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Abstract

Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude 

of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron 

microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has 

suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of 

view. We developed a platform for three-dimensional cryogenic SR and focused ion beam milled 

block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while 

enabling independent SR and EM workflow optimization. We discovered unexpected protein-

ultrastructure relationships in mammalian cells including intranuclear vesicles containing 

endoplasmic reticulum associated proteins, web-like adhesions between cultured neurons, and 

chromatin domains subclassified based on transcriptional activity. Our findings illustrate the value 

of a comprehensive multimodal view of ultrastructural variability across whole cells.

One sentence summary:

Cryogenic super-resolution fluorescence and electron microscopy reveals protein-ultrastructure 

relationships across whole cells.

Summary:

Cells function by the compartmentalization of thousands of distinct proteins, but the nanoscale 

spatial relationship of many proteins to the overall intracellular ultrastructure remains poorly 

understood. Hoffman et al. combined cryogenic super-resolution fluorescence microscopy and 

focused ion beam milling scanning electron microscopy to visualize protein-ultrastructure 

relationships in three dimensions (3D) across whole cells. The fusion of the two imaging 

modalities enabled positive identification and 3D segmentation at 8 nm isotropic sampling of 

morphologically complex structures within the crowded intracellular environment and revealed 

unexpected relationships, including a web-like protein adhesion network correlated to membrane 

roughness between juxtaposed cerebellar granule neurons.

Electron microscopy (EM) has revealed an intricate world inside eukaryotic cells (1), 

spatially organized at all length scales from nanometer-sized molecular assemblies to cell-
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spanning structures such as actin stress fibers and microtubules. However, even within 

different regions of the cell, there are notable differences in the structure of individual 

components, such as nuclear chromatin organization (2) or the morphology of the 

endoplasmic reticulum (ER), which is highly convoluted and compact in the perinuclear 

region, yet sparsely reticulated in lamellipodia (1). Thus, a comprehensive picture of cellular 

organization requires nanometer-level three-dimensional (3D) imaging of whole cells.

While cryogenic (cryo)-EM / tomography offers sub-nanometer 3D resolution (3), it is 

limited to sparse deposits of extracted macromolecules, cellular sections of sub-micron 

thickness (4–7), or thin lamella sculpted with cryo focused ion beam (FIB) milling (8, 9). In 

contrast, serial FIB ablation and imaging of the exposed face of resin-embedded specimens 

by scanning electron microscopy (FIB-SEM) routinely achieves 8 nm isotropic 3D sampling 

(10–12) not possible with traditional 3D EM by diamond knife serial array (13, 14) or block 

face sectioning (15). However, EM produces grayscale images in which the unambiguous 

identification and 3D segmentation of many subcellular structures can be challenging, and 

where the distributions of specific proteins can rarely be identified.

In response, correlative light and electron microscopy (CLEM) techniques have been 

developed that combine the global contrast and high resolution of EM with the molecular 

specificity of fluorescence microscopy (16, 17). With the advent of super-resolution (SR) 

microscopy (18), such techniques now offer a closer match in resolution between the two 

modalities (table S1 and supplementary note 1), allowing specific molecular components to 

be visualized at nanoscale resolution in the context of the crowded intracellular environment. 

However, SR/EM correlation often involves tradeoffs in sample preparation between the 

retention of fluorescent labels, sufficiently dense heavy metal staining for high contrast EM, 

and faithful preservation of ultrastructure, particularly when chemical fixation is used (19–

22).

Here we describe a pipeline (fig. S1) for correlative cryo-SR/FIB-SEM imaging of whole 

cells designed to address these issues. Specifically, cryogenic, as opposed to room 

temperature, SR performed after high pressure freezing (HPF), allowed us to use a standard 

EM sample preparation protocol without compromise. We correlated cryogenic 3D 

structured illumination (SIM) and single molecule localization (SMLM) SR image volumes 

revealing protein specific contrast with 3D FIB-SEM image volumes containing global 

contrast of subcellular ultrastructure. The SR modality highlights features not readily 

apparent from the EM data alone, such as exceptionally long or convoluted endosomes, and 

permits unique classification of vesicles of like morphology, such as lysosomes, 

peroxisomes, and mitochondrial-derived vesicles. Cell-wide 3D correlation also reveals 

unexpected localization patterns of proteins, including intranuclear vesicles positive for an 

