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Summary

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line 

collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic 

information while deep interrogation of the proteome has remained out of reach. Here we expand 

the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 

cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. 

We observe unexpected correlations within and between pathways that are largely absent from 

RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific 

protein complexes associated with surveillance of mutation and translation. These and other 

protein complexes were associated with sensitivity to knockdown of several different genes. These 

data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and 

facilitate cancer research.
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Introduction

Proteins are the executors of the function encoded by a cell’s genome. Although commonly 

used as a proxy for protein expression, on average RNA expression data predict protein 

expression poorly (Gygi et al., 1999; Liu et al., 2016). Unfortunately generation of high 

quality proteomics data has lagged behind RNA expression profiling. Recently, proteomic 

studies of several cancers have rediscovered many of the same subtypes found by gene 

expression, as well as new disease categorizations, highlighting the gains from studying the 

proteome (Mertins et al., 2016; Pozniak et al., 2016; Zhang et al., 2014, 2016; Vasaikar et 

al., 2019).

The posttranscriptional mechanisms underlying the differences between protein and RNA 

expression are well enumerated. However, despite significant mechanistic understanding, 

there is less clarity about the global organization of gene and protein expression and where 

they differ. Correlated expression patterns in gene expression data are organized in large part 

around chromosomal location, driven by mechanisms such as transcription factor activity 

and chromosomal topology as set up by cellular and tissue identity (Caron et al., 2001; 

Dixon et al., 2016; Furlong and Levine, 2018; Hnisz et al., 2017). These patterns are reduced 

or absent in protein expression data (Grabowski et al., 2018; Kustatscher et al., 2017), 

leading to a model where posttranscriptional events buffer gene expression changes to create 

a new pattern of protein abundance. The degree to which this occurs is unclear and likely 

dependent on individual genes and the biological phenomena at play (Jovanovic et al., 2015; 
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Liu et al., 2016). In contrast to RNA expression, protein expression is organized by protein 

interactions and subcellular localization (Dephoure et al., 2014; Gonҫalves et al., 2017; 

Kustatscher et al., 2017; Lapek et al., 2017; Pozniak et al., 2016; Roumeliotis et al., 2017). 

Although these findings have appeared consistently, the extent to which they contribute to 

the organization of the proteome and if other organizing principles are at work are unknown.

Cancer cell lines are important model systems to study normal and aberrant cellular 

processes. The Cancer Cell Line Encyclopedia (CCLE) is an effort to generate large-scale 

profiling data sets across nearly 1,000 cell lines from diverse tissue lineages. Its original 

release included gene expression, DNA copy numbers, and hybrid capture sequencing 

(Barretina et al., 2012). Recently, histone profiling, RNASeq, DNA methylation, miRNA 

profiling, and whole genome sequencing, and metabolite profiling were added (Ghandi et 

al., 2019; Li et al., 2019). Associated drug and shRNA sensitivity screens increased the 

richness of data attached to the CCLE (Basu et al., 2013; Meyers et al., 2017; Tsherniak et 

al., 2017). With its latest release, the CCLE includes targeted protein quantification by 

reverse-phase protein arrays, but deep proteome profiling is absent (Ghandi et al., 2019). 

Although cell lines are popular models (Frejno et al., 2017; Gholami et al., 2013), no large-

scale proteomics study of human samples across a diverse population as in the CCLE has 

been performed.

Cancer arises from mutation, but the character of that mutation differs between cancers 

(Lawrence et al., 2013). A subset of cancers, hypermutated/microsatellite instable (MSI) 

colorectal cancers, possess orders of magnitude more mutations than other tumors 

(Campbell et al., 2017; Lawrence et al., 2013; The Cancer Genome Atlas Network, 2012). 

How a cancer proteome adapts to the negative selective effects of an extremely high 

mutation burden is unknown. Additionally, these tumors have increased levels of 

neoantigens making them attractive for immunooncology therapies (Baretti and Le, 2018). 

MSI is the dominant form of hypermutation present in the CCLE and while the MSI 

proteome has been studied in colorectal cell lines and tumors (Halvey et al., 2013; Liu and 

Zhang, 2016) it has not been explored across tissue lineages.

Here we have profiled 375 cell lines in the CCLE by mass spectrometry. All of the data are 

available at https://gygi.med.harvard.edu/publications/ccle and https://depmap.org. We find 

that the primary variation in protein expression appears to be organized around biological 

pathways, with unexpected correlations between members of entirely different pathways. We 

leverage the data to better understand the effects of MSI on the proteome, finding substantial 

buffering of transcriptional effects. Exploring the relationship between genetics and protein 

complex levels uncovered associations between protein complexes and sensitivity to gene 

knockdown and mutation. The addition of quantitative proteomics to the CCLE presents 

opportunities to understand the proteome in conjunction with the many other data sets 

present in the CCLE to improve our understanding of cancer and basic cellular biology.

Results

We selected 375 cell lines from the CCLE for quantitative protein expression profiling 

(Tables SI and S2). The cell lines were distributed among 22 lineages, dominated by solid 
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organs (Fig. 1A). The experiment used sample multiplexing by TMT10-plex reagents and 

the best available instrumentation. These technologies enabled good depth of coverage with 

a high degree of overlap between samples and uncompromised quantitation. At a 1% 

protein-level FDR over 12,000 proteins were quantified among all samples, and over 9,000 

in a majority of samples (Fig. 1B and SIC). Representation of categories was as expected, 

with good coverage of abundant proteins like the ribosome and incomplete coverage of 

lower abundance ones like transcription factors (Fig. SID). The first two batches of 9 

samples were each prepared in biological triplicate, with the latter two replicates grown one 

year later (Table S3). In all cases, triplicates clustered together with the latter two replicates 

clustered more tightly (Fig. 1C). The average correlation between replicate samples was 0.8 

and between different cell lines was −0.05 (p < 2e-16), with a median CV of 60% between 

biological replicate protein measurements within a cell line. There was visible, though 

incomplete, clustering by tissue lineage (Fig. 1C and 2A). Protein expression among 

samples was highly variable but generally consistent with previous data. For example, 

ERBB2 (HER2) is upregulated in a breast-derived line in the replicate dataset (Fig. 1D). In 

the complete dataset the pattern is complex, but ERBB2 is upregulated in several breast lines 

and is largely predicted by ERBB2 copy number (Fig. 1E). Among the non-breast lines with 

the highest levels were many with already-reported high expression levels (Ise et al., 2011; 

Kim et al., 2008; Mimura et al., 2005; Scott et al., 1993).

Hierarchical clustering had some coherency based on tissue lineage (Fig. 2A left). We 

quantified this using Gini purity, a measure of clustering specificity. Our clustering had a 

mean Gini purity of 0.46 where 1.0 would be perfect clustering by lineage. Clustering of the 

RNA data had similarly complex clustering (Fig. 2A center). In both cases, skin and 

haematopoetic/lymphoid lineages clustered more tightly with themselves than other lineages 

(Fig. 2A-B, purple and orange asterisks respectively) which differed substantially from the 

clusters recently reported from RPPA data (Li et al., 2017). Although the protein data had 

slightly less lineage coherency than RNA (mean Gini purity of 0.6 in the RNA) both showed 

incomplete clustering. Examining the correlation of protein and RNA expression by sample, 

in all cases the protein data were most highly correlated with the corresponding RNA data 

from the same cell line, providing additional confidence in our results (Fig. 2B).

