to ∼ 60 % efficiency of light
coupling into optical fibers. Coupling efficiency can be improved and
will be a focus of future studies.

In Phantom Study II, we used signal averaging to increase SNR
because of the high optical attenuation of the medium. Since most
human soft tissues have lower attenuation [8,33], our compensation
method should require much lower averaging to obtain comparable
results for in vivo studies. Also, as we have shown, any absorber in-
dependent of its absorption spectrum can be used for fluence re-
construction. Therefore, the larger the number of image points parti-
cipating in fluence estimation, the better the accuracy and stability, and
fewer averages will be required. In addition, our ongoing research on
noise reduction using deep-learning may potentially reduce the need for
averaging [23].

In conclusion, our study shows that one of the fundamental pro-
blems of PA imaging, i.e. decoupling the local light absorption spectrum
from wavelength-dependent optical fluence, may be solved auto-
matically using a swept-beam imaging concept at least when the
medium under study can be considered macro-homogeneous. We
adopted an analytic laser fluence model for a homogenous scattering
medium and estimated wavelength-dependent fluence variations within
the image plane from PA measurements without knowledge of optical

properties and without large computational costs. In phantom studies,
we have shown that fluence correction considerably improves the ac-
curacy of measured chromophore spectra. Real-time PAUS systems
providing fluence-compensated spectroscopic PA imaging have the
potential to enable molecular imaging for many clinical applications,
such as interventional procedure guidance using molecularly labelled
therapeutic agents and procedure validation based on spectroscopic
confirmation of modifications in microvascular networks.
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Fig. 8. Simulation to explore the contribution of a large cylindrical absorber ( µ̄a =10 cm 1) on fluence variations and estimates of optical properties. It is aligned
parallel to the y-axis in a turbid medium ( µeff =0.9 cm 1). (a) 2-D Fluence distribution x z( , 0, )k for a fiber index k (1 to 10). The center of the cross-section of the
absorber is located at ( 3.6 mm, 0 mm, 5 mm). (b) Signal magnitude for a target, indicated as a red dot in panel (a), at (6 mm, 0 mm, 8 mm) over distance between
the k th source and the target when the medium either has the source or does not have the source. The diameter of the source is either 0.8, 1.6 or 2.4 mm. (c) Fluence

z(6,0, )k over depth z. The red and cyan solid lines denote ground-truth and estimate, respectively, when the absorber diameter is 2.4 mm. The black dotted line
denotes the best fit to the ground-truth (ranging from 5 to 10 mm) using our analytical model. The black sold line denotes fluence when the absorber is not present.
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Appendix A

A.1 Refractive-index-mismatched boundary

Assume that the boundary between medium I and II is refractive-index-mismatched and one source to medium I is located at the interface.
Outgoing light toward II from I is partially reflected at the boundary due to the mismatch. This can be mathematically expressed as

=
> <

L d R L dr s s n s n r s s n( , ) ( ) ( , ) ,
s n s n0 0 (15)

where L and R denote the radiance and Fresnel reflection, respectively [26]. The vectors r, s and n denote the position on the boundary, unit
direction vector, and unit normal vector pointing toward medium I, respectively. d denotes a differential solid angle element. Using a spherical
harmonics expansion, the radiance can be approximated as

= +L r s r r s( , ) 1
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where J is the current density, or the energy flow per unit area. The Fresnel reflection is given as
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where = s ncos ( )1 is the angle of incidence, = nsin ( sin )r
1 is the angle of refraction, = nsin ( )c r

1 1 is the critical angle, and nr is the ratio of
the refractive index of medium I to that of medium II. Substituting Eq. (16) into Eq. (15) yields
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/2 2 . Substituting Fick’s law, = Dr rJ( ) ( ), into Eq. (18) results in
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A Taylor series expansion to first order leads to the fluence z( ) at = = +z z D2b
R
R

1
1

J approaching zero. The face =z zb is called the
extrapolated boundary. Details can be found in the literature [26].

A.2 Simplified diffusion equation

Let µ r r

r r

exp( | |)

| |
eff k

k
be f x y z( , , ) for convenience. If the two imaginary sources are close, Eq. (6) simplifies to
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where =l D3t and = +
+

R
R

4(1 )
3(1 )

J . In Eq. (7), the constant 2 is +(2cos )3
4 .

A.3 Computation time

The largest computational burden in the total process is beamforming/reconstruction. We implemented a pixel-based delay-and sum algorithm. A
sparse matrix performs mixer, low-pass filter, interpolation filter and phase rotator operations to transform one sub-frame data (2048 × 128) to one
sub-frame image (512 × 128). The beamforming computation with the sparse matrix used a GPU processor (NVIDIA GeForce RTX 2080 Ti). When
the receive f-number is a constant value of 0.1 with depth as the aperture opens, and decreases with depth once the full aperture is opened, the
computation time is about 0.8 ms, less than the data acquisition time of 1 ms.
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