ER marker, intricate web-like structures of adhesion proteins at cell-cell junctions, and 

heterogeneity in euchromatin or heterochromatin recruitment of transcriptionally-associated 

histone H3.3 and heterochromatin protein 1α (HP1α) in the nuclei of neural progenitor cells 

as they transition into differentiated neurons. More generally, whole cell cryo-SR/FIB-SEM 

can reveal compartmentalized proteins within known subcellular components, help discover 

new subcellular components, and classify unknown EM morphologies and their roles in cell 

biology.
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Cryogenic SR below 10K: motivations and photophysical characterization

To avoid artifacts associated with chemical fixation (fig. S2), our pipeline begins with 

cryofixation via HPF (23, 24) of whole cells cultured on 3 mm diameter, 50 μm thick 

sapphire disks (supplementary note 2). Unlike plunge freeze methods, HPF reliably freezes 

specimens up to 200 microns thick (21, 23, 25, 26) in their entirety within vitreous ice in 

milliseconds, providing an exact snapshot of subcellular ultrastructure (fig. S3, movie S1). 

Each sapphire disk provides an optically flat and transparent back surface for aberration-free 

SR imaging, along with the high thermal conductivity needed to minimize specimen heating 

and potential ice re-crystallization under the intense (~kW/cm2), long-lasting illumination 

used during SMLM. Frozen specimens are inspected, cleaned (movie S2), and loaded onto a 

solid copper sample holder (fig. S4) in a covered, liquid nitrogen (LN2) cooled preparation 

chamber (fig. S5) before transfer through a load lock to an evacuated optical cryostat 

modified for SR imaging (fig. S6).

Cryo-SR increases fluorophore photostability (27). This allowed us to achieve the high 

photon counts required for precise single molecule localization, despite the modest 

numerical aperture (NA 0.85) we were compelled to use in order to image through the 

cryostat window, vacuum, and sapphire substrate (fig. S1 and supplementary note 3). This 

along with a high reactivation efficiency under 405 nm illumination (28, 29) allowed us to 

acquire multicolor SIM/SMLM images of the same cells without substantial photobleaching. 

This, in turn, enabled SIM/SMLM correlation in three or more colors (movie S3) and 

allowed us to quickly image and assess many cells across the substrate by 3D SIM. We 

could then concentrate on the best candidates for much slower, higher resolution imaging by 

3D SMLM.

Most cryo-SR systems to date operate with LN2 cooling near 77K (7, 27, 29–34). However, 

we opted for a liquid helium (LHe) cooled microscope, which allowed us to explore 

photophysics at any temperature down to 8K (supplementary note 4). In particular, we 

exploited a sharp increase in the lifetime of a dark state D1 for many fluorescent molecules 

with decreasing temperature (fig. S7) that allowed them to be shelved efficiently for long 

periods. Such shelving has important implications for SMLM, because it dictates the 

dynamic contrast ratio (DCR) defined by the time a given molecule is OFF and shelved in 

the dark state normalized to the time it is ON and cycling between singlet states S0 and S1 

(fig. S7) to emit light. Molecules with high DCR can be expressed at higher density, creating 

SMLM images of higher fidelity and resolution, with less chance of spontaneous overlap of 

the diffraction spots from multiple molecules that would otherwise hinder precise 

localization.

We measured (Fig. 1A) the DCR of six different fluorophores at both 8K and 77K from the 

ON/OFF blinking behavior of isolated single molecules (fig. S8 and supplementary note 4a). 

In addition, we compared (Fig. 1B) their static contrast ratios (SCR, defined by the ratio of 

their signal in the ON state to their local background, fig. S9), which must also be high for 

precise localization, during SMLM imaging of densely labeled mitochondria (Movie 1, fig. 

S9, and supplementary note 4b). DCR and SCR tended to increase with shorter emission 

wavelengths, making such fluorophores better suited to high quality SMLM imaging (Fig. 
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1C). SCR also often improved at lower temperature (Fig. 1B). These trends are consistent 

with the photophysical argument that the dark state lifetime should increase with increasing 

energy from D1 to S0, normalized to the thermal energy. In particular, we observed 

substantial gains in the SCR and DCR of JF525 (35) when operating with LHe which, in 

conjunction with mEmerald, enabled high quality two color SMLM of densely labeled 

structures. However, if only cryo-SIM and/or single color cryo-SMLM is needed, or if 

further study uncovers fluorophores spectrally distinct from mEmerald that work just as well 

at 77K, then operation with LN2 may prove sufficient.