The diversity and depth of these data allowed us calculate the RNA/Protein correlation of 

individual genes. Here, the correlations between RNA and protein expression varied widely, 

averaging at just under 0.5, in line with previous studies (Fig. 1 C-D, Table S4) (Edfors et 

al., 2016; Roumeliotis et al., 2017; Zhang et al., 2014). For some genes RNA expression was 

a good proxy for protein levels (e.g. EGFR) where for others it provided little information 

(e.g. BRAF) (Fig. 2D).

We examined the consistency of high or low correlations between RNA and protein levels 

using Gene Set Enrichment Analysis (GSEA, Subramanian et al., 2005) (Table S4). 

Hundreds of pathways and GO categories had higher or lower than expected protein/RNA 

correlations. Those with the consistently highest correlations were epithelial mesenchymal 

transition and various cell surface protein-related pathways associated with the epithelia. 

Among those with the consistently lowest correlations were gene sets with notable protein 
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complexes. Several dozen transcription factors showed sets of targets with high RNA/protein 

correlation, and none with consistently low correlation.

Correlated Biological Pathways and Processes Organize a Significant Amount of Protein 
Expression

The results of hierarchical clustering in Figure 2A were reflected in the PCA projection of 

the same data. There, the haematopoetic and lymphoid lineages segregated from the solid 

organ lineages, making up a large part of the PC1 projection (Fig. 3A). By themselves, the 

haematopoetic and lymphoid lines separated by PCA (Fig. S2A). Thus, these cell lines are 

significantly different from both the solid organ-derived lineages and from each other. 

Following previous work (Barretina et al., 2012), we therefore removed the haematopoetic 

and lymphoid lines from further analyses.

The remaining lines showed a complex PCA projection, with overlapping tissue lineages, 

particularly along PC1 (Fig. 3B). Subsequent principal components had strong tissue effects 

as expected, but PC1 could not be understood based on tissue. However, the underlying 

biology affects a large fraction of the total proteome, as 75% of all proteins had expression 

levels that were significantly correlated with the cell line’s PC1 projection at a 1% FDR.

We also attempted to explain the PC1 organization based on mutation. Although differences 

in total mutational burden are a hallmark of different tumor types (Lawrence et al., 2013) 

this explanation did not apply (Fig. S2C). We also attempted to computationally select a 

group of mutations that would predict the PC1 projection (Fig. S2D).

While some mutations were correlated with one or the other ends of the PC1 projection, the 

effect was incomplete and usually tied to a given tissue. From these results it appears that 

mutation, like tissue lineage, is not the dominant organizer of the coordinated proteome 

organization accounting for PC1.

Protein complex membership has been described as the major driver of proteome covariation 

with some lesser contribution by pathway membership (Romanov et al., 2019) but how the 

covarying expression of these organizing units might affect our results was not clear. We 

hypothesized that the PC1 projection might result from organized protein co-expression due 

to shared biological function instead of tissue lineage or mutation. To test this we used 

GSEA on the protein loadings for PC1 (Fig. 3–4). We observed over 200 pathways enriched 

across the PC1 loadings (Fig. 3C and 4B, Table S7). This enrichment was a result of 

correlated expression of a subset of pathway members, examples of which are shown in 

Figures 3C and 4A. These can be grouped broadly as large protein complexes and gene sets 

with more transient or absent protein-protein interactions.

The non-protein complex gene sets (Fig. 3C) encompassed features including growth factor 

signaling, metabolism, and epithelial phenotype. Cell lines distributed along the PC1 

projection fell along one of two anticorrelated patterns of protein expression composed of 

members of many different pathways. One pattern included upregulation of members of 

growth factor signaling pathways including MAPK and insulin receptor signaling, metabolic 

pathways including glycolysis and nucleotide metabolism, and cell division. The other 

Nusinow et al. Page 5

Cell. Author manuscript; available in PMC 2021 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pattern included upregulated cell-cell and cell-matrix adhesion pathways that are hallmarks 

of epithelia, KRAS and p53 signaling markers, and oxidative phosphorylation. Strikingly, 

the glycolysis pathway was anticorrelated with the oxidative phosphorylation pathway. The 

switch between these pathways is characteristic of the Warburg effect, a phenotype of cancer 

similarly fundamental as epithelial and mesenchymal phenotype. The relative expression 

levels of these pathway proteins are largely disconnected from tissue lineage (Fig. 3C, y-

axis). Performing the same analysis using GO categories found hundreds more gene sets 

with enriched coexpression (Fig. 4A, C, Table S7).

The remaining gene sets were defined by large protein complexes (Fig. S2B). These 

complexes were included in many pathways not primarily associated with them, and as a 

result were found as significantly enriched almost entirely because of their presence in the 

gene set (Table S7). These complexes showed highly correlated coexpression despite low 

total variation across the samples, consistent with their housekeeping roles, and 

demonstrating that their levels are tightly controlled.

RNA Expression Does Not Capture the Primary Organizing Variation of the Steady State 
Proteome

We expected that RNA data would capture much of the pathway-level correlations observed 

in the protein data. However, when we performed a PCA projection on the RNA data for the 

same cell lines followed by GSEA on its PC1 loadings, as we had done on the protein data, 

far fewer pathways and GO categories were enriched along the RNA PC1, some of which 

overlapped with the protein data (Fig. 4 B-C and Table S7).

To visualize these results we annotated the per-gene correlations between RNA and protein 

levels on the heatmaps in Figures 3–4 and S2. Protein complexes exhibited very low overall 

correlation with RNA levels, in line with previous results (Fig. S2B and Table S7). The 

pathway results varied, with most pathways in Figure 3C having average correlations. 

However, a handful of pathways in Figure 3C had very high correlation with RNA 

expression, most notably cell surface proteins that mediate cell contact, as well as KRAS 

and p53 signaling markers (Table S7). A similar result was found for the GO categories in 

Figure 4A. These gene sets also displayed more extreme changes across PC1, whereas the 

proteins with a lower correlation to RNA had a more subdued gradient.

These results did not explain the underlying organization of the RNA expression data and 

how it differed from protein expression. One model is that transcriptional mechanisms are 

the primary organizers of RNA levels, and that subsequent mechanisms refine protein 

expression levels to create the broad patterns of co-expression observed in Figures 3C and 

4A. To examine this, we performed the same analysis using GSEA on PC1 loadings for the 

protein and RNA data using a transcription factor binding target database. This resulted in 

over a hundred transcription factor target enrichments in the RNA data and none in the 

protein data (Fig. 4D and S2E). Surprisingly, the same gradient of expression found in the 

RNA data in Figure S2E was visible in the protein expression levels, albeit more weakly. 

Thus, it appears that while RNA levels carry through into protein levels, they are not the 

organizer of the primary component of variation of the steady state proteome.
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A Large Fraction of the Proteome is Correlated With Epithelial and Mesenchymal Markers

In solid organ tumors, the epithelial and mesenchymal states affect progression, malignancy, 

and resistance to treatment (Ye and Weinberg). These fundamental states are associated with 

large changes in gene and protein expression resulting in histologically visible differences, 

however to what extent has not been described for the proteome. Because the broad 

alignment of pathways in the PC1 projection appeared to correlate with known epithelial 

markers we correlated the expression of all proteins to EPCAM and VIM, the canonical 

epithelial and mesenchymal markers that were among the most anticorrelated proteins in the 

expression correlation network described below. EPCAM was the protein with the highest 

loading in PC1, and VIM was in the 50 most negative loadings, making them examplars of 

the general trends across cell lines. Nearly half of all proteins were positively or negatively 

correlated with EPCAM expression (Fig S3A) and about a third of all proteins were 

positively or negatively correlated with VIM expression (Fig S3B). In both cases, about half 

of the correlated proteins also had mRNA expression that correlated with these markers, and 

a substantial fraction of the mRNAs that showed correlation with these markers did not show 

a corresponding protein-level correlation. In total, these results present the epithelial and 

mesenchymal states as the product of controlled expression of much of the genome, with 

significant posttranscriptional regulation to shape the levels of between approximately 1/3 to 

half of all expressed proteins in solid organ lineages.

Cell Line Sensitivity is Correlated With Broad Proteome Coexpression

The projection of each cell line along PC1 approximates the many pathways shown in 

Figures 3–4. We hypothesized that this higher level state could predict sensitivities to gene 

disruptions and drug treatments. To test this, we correlated the PC1 projection of each cell 

line with its associated sensitivity scores in CRISPR screening (Fig. S4A-B) or drug 

treatment (Fig. S4C-D). Several dozen genes in a CRISPR screen showed correlated 

sensitivities including well known genes associated with cancer such as PIK3CB and ZEB2 

(Fig. S4A-B). There was a significant enrichment of genes that encode cell surface proteins 

in this set, most notably several integrins (Fig. S4A bolded text and S4B).

Several drugs also had effects correlated with cell line PC1 projection (Fig. S4C-D). The 

largest subset is EGFR-targeting drugs (Fig. S4C, green text) but also those targeting other 

proteins including PIK3CB and EIF4. We conclude that the broad-scale coordinated 

expression of members of many pathways at the proteome level is correlated with several 

drug and gene loss sensitivities.

An Expression Correlation Network Captures Associations Between Proteins

Expression correlation networks have been useful for organizing and exploring large-scale 

protein expression data (Lapek et al., 2017; Pozniak et al., 2016; Roumeliotis et al., 2017). 

We constructed a correlation network from our data in solid organ-derived lineages, 

containing of 3,777 proteins and 41,600 correlations at an estimated 1% FDR, of which 

nearly 40,000 were positive correlations (Fig S5A, Table S6).

Because many different mechanisms can affect protein levels, we sought to annotate the 

network with putative shared mechanisms that might be responsible for correlated 
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expression between any two proteins. The most obvious mechanism determining protein co-

expression is gene co-expression. To assess this we built a correlation network using the 

CCLE RNASeq data and looked for shared edges with the protein network. The RNA 

network was far denser, containing over 195,000 correlations between ~9,400 genes. Nearly 

5,500 edges in the protein correlation network were shared with RNA (Fig. S5B-C). The 

most notable cluster of these was the anticorrelation between EPCAM and VIM (Fig. S5D), 

each of which was positively correlated with proteins related to epithelial and mesenchymal 

function.

We also examined protein-protein interaction databases, finding over 6,300 edges could be 

annotated by protein-protein interactions and shared complex membership. Many well-

studied complexes (Fig. S5E) were shared between these data types, all of which were 

composed of positive expression correlations. Several complexes shared edges with 

correlation networks built from CRISPR (Meyers et al., 2017) and shRNA sensitivity data 

(McDonald et al., 2017), similar to recent work (Pan et al., 2018). Shared localization 

between correlated proteins also provided annotations for about 3,500 edges.

The largest number of protein expression correlations that we could annotate came from 

shared pathway membership. Over 7,900 network edges, half the total annotated, were 

between proteins from the same pathway. While some of this set is potentially explained by 

shared gene expression or complex membership a very large portion were not (Fig. S5B-C).

Multiple Protein Complexes Are Differentially Expressed in Microsatellite Instable Cell 
Lines

We sought to investigate the effect of high mutation burden on the proteome. MSI is by far 

the dominant form of hypermutation in the CCLE. Although the proteome of MSI colorectal 

cancer has been analyzed recently in a panel of ten cell lines and in the TCGA tumor data 

(Halvey et al., 2013; Liu and Zhang, 2016; Zhang et al., 2014), the CCLE contained MSI 

samples of multiple tissue lineages. The mRNA data had over a thousand significantly up-

and downregulated genes associated with MSI (Fig. 5A). However, in a stark contrast the 

protein expression data only showed a total of 50 proteins with altered expression in MSI 

cells, 30 of which were shared with the mRNA data. Among these 50 proteins was an 

obvious enrichment of multiple protein complexes that monitor DNA, RNA, and nascent 

proteins for mutation or problems in translation (Fig. 5B-C).

Many proteins with well-established ties to MSI were recovered. As expected, members of 

the mismatch repair complex were downregulated (Figure 5A-C). Loss of function of this 

complex can cause hypermutation in colorectal cancer (Eshleman and Markowitz, 1996; The 

Cancer Genome Atlas Network, 2012). Other complexes that were downregulated with at 

least one member that was previously associated with MSI included the MRN complex 

(Dorard et al., 2011; Giannini et al., 2004; Halvey et al., 2013), and the ribosomal accessory 

proteins RPL22 and RPL22L1 (Chan et al., 2019; Ghandi et al., 2019; McDonald et al., 

2017) (Fig. 5). In addition, two categories of proteins with one member previously 

associated with MSI were downregulated in MSI cells. The heat shock proteins HSPA4L, 

DNAJB14, and HSPH1 (aka HSP110) were also downregulated in MSI, the latter of which 

has an established role in MSI disease (Causse et al., 2019; Dorard et al., 2011). The histone 
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methyltransferase (HMT) proteins KMT2B, KMT2D, and SETD1B were also 

downregulated in MSI cells, with SETD1B previously associated with MSI colorectal and 

gastric cancer (Choi et al., 2014).

Two ribosome-associated protein complexes were unexpectedly differentially regulated in 

MSI. The SKI complex is a cytoplasmic ribosome-associated protein complex that performs 

RNA monitoring, moving problematic mRNAs from the ribosome to the exosome for 

degradation (Halbach et al., 2013; Schmidt et al., 2016). Its helicase component (SKIV2L) 

and an associated binding partner (TTC37) are both downregulated in MSI cell lines (Fig. 

5A). The Ribosomal Quality Control (RQC) complex surveys newly synthesized proteins 

exiting the ribosome (Brandman et al., 2012). LTN1 is a ubiquitin E3 ligase member of the 

RQC that specifically targets dysfunctional nascent proteins for degradation by the 

proteasome. LTN1 was expressed at lower levels in MSI lines, while its putative co-complex 

member TCF25 was upregulated. All together, the members of these various protein 

complexes represent 24 out of 50 total significantly altered proteins in MSI.

MSI-Associated Proteins Differentially Correlate With the MutL and MutS Complex 
Expression

Although the relationships between members of the same complex was clear, how the 

different complexes were related was unknown. Correlating the expression patterns in MSI 

lines of the proteins found in all samples revealed multiple clusters (Fig. 6A). As expected, 

proteins within the same complex clustered together. However, the top level hierarchical 

split separated the mismatch repair constituent complexes, MutL and MutS, and with them 

the other complexes identified (Fig. 6A). The HMT complex proteins were present in the 

cluster containing MutL. In contrast, the MRN and SKI complexes as well as LTN1 

clustered with the MutS complexes (Fig. 6A). These correlated relationships between 

complexes were very different in non-MSI lines (Fig. 6B).

MSI is one form of hypermutation, although other causes of hypermutation exist including 

exposure to mutagens like UV light and cigarette smoke as well as APOBEC activity. The 

hypermutated samples in the CCLE are dominated by MSI, but several non-MSI 

hypermutated lines are present and bear the signatures of one or several of these other causes 

(Ghandi et al., 2019). To investigate if MSI, mutation burden or a combination was 

responsible for the above clustering, we compared three linear models for each protein’s 

expression: one using MSI status, one using total mutation burden, and one using an 

interaction between MSI status and mutation burden. The set of proteins whose expression 

correlated with MutL were generally best fit by a model using MSI status alone (Fig. 6C). 