To compare the relative merits of these labels for cryo-SMLM, we imaged two U2OS cells, 

targeting the ER membrane with mEmerald (green) and the mitochondrial outer membrane 

with Halo-JF525 (magenta) (36) or vice versa (Fig 1D). While both labels produced high 

density, high precision SMLM images of both targets, the Halo-JF525 images exhibited 

numerous bright puncta in both cases (Fig. 1D, fig. S10B). Although these may result from 

aggregation of Halo-tagged proteins, the presence of similar puncta in cryo-SMLM images 

of the ER obtained via SNAP (37) or CLIP (38) tag targeting of JF525 (fig. S10C, D) 

suggest that they arise from a subset of extremely long-lived JF525 molecules that undergo 

numerous switching cycles. Indeed, the long persistence of JF525 and other labels at 8K 

necessitated a fresh, data-driven approach (fig S11 and supplementary note 5b) to the 

problem of correctly assigning and integrating the multiple photon bursts from each 

molecule. Even so, in all cases mEmerald yielded images probably more reflective of the 

true molecular distribution.

Cell-wide 3D correlation of cryo-SR with FIB-SEM

A key advantage of our pipeline is that inserting the cryo-SR step between cryofixation and 

freeze substitution / staining for FIB-SEM allowed us to decouple the sample preparation 

protocols for the two imaging modalities. This avoids the tradeoffs of fluorescence retention, 

dense heavy metal staining, and ultrastructure preservation of resin-embedding based 

protocols (39–42). Furthermore, it allowed us to rapidly (~20 min) survey hundreds of cells 

across the sapphire disk (fig S12A), identify those of promising morphology and expression 

levels. We could then inspect these further at higher resolution by 3D cryo-SIM (5 min/cell/

color), and select the very best ones of these for the ~1–2 days/cell/color required for 3D 

cryo-SMLM and ~10–15 days/cell needed for EM sample preparation and FIB-SEM 

imaging.

Thus, after cryo-SR imaging, we removed the frozen, disk-mounted specimens from the 

cryostat (fig. S12B) and processed them (supplementary note 6) via freeze substitution (19–

21), heavy metal staining, and embedding in Eponate 12 resin (fig S12C). After coarse 

trimming of the resin block and removal of the sapphire disk, we re-embedded the remaining 

tab in Durcupan, imaged it with x-rays (fig. S12D), and correlated this to the original disk-

wide view (fig S12E) to identify the region (typically 100 x 100 x 10 μm) containing the 

cells of interest imaged previously with cryo-SR. Additional microtome trimming isolated 

this region (fig. S12F–I), which we then imaged at 4–8 nm isotropic voxels in 3D by FIB-

SEM (12).
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To exploit the full potential of correlative microscopy, the different imaging modalities need 

to be mutually registered to the level of their spatial resolution. Given the high resolution of 

both cryo-SMLM and FIB-SEM, and our desire to extend their correlation across whole 

cells in 3D, registration to this level is challenging. For example, slight magnification 

differences or deviations from ideal flat field and rectilinear imaging coupled with 

potentially non-uniform FIB milling increase registration errors quickly with increasing field 

of view. Furthermore, freeze substitution and resin embedding introduce nonlinear and 

spatially inhomogeneous sample deformations (arrows, Fig. 2A) (43) between the cryo-SR 

and FIB-SEM imaging steps that have a substantial non-linear component requiring 

deformable registration to achieve alignment to this level of accuracy.

Taking advantage of our protocol, we densely labeled ubiquitous intracellular organelles 

such as the ER and mitochondria that could be readily identified in both the cryo-SMLM 

and FIB-SEM data and used them as landmarks (e.g., Fig. 2B, fig. S13) to register the EM to 

the SR across the cellular volume (supplementary note 7), using the software package 

BigWarp (44). To quantify the accuracy of this correlation, we independently measured the 

deformation fields DFER and DFmito from only ER or mitochondrial landmarks, 

respectively, after aligning these color channels to one another using fluorescent bead 

fiducial markers. Because DFER and DFmito represent independent estimates of the 

underlying sample deformation, the correlation accuracy ε is given by DFER − DFmito / 2

(supplementary note 7). Over a field of view covering the majority of two cells (pink 

surface, Fig. 2A), we measured a median ε of 89 nm (Fig. 2C), whereas in a small peripheral 

region (red box, Fig. 2A), the median ε was 27 nm. The difference in ε between these two 

regions of the same sample may be attributable to a higher density of landmarks within the 

peripheral region, tighter physical constraint on the differential motion between organelles 

due to the thinness of this region, or greater accuracy in landmark displacement 

measurement when the sample thickness becomes less than the axial localization precision. 