This included the MutL components MLH1 and PMS2, and HMT complex members. In the 

cluster that included MutS, SKIV2L, TTC37, and LTN1, accounting for mutation burden 

generally improved the model fit over MSI status alone (Fig. 6D).

RPL22 Mutation Is Uniquely Associated With Protein Complexes Differentially Expressed 
in MSI

In a parallel analysis we examined the effect of mutations in individual genes on protein 

expression levels across all solid organ derived cell lines. We observed hundreds of 
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associations between gene mutations and protein levels (Fig. S6, Table S7). KRAS mutation 

had significant associations with the levels of many proteins (Fig. S6A) most of which were 

associated with cell motility and adhesion. TP53 mutation had a handful of associated 

proteins, most of which were members of the p53 pathway or other DNA damage response 

proteins (Fig S6B).

This analysis highlighted RPL22 as it was obviously uniquely associated with protein 

expression changes in complexes like mismatch repair (Fig. 6E). RPL22 was identified as a 

mutation hotspot in MSI endometrial cancers (Novetsky et al., 2013). Upon RPL22 loss 

RPL22L1 expression is derepressed and provides a functional substitution (McDonald et al., 

2017; O’Leary et al., 2013). RPL22 was identified as an interactor with MDM2 that 

suppresses p53 degradation (Cao et al., 2017). The second-generation analysis of the CCLE 

found a relationship between MDM4 splicing and RPL22L1 levels, in line with the 

relationship between RPL22 and p53 (Ghandi et al., 2019). Recently, RPL22L1 sensitivity 

was identified in the DRIVE data as a strong hit for sensitivities in MSI cell lines (Chan et 

al., 2019). Despite this prior work the role of RPL22/RPL22L1 in mismatch repair deficient 

cancer is unclear.

RPL22 expression in MSI cells clustered with the MutS complex (Fig. 6A), and the best 

model fit for both RPL22 and RPL22L1 was the combination of MSI and mutation burden 

(Fig. 6F), as with the SKI complex and LTN1. Multiple groups recently reported that MSI 

cells are sensitive to WRN loss (Behan et al., 2019; Chan et al., 2019; Lieb et al., 2019). 

Analysis of the DRIVE data revealed that the protein expression of several mismatch repair 

complex members was associated with sensitivity to WRN knockdown (Fig. 6G). 

Surprisingly, the SKI complex proteins SKIV2L and TTC37 were also associated with WRN 

sensitivity, providing further evidence that their downregulation is associated with MSI. 

Chan and colleagues noted that sensitivity to RPL22L1 loss was the next highest scoring hit 

in their analysis (Chan et al., 2019) so we also examined the protein expression predictors 

for that gene in the DRIVE data. Surprisingly, the only protein’s expression that commonly 

predicted sensitivity to RPL22L1 and WRN loss was SKIV2L (Fig. 6H). We conclude that 

RPL22L1 sensitivity is not tightly associated with the status of the proteins that cause MSI, 

but is perhaps more associated with an arm of the phenotype related to the SKI complex and 

the ribosome generally.

MSI Cell Lines Have Reduced H3K4 Mono-and Dimethlation

Another surprising group of proteins associated with MSI was the collection of HMT 

complex members. Although SETD1B was previously described in the context of MSI the 

others were not to the best of our knowledge. Three of these proteins (SETD1B, KMT2B, 

and KMT2D) have SET domains and are known to affect H3K4 methylation. Because all 

three were downregulated in MSI we hypothesized that this might affect H3K4 methylation 

levels in MSI cells. Accordingly, in an analysis of bulk histone modifications available in the 

CCLE, both H3K4mel and H3K4me2 were downregulated in MSI cell lines (Fig. 6I). These 

proteins were best fit by a linear model for MSI status with no mutation burden effect (Fig. 

6C), leading to the model that total mutation burden irrespective of MSI status would not 
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find a difference in H3K4 methylation. Indeed, H3K4 methylation showed no significant 

differences with total mutation burden alone, confirming that this is an MSI-specific effect.

Protein Complex Levels Are Associated With Sensitivity to Gene Knockdown and Mutation

The recovery of multiple protein complexes associated with MSI status and sensitivity to 

WRN knockdown prompted the hypothesis that other protein complexes would similarly be 

associated with sensitivity to other knockdowns. Within the DRIVE data there were several 

genes where sensitivity to knockdown was associated with at least half the members of a 

protein complex (Fig. 7A). Among these were complexes that were associated with 

knockdown of one their constituent members, including the ATR/ATRIP and RPA 

complexes (Fig. 7A-C).

Sensitivity to knockdown of TEAD1 was associated with several integrin complexes 

containing ITGB1 (Fig. 7A). TEAD1 is a transcription cofactor of the YAP1 oncogene, both 

of which are members of the Hippo signaling pathway that acts downstream of mechanical 

sensors at the cell surface (Elbediwy and Thompson, 2018; Elbediwy et al., 2016), in 

agreement with this result.

Three related proteins found by this analysis were TP53, MDM2, and CDKN1A (Fig. 7A). 

In line with the known functions of these genes, the complexes associated with their 

knockdown were all tied to cell division including the Chromosomal Passenger Complex 

(CPC) and CDK-containing complexes. A unique association for MDM2 knockdown 

sensitivity was with MCM complex levels (Fig. 7A, D-E). Although MDM2 is best known 

as a negative regulator of TP53, it has TP53-independent functions (Nag et al., 2013), 

possibly including a relationship with the MCM complex.

As expected, this analysis recovered the mismatch repair and SKI complexes associated with 

sensitivity to WRN knockdown (Fig. 7A) as well as a complex not associated with MSI 

status: the SUMO El heterodimer SAE1 and UBA2 (Fig. 7A, H-I). SUMOylation has a 

function in the cell cycle and DNA damage (Eifler and Vertegaal, 2015), fitting with the 

known function of WRN. An additional analysis of protein complex changes associated with 

individual mutations recovered the mismatch repair and SKI complexes associated with 

RPL22 mutation as well as KDR as described above (Figs. 6E, 7J). However, the SUMO El 

heterodimer was uniquely associated with mutations in the serine endopeptidase PCSK7 

(Fig. 7J-L). PCSK7 was associated with some of the proteins altered by MSI (Fig. 6E) but 

does not have a known association with it or SUMO.

Discussion

Proteomics has only recently matured to being able to generate reasonably accurate 

quantitation of the majority of expressed proteins across hundreds of samples. Thus our 

expectations for the global organization of these proteomes were based on the well-

established importance of originating tissue and mutation in cancer. We were thus surprised 

to find that they could not explain the hierarchical clustering or first principal component. 

Our analysis demonstrates that a fundamental organizing principle of the proteome is the 

coordinated expression between pathways, and that this broad organization has correlation 
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with about 75% of expressed proteins. Comparison to RNA demonstrates that this is 

primarily a property of the proteome, and thus why it has not been described from the 

extensive transcriptomic analyses performed to date.

Given the massive number of proteins with correlated expression, we expected many protein 

expression changes associated with mutation at either the level of total mutation burden in 

MSI or individual genes. In the case of MSI, even though there are at least an order of 

magnitude more mutations than the average tumor there were surprisingly few consistently 

altered proteins, but they had coherency around control of DNA mutation and translation 

input and output. As in the PCA analysis, there was substantial buffering of transcript 

changes. Because driver mutations are causal for cancer it raises a question: what is the role 

of proteomic buffering of the transcriptomic changes induced by those driver mutations? The 

coherency of protein expression across different pathways allows for the hypothesis that the 

levels of these proteins are actively coordinated to withstand the variety of transcriptomic 

perturbations caused by oncogenic and passenger mutations, thereby preserving cellular 

functions. Because many posttranscriptional regulatory pathways exist the underlying 

mechanisms are likely diverse, complicated, and partially redundant. We hypothesize that 

intervention to disrupt the buffering capacity of the proteome against the effects of mutation 

offers new avenues for treatment.

Although MSI has been well studied including in proteomic studies, our results uncovered 

some surprises. The SKI complex, LTN1, RPL22, and RPL22L1 are resident on the 

ribosome. The unique association of RPL22 mutation with MSI in the CCLE is intriguing 

and poorly understood. RPL22 expression levels correlate closely with the SKI complex, 

and it is possible that RPL22 mutation might be upstream of SKI complex downregulation. 

The role of the SKI and RQC complexes in MSI disease has not been described, but one 

possibility is that their downregulation allows the expression of important genes bearing 

passenger mutations, alleviating the negative selective effects of high mutation burden.

STAR Methods

Lead Contact and Materials Availability

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Steven Gygi (steven_gygi@hms.harvard.edu). This study did 

not generate new unique reagents.

Experimental Model and Subject Details

Cell lines within the full CCLE collection were selected based on achieving wide 

representation of tissues of origin and reasonable representation of the distribution of tissues 

and driver mutations present in the full collection. Additionally, cell lines present in the 

NCI60 were largely excluded in favor of less well characterized lines, and cell lines 

overlapping with the DRIVE and Achilles efforts were emphasized. Cell lines were cultured 

as done previously (Barretina et al., 2012) according to their recommended optimal 

conditions. Complete cell line annotations are available as distributed by the CCLE (Ghandi 
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et al., 2019). All cell lines were authenticated prior to processing for mass spectrometry 

using SNP-based DNA fingerprinting.

Method Details

Sample Preparation—Cell lines were blocked in to multiplex experiments to distribute 

tissues of origin as evenly as possible with the available cell pellets. Cell lines were cultured 

as done previously (Barretina et al., 2012) and scraped in PBS on ice, spun down and snap 

frozen in liquid nitrogen after excess liquid was removed. Cell pellets were lysed in 2% 

SDS, 150mM NaCL, 50mM Hepes (pH 8.5–8.8), Roche complete EDTA-Free protease 

inhibitor, and Roche PhosSTOP, 5mM DTT, and 200uM Sodium Vanadate via homogenizer 

drill (~1mg/mL). Samples were spun down (1000xg for 10min), and reduced for 60 minutes 

at 37C. After cooling to room temperature samples were alkylated with iodoacetamide 

(14mM final) for 45 minutes in the dark, and quenched for 15 minutes with DTT (5mM 

final) in the dark. Protein was isolated from the lysates via methanol-chloroform protein 

extraction (1 part lysate: 3 parts methanol: 1 part chloroform: 2.5 parts H2O).

The isolated protein was reconstituted in 8M urea via homogenizer drill and spun down at 

2,000xg for 5 minutes. A BCA assay determined the protein level in each sample in 

triplicate. 5mg of each sample were digested overnight with Lys-C (1:100 enzyme: protein, 

Wako Chemicals) in 4M urea at 37C and digested again with Trypsin (1:100 enzyme: 

protein, Thermo) in 1M urea for 5 hours at 37C (concentration of urea was adjusted with 

25mM Hepes pH 8.5). Samples were acidified with 20% acetic acid (pH was reduced to ~2–

3). 5 mg of digested peptides were desalted in 200mg C18 Sep-Pak columns (Waters) and 

eluates were dried via speedvac. Dried peptides were resuspended in 200mM EPPS pH 8.0 

(~0.5 mg/mL) and peptide level was quantified using the Quantitative Colorimetric Peptide 

Assay (Pierce) in triplicate.

100ug of peptide in 200mM EPPS pH 8.0 were labeled with TMT10 reagents (6.5ug 

TMT/lug sample) in a 30% final concentration of acetonitrile for an hour followed by 15 

minutes of quenching with 5% hydroxylamine. The reactions were acidified with 20% 

formic acid (pH reduced to ~2–3). The labeled samples were normalized via “ratio check” 

via MS using 2ug aliquot of each channel. Each 10-plex consists of 9 samples and a bridge 

channel used for normalization. The bridge sample was constructed by pooling protein 

lysates from 11 cell lines (NCIH446, DMS79, NCIH460, DMS53, NCIH69, HCC1954, 

CAMA1, KYSE180, NMCG1, UACC257, and AU565) to represent the diversity of proteins 

expressed in different cell lines.

The labeled channels were then combined according to normalization factors produced by 

the ratio check, diluted in 1% formic acid (reduced acetonitrile concentration to 5%), and 

desalted in a 50mg SEPPAK column (Waters). The eluate was dried via speedvac.

The labeled 10-plex peptide samples were then resuspended in 1mL of Buffer A (5% 

acetonitrile, 10mM ammonium bicarbonate pH 8.0) and half was used (~500ug) for HPLC 

fractionation. 96 fractions were collected and then combined into 24 fractions. The 24 

fractions were dried via speedvac and the even fractions were desalted in stage tip columns. 

Desalted samples were resuspended in 5% acetonitrile, 5% formic acid for LC-MS.
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Bridge samples were prepared up front using the above protocol through digestion and 

desalting, followed by peptide quantification by BCA assay. Equal amounts of each line 

were combined to make 100mg of total protein prior to digestion. 200ug aliquots of the 

bridge mixture were frozen and subsequently used for each mutltiplex at the labeling step. 

The bridge was always labeled with the 131 reagent.

Mass Spectrometry—Samples were run on either a Thermo-Fisher Orbitrap Fusion or 

Orbitrap Fusion Lumos. MSI data were collected in the Orbitrap using a 120k resolution 

over an m/z range of 350–1350 setting the maximum injection time to 100ms. Determined 

charge states between 2 and 6 were required for sequencing, and a 60s dynamic exclusion 

window was used with isotopes excluded. MS2 sequencing was performed in the ion trap 

following quadrupole selection and CID fragmentation. The m/z window used during 

sequencing was 400–2000. MS3 quantification scans were performed using SPS selection 

(McAlister et al., 2014) of 10 notches from the MS2 spectrum and HCD fragmentation and 

readout in the Orbitrap at a 50k resolution and a maximum injection time of 150ms. All data 

were collected in positive ion mode and were centroided online. The analysis of each 10-

plex representing 12 fractions with 3hr MS runs consumed 36 hr or ~4 hr per cell line. There 

were 42 10-plexes across the entire experiment. Because of the scale of the data, all raw files 

will be available to the community upon request via a hard drive transfer.

Processing of Mass Spectrometry Data—Raw files were initially converted to 

mzXML for processing. The search database was constructed using the human proteome 

downloaded from Uniprot on February 4, 2014 containing both SwissProt and TrEMBL 

entries. It was concatenated onto a database of common contaminants (eg. Trypsin, Human 

Keratins). The database was sorted in order of contaminants, then SwissProt, then TrEMBL 

entries, and then sorted by protein length within each of these categories to prioritize protein 

ID assignments. This database was then reversed and appended to the sorted version to 

enable target-decoy FDR estimation. Individual spectra were converted to DTA files and 

searched using Sequest (Eng et al., 1994). The Sequest search parameters included a 20 ppm 

precursor mass tolerance, 1.0 fragment ion tolerance, and up to 2 internal cleavage sites. Up 

to 3 oxidized methionines per peptide were allowed as the only differential modification. 

Static modifications included Cysteine alkylation and TMT on lysine residues and the 

peptide N-terminus. Cleavages were allowed following lysines and arginines with no proline 

restriction.