Regardless, spatial maps of ε (fig. S14) give a local estimate of the length scale to which 

spatial relationships between features seen by the two imaging modalities can be reliably 

inferred.

Correlative cryo-SR/FIB-SEM reveals vesicle identities and their 

morphological diversity

Using our correlative pipeline, we imaged two neighboring COS-7 cells (Fig. 3, Movie 2) 

transiently expressing mEmerald-ER3, a luminal ER marker, and HaloTag-TOMM20 

conjugated to JF525 to label the mitochondrial outer membrane. Both the resulting volume 

rendering (Fig. 3A) and axial or transverse orthoslices (Figs. 3B–M, fig. S15) demonstrate 

accurate 3D correlation of the cryo-SMLM and FIB-SEM data, high labeling density, and 

faithful ultrastructure preservation throughout the ~5000 μm3 cellular volume within the 

field of view.

The data also immediately illustrate the power of cryo-SR and FIB-SEM correlation. For 

example, clusters of ER3 seen by cryo-SMLM to dot ER tubules (orange arrows, Fig. 3B) 
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might easily be dismissed as artifacts of labeling or fixation, but instead correlate (Fig. 3D) 

with varicosities in these tubules as seen by FIB-SEM (Fig. 3C). It is also immediately 

apparent by FIB-SEM that vesicles of various sizes are ubiquitous throughout the cell. 

However, these can come in many forms – peroxisomes, lysosomes, endosomes or, as 

identified by our correlation, TOMM20-positive vesicles (red arrows, Fig. 3H–J, fig. S16). 

Given their small (~100–200 nm) size and proximity to mitochondria, these may represent 

mitochondria derived vesicles (MDVs). MDVs are believed to play a key role in 

mitochondrial quality control by sequestering unfolded or oxidized mitochondrial proteins 

and transporting them to lysosomes or peroxisomes for degradation (45). There remain, 

however, many questions about what proteins regulate these processes and where they are 

distributed.

Our data also revealed three instances of intranuclear vesicles, again ~100–200 nm size, 

positive for the ER lumen protein ER3 (left inset orthoslices, Fig. 3A; correlation examples 

119 and 164, fig. S15). In dividing somatic cells, the nuclear membrane (NM) breaks down 

at prometaphase and NM proteins are dispersed within the ER, which remains continuous 

throughout mitosis (46). The NM then begins to reassemble in anaphase when ER-like 

cisternae contact the chromatids of the daughter cells, and NM proteins become immobilized 

there (46–49). Thus, one possibility is that ER lumen-positive intranuclear vesicles in 

interphase are the remnants of such contacts that do not completely return to the extranuclear 

ER after the NM is fully re-established. Alternatively, a small fraction of the total ER 

volume might be disrupted into vesicles during its rearrangement in mitosis and become 

similarly trapped when the NM reforms.

Another important class of vesicles in cells are peroxisomes, which catabolize long chain 

fatty acids via β-oxidation and reduce reactive oxygen species such as hydrogen peroxide 

(50). Peroxisomes can adopt a variety of sizes, shapes, and distributions depending on cell 

type and environment (50, 51). Accurately capturing these morphologies and their spatial 

relationship to other organelles can be difficult with traditional chemical fixation and EM 

staining protocols against their enzymatic contents (52, 53). Furthermore, serial section 

transmission EM or mechanically sectioned block face EM (54) lack the axial resolution to 

precisely measure morphological parameters at the sub-100 nm level, whereas cryo-FIB-

SEM (55) or cryo-EM tomography lacks the field of view to explore more than a small 

fraction of the total cellular volume.

We used cryo-SMLM / FIB-SEM to image and semi-automatically segment (supplementary 

note 8) 466 mature peroxisomes across two entire vitreously frozen HeLa cells expressing 

mEmerald tagged to the peroxisomal targeting sequence SKL, and Halo/JF525-TOMM20 to 

mark mitochondria (Fig. 4, Movie 3, and fig. S17). Independent two-channel SR/EM 

registration revealed a correlation accuracy (median ε) of 85 nm (fig. S14C, D). 

Peroxisomes with volumes smaller than 0.01 μm3 always assumed nearly spherical shapes 

presumably to minimize their surface area under the influence of surface tension (e.g., Fig. 

4A, H). Increasingly irregular shapes such as plates (Fig. 4B), cups (Fig. 4C) or hollow 

spheres (Fig. 4D) formed with increasing volume (lower rows, fig. S17). This may serve to 

regulate reaction kinetics rates within peroxisomes (56). Some irregularly shaped 

peroxisomes were in close proximity to other organelles or as part of multi-organelle 
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assemblies (Fig. 4E–G), consistent with 3D observations in live cells (57). These assemblies 

may facilitate the transfer of cargo between organelles responsible for distinct and possibly 

incompatible biochemical processes (57), such as the sequential breakdown of fatty acids 

between peroxisomes and mitochondria (58).

Finally, we explored the endolysosomal pathway, the compartments of which are notoriously 

sensitive to artifacts of fixation or protein overexpression (59–61). We used correlative cryo-

SIM/FIB-SEM to image transferrin (Tfn)-containing endolysosomal compartments in a 

SUM-159 cell previously incubated for 30 min in media containing Alexa Fluor 647-

conjugated Tfn (Fig. 5A, beginning of Movie 4). The density of labeled compartments was 

low enough to assign each discrete SIM feature (inset, Fig. 5A) to a single structure as seen 

by FIB-SEM, and then render each such compartment with 8 nm isotropic voxels. Despite 

its much lower resolution, SIM was essential to identify which compartments in the FIB-

SEM data represented endolysosomes and to spot the many such structures of extremely 

convoluted morphology in the crowded intracellular environment that were not readily 

apparent by FIB-SEM alone. These included elongated tubules (magenta, Figs. 5B–E) that 

likely represent recycling endosomes, highly corrugated endosomes (Figs. 5B, D, right), and 

early endosomes with protruding tubules of 50 nm width possibly associated with retromers 

(62) of sub-50 nm width. Given that cryo-SIM is much faster than cryo-SMLM and can use 

a wide variety of spectrally distinct labels, it can be a broadly useful tool in its own right to 

guide the 3D segmentation of dense FIB-SEM data and ensure the correct identification of 

specific subcellular features.

Molecular underpinnings of ultrastructural specialization in neuronal cell-

to-cell adhesions

Cell-to-cell adhesions mediate cell migration, nucleate cell polarity and spur communication 

between individual cells in multi-cellular organisms (63, 64). While the molecular context 

and ultrastructure of cellular adhesions to rigid artificial substrates are well characterized 

(65, 66) those between cells in complex 3D environments are not. Neuronal adhesions are 

crucial for brain development, playing an integral role in sorting neurons based on their 

maturation status (67, 68), forming the laminar structure of the brain (69, 70), and ultimately 

promoting the complex neuronal interactions that drive circuit morphogenesis (71). 

However, they have been difficult to study because they are disrupted by chemical fixation 

(19–21), and because 3D geometries of neuronal contacts require isotropic 3D-EM and high-

resolution LM.

We used cryo-SIM to visualize transiently expressed junctional adhesion molecule (JAM)-C 

(67, 69, 72), a tight-junction component, fused to JF549i-conjugated SNAP (35, 73), and 2x-

mVenus-drebrin, a cytoplasmic actin-microtubule crosslinker protein (74), in cryofixed 

mouse cerebellar granule neurons (CGNs) (Fig. 6A , Movie 5). The JAM-C defined 

adhesion between two labeled somas was not uniform at their shared membrane contact 

zone (CZ) (Fig. 6B) but formed a web-like structure with drebrin preferentially associated 

with the edges of the JAM-C regions.
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To determine if these protein distributions correlated with membrane ultrastructure at the 

CZ, we imaged the same cells by FIB-SEM (Fig. 6C). The density of heavy metal staining at 

the PM was also nonuniform (Fig. 6D), with the densest staining correlating perfectly with 

JAM-C (compare Figs. 6B, D and G). Moreover, the densely stained PM was less curved 

than the electron lucent PM. To quantify this, we segmented the PM within the CZ into high 

and low electron density regions (Figs. 6F, I), and then calculated the curvedness 

(supplementary note 9) in each (Figs. 6H and I). The low-density PM was 2.3 times more 

curved than the high-density, JAM-C rich PM.