Target-decoy-based FDR estimates (Elias and Gygi, 2007; Peng et al., 2003) were performed 

using a linear discriminant analysis (LDA) method utilizing XCorr, deltaCN, missed 

cleavages, PPM, peptide length, and charge state as features. +1 peptides were excluded, as 

were peptides below a length of 7 and an XCorr of 1. The model was trained using the 

forward and reverse hits as positive and negative training data. Forward hits with outside 3 

standard deviations from the average PPM estimate were also marked as negative examples. 

Peptides were filtered using LDA-based estimates to a 1% FDR. Each run was filtered 

separately.

Protein-level FDR was subsequently estimated at the entire dataset level of 504 runs (42 

batches of 12 fractions each). For each protein across all samples, the posterior probabilities 

Nusinow et al. Page 14

Cell. Author manuscript; available in PMC 2021 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported by the LDA model for each peptide were multiplied to give a protein-level 

probability estimate. Using the Picked FDR method (Savitski et al., 2015) proteins were 

filtered to the target 1% level. Subsequently, protein identifications were collapsed to a 

minimal number of identified proteins using the maximum parsimony principle. See Huttlin 

et al., 2010 for further details.

Common Bioinformatics—All common bioinformatics analyses were performed using 

R including data normalization and plotting (R Core Team, 2018). Some specific libraries 

used for plotting include ggplot2 (Wickham, 2009), pheatmap, ggrepel (Slowikowski, 2018), 

dendextend (Galili, 2015), and UpSetR (Gehlenborg, 2017). Network graphics were 

generated in Cytoscape (Shannon et al., 2003).

A primary tool for several analyses in this work are various gene set databases taken from 

MSigDB (Liberzon et al., 2011, 2015). The set we collectively refer to as “pathways” was a 

combination of the curated gene sets (c2) and hallmark (h) gene sets from MSigDB. GO 

annotations were also taken from MSigDB (c5) or BioConductor’s org.Hs.eg.db annotations 

package. The annotations from MSigDB were used for GSEA while BioConductor’s were 

used for standard GO enrichment testing. Transcription factor binding targets were also from 

MSigDB (the c3 TFT set). Gene sets used in specific analyses are described in the relevant 

section.

GO enrichments were performed using the GOstats package (Falcon and Gentleman, 2007). 

Gene Set Enrichment Analysis was performed using the fgsea package (Sergushichev).

Hierarchical Clustering—Hierarchical clustering of samples was performed on all 

proteins quantified in all samples in both the replicate and full studies. The distance metric 

used was Euclidean and the clustering method was Ward’s minimum variance metric. The 

RNA expression clustering in Figure 2A used only genes where a corresponding protein was 

quantified in all samples and used in the protein clustering. Gini purity was calculated for 

each dendrogram after cutting the clustering in to 22 groups, one for each tissue of origin in 

the full set. Purity was calculated for each cluster as the sum over the squared fraction of a 

given tissue of origin making up that cluster.

Correlation Network Construction—The correlation network was constructed using 

R’s cor() function using the pairwise complete observations option to allow for missing data. 

Correlations using fewer than 99 data points (9 ten-plex experiments) were subsequently 

removed. FDRs were estimated using the fdrtool package, which gave more conservative 

results than Benjamini-Hochberg corrections, and edges were filtered to an estimated 1% 

FDR. This process was performed for all 375 cell lines as well as only solid organ-derived 

lines, and the latter showed much better overall correlations with a more dense and 

informative network. Thus, only the solid organ-derived lines were used for the final 

reported network and subsequent annotation networks.

The same procedure was used to compute networks from the RNASeq, Project DRIVE 

shRNA, and Project Achilles CRISPR datasets. In the case of the RNASeq data, only genes 

quantified at least once in the protein data were considered. Shared links between these 
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networks and the protein correlation network were used to annotate edges on the protein 

correlation network.

To annotate putative protein interactions, we used the BioPlex 2.0 network for both direct 

links and reported community memberships (Huttlin et al., 2017). Additional physical 

interactions were taken from public databases Biogrid (which includes the BioPlex results) 

as well as CORUM (Giurgiu et al., 2019).

Annotation for localization used several hand curated databases where possible. 

Mitochondrial proteins were taken from the Mitocarta 2.0 release. Peroxisome genes were 

from PeroxisomeDB 2.0 (Schlüter et al., 2010). Lysosome genes were downloaded from the 

Human Lysosome Gene Database (Brozzi et al., 2013). Ribosome annotations were from 

UniProt. ER, Golgi, and Ribosome annotations were downloaded from UniProt. Shared 

localizations from these gene sets were used to annotate edges. Localizations predicted from 

BioPlex 2.0 shared between nodes were also annotated.

UniProt was used as a general source of annotations after processing. Many proteins 

contained multiple localizations, and many localization terms had parent terms. Our goal 

was to reduce the number of localizations to a reasonable subset grouped by parent terms at 

the specificity of about an organelle or relatively large microscopic structure. All subcellular 

annotations and their parent localization terms were extracted from UniProt using the 

SPARQL endpoint. We manually assembled parent level terms to include the following: 

“Cell Junction”, “Cell Membrane”, “Cell Projection”, “Cilium”, “Cytoskeleton”, 

“Cytoplasm”, “Cytoplasmic Vesicle”, “Endoplasmic Reticulum”, “Endosome”, “Flagellum”, 

“Golgi Apparatus”, “Lipid Droplet”, “Lysosome”, “Melanosome”, “Membrane”, 

“Mitochondrion”, “Nucleus”, “Peroxisome”, “Secreted”, and “Vacuole”. After all protein 

localizations were downloaded from UniProt for the proteins in our dataset, localizations 

were collapsed down to one or more of those parent localizations by walking up the tree 

from each annotation until it reached one of those parent terms. Additionally, any 

“Membrane” annotations were considered as too unspecific and were removed. Shared 

localizations according to these parent annotations were annotated on the correlation 

network edges in their own category.

Finally, a composite annotation count by localization from the gene sets, BioPlex 

predictions, and collapsed UniProt entries was computed and shown in Figure S5B.

Complex membership in Figure S5D was extracted from CORUM.

Our annotation for putative mechanisms used simple methods, but more advanced 

approaches such as Bayes Nets or partial correlations could achieve improved mechanistic 

evidence should they be attempted.

Quantification and Statistical Analysis

Mass Spectrometry Data Quantification and Normalization—For quantification, 

TMT signal-to-noise values were extracted from the MS3 scans and paired with the MS2 

peptide identifications. Peptides were filtered for a summed signal-to-noise of 200 across all 
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10 TMT channels and an isolation specificity of at least 0.5 in the MSI isolation window. 

For each protein, the filtered peptide TMT values were summed to create non-normalized 

protein quantifications. To control for differential protein loading within a ten-plex, the 

summed protein quantities were adjusted to be equal within a ten-plex. Following this, 

values were log2-transformed, and within each ten-plex the bridge channel protein quantity 

was subtracted from each sample quantity to create a ratio to the bridge. Bridge samples, 

now 0, were removed. For each protein, there is some measurement error in the 

measurement of the bridge sample. To account for this, within each ten-plex, the mean 

protein expression was centered at 0. Finally, ten-plexes were joined by protein identification 

to create the complete data set.