While the smooth nature of the adhesion as defined by JAM-C is expected because of the 

mechanical tension induced by the juxtacrine interaction (75–77), the fact that the adhesion 

does not comprise the whole contact area between these two cells is not. Furthermore, the 

enrichment of drebrin in the regions adjacent to JAM-C contrasts with the laminar stacking 

of adhesion-associated cytoskeletal adaptor proteins found in focal or cadherin-based 

adhesions on glass (65, 66).

Chromatin domains and their reorganization during neuronal differentiation

In addition to adhesion, CGNs provide an excellent model system to study the cell biological 

underpinnings of neural development owing to their strongly stereotyped developmental 

programs as they differentiate from cerebellar granule neuron progenitors (GNPs) (78). 

Intrinsic to this process is the 3D structural reorganization of their nuclear chromatin 

domains (79, 80). To explore this in detail, we first used 3D live cell lattice light sheet 

microscopy (LLSM) (81). Flow sorted GNPs expressing the EGFP-Atoh1 marker of the 

GNP-state (82, 83) possessed significantly larger nuclei than terminally differentiated CGNs 

(Figure 7A, B, and supplementary note 10). Moreover, longitudinal LLSM live-imaging 

revealed that GNPs rapidly condense their nuclei to the size of CGNs while Atoh1-EGFP 

expression fades (Figure 7A, B, movie S4).

To uncover the intricate 3D transformations in nuclear architecture that accompany nuclear 

condensation during GNP differentiation, we then applied cryo-SIM to image a cohort of 7 

GNPs and 9 CGNs. These collectively contained >2000 μm3 of the nuclear domain reference 

proteins mEmerald tagged heterochromatin protein 1 alpha (HP1α), a prototypical 

heterochromatin marker (84), and JF525-conjugated SNAP-Histone 3.3 (H3.3), a 

replacement histone subunit that is loaded on transcriptionally active nucleosomes (85) (Fig. 

7C, G, top, fig. S18). We followed this with FIB-SEM imaging and segmentation of the 

resulting data (86) according to the classic EM definitions of compacted heterochromatin, 

open euchromatin and nucleoli (2) (Fig. 7C, G, bottom). While GNP and CGN nuclei 

possessed similar total nuclear volumes of compacted heterochromatin (GNP = 47±2 μm3, 

CGN = 45±3 μm3), GNP nuclei had a significantly higher total nuclear volume of 

euchromatin (GNP = 84±8 μm3, CGN = 61±6 μm3) that accounted for a significant fraction 

of the size differential with CGNs (Fig. 7K).

Registering the cryo-SIM data onto the FIB-SEM results (Fig. 7D–F, H–J, Movie 6, figs. 

S19–S21, movie S5, and supplementary note 11) allowed us to subclassify these classical 

EM chromatin domains based on their correlation to HP1α or H3.3 (figs. S22, S23, and 
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supplementary note 12). Such correlation revealed variations in these chromatin domains 

linked to neuronal differentiation that are not discernable by ultrastructure alone, including 

classical compacted heterochromatin domains with alternating layers HP1α and H3.3 

(Figure 7J). Indeed, while FIB-SEM showed little difference in the absolute volume of 

compacted heterochromatin before and after differentiation, correlation with cryo-SIM 

revealed that CGN nuclei had ~50% more normalized nuclear volume of HP1α loaded 

heterochromatin than GNPs (GNP = 8±1%, CGN = 12±2%, Fig. 7L). Moreover, surface 

area to volume measurements showed HP1α loaded heterochromatin became substantially 

more compact during nuclear condensation (fig. S23A).

Analysis of H3.3 relationships to heterochromatin and euchromatin also revealed substantial 

differences between GNP and CGN nuclei. While both GNPs and CGNs had similar 

amounts of H3.3-loaded euchromatin (GNP = 27±4%, CGN = 32±3%, Fig. 7L) indicative of 

transcriptionally active regions, GNPs had 50% more normalized nuclear volume of a H3.3-

free form of euchromatin than did CGNs (GNP = 29±4%, CGN = 20±2%, Fig. 7L). Live 

cell LLSM operating in the higher resolution SIM mode revealed that these large H3.3-free 

voids in GNP nuclei contain mEmerald-cMAP3, a marker of H3K27me3 and H3K4me3-

loaded poised chromatin (87) suggesting that groups of poised genes are organized in a 

region-specific fashion in neural progenitors (fig. S24, movie S6, and supplementary note 

13).