Our normalization procedure was assessed qualitatively and quantitatively before arriving at 

the method described above. Multiple diagnostics were used on both the first 6 ten-plexes 

and then, subsequently, on the full dataset to compare normalization approaches. The 

primary diagnostics used were cohesive hierarchical clustering assessed both visually and by 

Gini purity of tissue lineage clustering, linear modeling of replicate and tissue-based effects 

across the dataset, and correlation of RNA and protein expression. Additionally, defects in 

normalization at different stages of the work were found visually, explored, and corrected 

using the methods described above. The final normalization procedure biased towards 

simple adjustments over more complex approaches to favor general interpretability and 

reproducibility. For example, although it is frequently used in proteomics, imputation was 

not used in these data because the assumptions inherent in any imputation methods on 

multiplexed data hindered the interpretation of the final data set in comparison to simply 

providing missing values where no measurements were successfully completed.

Principal Components Analysis—Principal components analysis was performed using 

proteins quantified in all samples, and the number of significant components was estimated 

by the broken stick model using the vegan R package (Oksanen et al., 2018). Loadings for 

the all proteins were used to perform GSEA (Subramanian et al., 2005) using the gene sets 

described above. Significantly enriched gene sets were considered at an FDR of 1% or less. 

Individual heatmaps for example data sets were generated using the leading edge proteins 

from selected significant pathway. Duplicate entries across pathways in the same heatmap 

were removed so each protein was only plotted once.

For the Upset plots in Figure 4B-D, the above PCA was performed on the CCLE protein and 

RNASeq data separately and the overlap of significantly enriched gene sets in each data set’s 

separate PC1 was plotted.

Much of the same analysis was repeated using Independent Components Analysis using the 

ica R package implementing the FastICA algorithm (Helwig, 2018). Both the projections of 

the cell lines and gene set enrichment analysis of the loadings of the first column of the 

mixing matrix M produced similar results to the PCA-based analysis above.

Correlation Analyses—Correlations between protein and gene expression values were 

performed either by sample or by gene. Correlations by sample were performed using 

Pearson correlation across all RNA expression levels from the CCLE RNASeq data where a 
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protein was quantified in at least one ten-plex (9 cell lines). To generate the heatmap in 

Figure 2B the same axis ordering was applied to both protein and RNA samples.

All protein expression levels were correlated to the PC1 projection for each cell line. Tests 

of significance were done using cor.test() and p-values were filtered to a 1% FDR as 

estimated by fdrtool. Protein expression levels for EPCAM and VIM were correlated with 

all protein or mRNA expression measurements using R’s cor.test() function. FDRs were 

estimated using fdrtool and filtered to a 1% FDR before partitioning in to significant and 

positively or negatively associated with each expression type.

Mutation Analysis—All regressions were performed using standard linear regression 

implemented by R’s lm() function unless otherwise specified.

Total mutational burden for a cell line was taken as the total number of mutations called 

excluding common alleles. For Figure S2C this was regressed against the PC1 projection for 

each cell line using a basic linear model with no additional covariates. Attempts to select 

mutations predictive for PC1 projection shown in Figure S2D was performed using 

commonly mutated genes in cancer as identified by Vogelstein and colleagues (Vogelstein et 

al., 2013). Mutations in cell lines derived from solid organ (non-haematopoetic and non-

lymphoid) lineages were filtered to those genes. At least 5 identified mutations in the cell 

lines in our data set were required to provide some minimal power level. For variable 

selection we used an elastic net with 10 repeats of 10-fold cross validated fitting and 

validation. Optimal model parameters were chosen by minimizing RMSE across all repeats 

and folds. The selected genes with the highest estimated importance to the model were 

plotted in Figure S2D, except TP53 which is mutated in most cell lines and distorts the 

histograms for all other genes. Parameter tuning and model fitting was performed using the 

caret and glmnet packages (Friedman et al., 2010; Kuhn, 2008).

Individual mutations were regressed against protein expression also using tissue and sex as 

covariates without interaction terms. Mutations were limited to nonsilent and uncommon 

mutations in genes listed in the Cancer Gene Census. At least 10 cell lines bearing a relevant 

mutation needed corresponding protein measurements to perform each regression. P-values 

for the effect of the mutation were computed and FDRs were estimated using fdrtool and 

filtered to a 5% level.

Sensitivity Analysis—All regressions were performed using standard linear regression 

implemented by R’s lm() function unless otherwise specified.

CRISPR scores were taken from the Avana dataset (Meyers et al., 2017) from depmap.org 

(18Q3 release on August 6, 2018), shRNA data was taken from Project DRIVE (McDonald 

et al., 2017) and drug treatment data was taken from the CTD2 dataset (Basu et al., 2013). 

Pearson correlation values between these scores and the sample PC1 projection was 

performed only in cases where there were at least 30 complete pairwise data points 

available. P-values were calculated using R’s cor.testQ function, and FDR was estimated 

using fdrtool.
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Per-protein associations with cell sensitivities were assessed using the DRIVE dataset. 

Linear regressions were performed for every protein against every DRIVE score using tissue 

and sex as covariates and no interaction terms. At least 100 overlapping protein 

quantitiations and knockdown sensitivity scores were required for each regression. P-values 

associated with protein expression were computed and FDRs were filtered to a 5% level 

after estimation using fdrtool.

MSI Analysis—MSI status was as inferred in the previous CCLE analysis (Ghandi et al., 

2019). For each protein, expression was regressed against MSI status, tissue, and sex and 

FDR was estimated using fdrtool. At least 100 samples with protein measurements were 

required for each regression. The significance threshold was 5% FDR. The same regression 

was repeated using RNASeq expression in place of protein to produce the overlap. 

Significant hits were assessed for relationships using STRING and high confidence 

relationships (score > 0.7) were extracted for figure 5B. The expression of the significant 

proteins quantified in all samples were correlated in both MSI lines alone and non-

haematopoetic or lymphoid MSS lines to produce the heatmaps in Figure 6A-B.

To assess the effect of mutation burden on the clustering, for the 50 proteins significantly 

altered in MSI lines expression levels were separately regressed in one of three models. One 

model used MSI status alone, the second used estimated sample mutation burden alone, and 

one used the interaction between the two. All three models also used tissue and sex as 

covariates. AIC and BIC were estimated for all fits and BIC minimization was ultimately 

used as the selected goodness of fit measure after manual inspection of the results. Selected 

proteins where mutation burden was present in the best fit model are shown in figure 6D and 

selected proteins where mutation burden is absent in the best fit model are shown in figure 

6C. These fits are also performed and plotted in figure 6F.

The network plot in figure 6E summarizes a subset of individual regressions of protein 

expression against individual mutations described above. Proteins significantly altered in 

MSI that were also significantly altered by individual mutations were extracted from the 

results and plotted as a directed network in Cytoscape. The source node was plotted as the 

mutated gene while the end node was the protein with altered expression. Any mutant gene 

affecting a protein also altered in MSI is plotted.

All histone modification marks from the CCLE were regressed against MSI versus non-MSI 

status, incorporating tissue and sex as additional covariates. FDR was estimated using 

fdrtool. H3K4 methylation marks were among the significant hits and are plotted in figure 

6I.

Protein Complex Relationship to Sensitivity and Mutation—Protein complex gene 

sets were taken from the CORUM database (Giurgiu et al., 2019). Associations with protein 

complexes were restricted to knockdown targets with large numbers of large effects. These 

were genes in at least the 90th percentile of norm-LRT scores (McDonald et al., 2017) and at 

least 5 samples with a sensitivity score less than −1 or greater than 1, with at least one such 

score less than −2 or greater than 2. Among the protein expression/gene knockdown 

associations protein complexes from CORUM with at least 50% of the annotated members 
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significantly associated with a knockdown were annotated in Figure 7. Mutations were not 

restricted beyond the set described above, and the same 50% of the complex criterion was 

used to annotate those associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Quantified the proteomes of 375 cell lines from diverse lineages in the CCLE

• Correlated expression of proteins across many pathways

• Downregulation of multiple protein complexes in microsatellite instability 

(MSI)

• Protein complexes associated with sensitivity to gene knockdown and 

mutation
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Figure 1. Quantitative Proteomic analysis of 375 diverse cancer cell lines.
(A) Overview of the data set and analyses conducted. (B) Overlap of proteins quantified 

across all samples. (C) Clustering of biological replicates (n=3) for the first 18 cell lines. 

Tissues are colored as in panel A. (D) ERBB2 (HER2) protein expression in the biological 

replicate set shows high levels in a single breast cancer line. Colored dots show individual 

replicates and the line is the mean. (E) ERBB2 protein expression across the full data set. 

Cell lines are arranged along the x-axis by ERBB2 copy number. Cell lines with increased 
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copy number (left) have high levels of ERBB2 and are frequently breast derived (yellow). 

See also Tables S1-3.
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Figure 2. Correlation between protein and RNA expression.
(A) Hierarchical clustering using proteins quantified in all samples (left) and their 

corresponding RNASeq expression (middle). (B) Correlation between samples for protein 

expression (y-axis) and RNASeq (x-axis). In all cases the most highly correlated RNASeq 

sample to any given protein sample was the same cell line. Clusters of similarity for 

lymphoid lines and skin lines are highlighted in A-B with orange and purple asterisks 

respectively. (C) Per-gene Pearson correlation between protein and RNA expression for all 

proteins quantified. Mean correlation is 0.48 (dashed line). The locations of several cancer-
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related genes are shown. (D) Examples of the RNA and protein expression for both low 

(left) and high (right) correlating genes. See also Table S4.
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Figure 3. The primary variation in protein expression for most cell lines is organized by 
coordinated expression of protein complexes and cellular pathways.
(A) PCA of the protein expression data for all samples. Dark orange points are 

haematopoetic and lymphoid lineages. (B) PCA projection after removing haematopoetic-

and lymphoid-derived lines. (C) Heatmap of coordinated expression levels of example 

pathways. The x-axis is individual proteins belonging to the annotated complex or pathway. 

The y-axis is the cell lines rank ordered by the PC1 projection (x-axis in panel B). The 

Pearson correlation between protein and RNA expression for each individual gene is 
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annotated along the x-axis. Examples of commonly used cell lines are annotated. Colors in 

B and y-axis of C are lineages as in Figure 1A. See also Table S5.
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Figure 4. Coordinated expression across biological processes is associated with the major 
variation in the cellular proteome.
(A) Selected GO categories enriched in the PC1 loadings. As in Figure 3C, cell lines are 

arranged in rank order according to PC1 projection. (B-D) GSEA on the PC1 loadings for 

both protein expression and RNASeq data were performed separately using (B) pathway (C) 
GO and (D) transcription factor binding site databases. The number of enriched gene sets for 

each is shown as is the overlap between the protein and RNA.
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Figure 5. Microsatellite Instability is associated with downregulation of multiple protein 
complexes.
(A) Overlap of significantly up-and downregulated mRNA and protein levels associated with 

MSI status. (B) High confidence protein associations taken from the STRING database are 

plotted as a network and colored according to complex membership. Only connected nodes 

are shown. (C) Expression levels (y-axis) of proteins in Microsatellite Stable (MSS, left) and 

MSI (right) for the complex members shown in panel B. Boxplots are standard, showing the 

median at the horizontal line, first and third quartiles at the hinges, and the whiskers at the 

most extreme values no further than 1.5 times the interquartile range beyond the hinge.

Nusinow et al. Page 34

Cell. Author manuscript; available in PMC 2021 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Associations between protein complexes altered in MSI cell lines.
(A-B) Heatmaps of the correlation matrix between all proteins altered in MSI cell lines that 

were quantified in all samples. Correlations are for protein expression levels in MSI (A) and 

MSS lines (B). (C-D) Protein complex members are differentially expressed according to a 

combination of MSI status and total mutation burden. Some proteins are associated with 

MSI alone (C) or a combination of MSI and total mutation burden (D). (E) Significant 

associations between mutated genes (arrow base) and protein expression levels (arrowheads) 

are plotted as a network. RPL22 mutation is significantly associated with expression 

Nusinow et al. Page 35

Cell. Author manuscript; available in PMC 2021 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



changes in the same protein complex members as are altered in MSI. (F) RPL22 and 

RPL22L1 expression levels as in (C-D). (G-H) Protein expression associations with 

sensitivity to shRNA knockdown of WRN (G) and RPL22L1 (H). Proteins are ranked along 

the x-axis by their linear model test statistic and arranged according to that test statistic 

along the y-axis. Significantly associated proteins are shown in red and labeled. (I) 
H3K4me1 and me2 levels in MSS and MSI cell lines. Boxplots are as in Figure 5.
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Figure 7: Protein complexes are associated with specific gene knockdown sensitivities and 
mutations.
(A) Heatmap of fraction of protein complex members that were significantly associated with 

sensitivity to shRNA knockdown of different genes. All listed complexes have at least half 

of their members associated with a knockdown. (B-I) Example associations between gene 

knockdown sensitivity (x-axis) and protein expression (y-axis). (B) ATR and (C) ATRIP 

expression compared to sensitivity to ATR knockdown. (D) MCM2 and (E) MCM4 

members of the MCM complex compared to MDM knockdown sensitivity. (F) AURKB and 

(G) INCENP members of the CTR complex compared to sensitivity to TP53 knockdown. 

(H) SAE1 and (I) UBA2 expression compared to sensitivity to WRN knockdown. (J) 
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Fractions of protein complex members associated with specific gene mutations. (K-L) 
Expression of (K) SAE1 and (L) UBA2 compared to PCSK7 mutation status. Boxplots are 

as in Figure 5. Scatterplot trendlines are linear regression with the 95% Cl shaded grey.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Roche complete, EDTA-free Sigma Cat# 11 873 580 001

Roche PhosSTOP Sigma Cat# 04 906 837 001

Pierce Trypsin Protease, MS Grade ThermoFisher Cat# 90058

Lys-C, Mass Spectrometry Grade Wako Chemicals Barcode# 4987481427648

TMT 10-Plex ThermoFisher Cat# 90406

Critical Commercial Assays

Pierce Quantitative Colorimetric Peptide Assay ThermoFisher Cat# 23275

Software and Algorithms

Sequest ThermoFisher Eng et al., 1994

R R Project https://www.r-project.org/

ggplot2 CRAN https://ggplot2.tidyverse.org/index.html

ggrepel CRAN https://github.com/slowkow/ggrepel

pheatmap CRAN https://cran.r-project.org/web/packages/pheatmap/index.html

dendextend CRAN https://github.eom/talgalili/dendextend/

UpSetR CRAN https://github.com/hms-dbmi/UpSetR

MSigDB The Broad Institute http://software.broadinstitute.org/gsea/msigdb/index.jsp

GOstats Bioconductor https://bioconductor.org/packages/release/bioc/html/GOstats.html

fgsea Bioconductor https://bioconductor.org/packages/release/bioc/html/fgsea.html

fdrtool CRAN http://www.strimmerlab.org/software/fdrtool/

Cytoscape Cytoscape Consortium https://cytoscape.org/

Other

Waters 200mg Sep-Pak Waters Prod# WAT054945

Waters 50mg Sep-Pak Waters Prod# WAT054955

Orbitrap Fusion ThermoFisher Cat# IQLAAEGAAPFADBM BCX

Orbitrap Fusion Lumos ThermoFisher Cat# IQLAAEGAAPFADBM BHQ
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