GNP differentiation into CGNs also resulted in the unexpected accumulation of H3.3 in 

heterochromatin nearly twice as abundant in CGNs as GNPs (GNP = 13±1%, CGN = 

22±3%, Fig. 7L). Like classical HP1α-loaded heterochromatin, H3.3-heterochromatin also 

underwent compaction during CGN differentiation (fig. S23C). The presence of a large 

fraction of H3.3-loaded heterochromatin in differentiated neurons was surprising given 

H3.3-loaded heterochromatin species are abundant in pluripotent embryonic stem cells 

(ESCs) but have not been observed in most of their somatic cell derivatives (88, 89). 

Furthermore, LLS-SIM revealed that H3.3-loaded heterochromatin is likely not due to H3.3 

recruitment to telomeres or centromeres as has been reported for ESCs (fig. S24B).

Finally, heterochromatin subdomains exhibited spatially distinct organization patterns 

depending on whether they were loaded with HP1α or H3.3 (fig. S22A, movie S7). 

Additional analysis based on the density of heavy metal staining in a correlated 4 nm FIB-

SEM data set revealed that H3.3-heterochromatin was less densely packed then HP1α-

heterochromatin in CGN nuclei, showing that molecularly defined heterochromatin 

subdomains are not only spatially distinct at the level of the whole nucleus but are also 

morphologically distinct at the ultrastructural level (Fig. S22B).

Discussion

Much of what we know about the structural and functional organization of the cell at the 

nanoscale comes from a synthesis of the findings of EM, biochemistry, and molecular 

biology. Although this synthesis has proved powerful, fusing the insights from these 

disparate methods necessarily involves developing models, and therefore possible biases, of 

how specific proteins are spatially distributed in relation to the EM ultrastructure that bear 
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closer examination. Correlative cryo-SR/FIB-SEM enables such examination by combining 

two complementary datasets, often revealing unanticipated protein localization patterns or 

ultrastructural morphologies at variance with such models. At the same time the approach 

enables the discovery of new subcategories of functionally distinct subcellular structures that 

appear morphologically similar by either SR or EM alone. As such, it provides observations 

upon which more refined models can be developed in a way mutually consistent with the 

findings of SR, EM, live imaging, and biochemistry.

Of course, the value of cryo-SR/FIB-SEM to this enterprise depends on the extent to which 

it reveals the native ultrastructure of the cells it images, and the extent to which these cells 

are representative of the normal physiological state of their class. We designed our pipeline 

with these goals in mind. HPF immediately followed by cryo-SR imaging of cells in vitreous 

ice without any intervening chemical modification ensures that a faithful, unperturbed 

snapshot of the cell is captured, and allows SR and EM sample preparation protocols to be 

decoupled and independently optimized. Widefield cryo-fluorescence imaging to rapidly 

survey hundreds of cells, followed by higher resolution inspection of likely candidates by 

multicolor 3D cryo-SIM at a few minutes per cell ensures that only those cells of 

physiological morphology, or ones in a specific desired physiological state (e.g., (90)) are 

considered for time-intensive cryo-SMLM and FIB-SEM. Lastly, freeze substitution 

provides excellent preservation of native ultrastructural detail, while subsequent whole-cell 

3D FIB-SEM gives a comprehensive picture of subcellular components across all regions of 

the cell, at 4 or 8 nm isotropic voxels not possible by serial section transmission EM or 

mechanically sectioned serial block face EM.

That being said, cryo-EM tomography of thin lamellae excavated from whole cells by cryo-

FIB (8, 9) offers molecular resolution without any risk of ultrastructural perturbation by 

heavy metal staining and resin embedding. Given, however, that the lamellar volume is 

typically only a small fraction of the entire cellular volume, many structures of interest will 

be missed entirely, and those that are seen may not exhibit the same morphology as in other 

regions of the cell. Thus, FIB-SEM and cryo-EM tomography are complementary and 

developing a pipeline to do both in conjunction with cryo-SR would be a worthwhile 

endeavor.

Indeed, the unique ability of FIB-SEM to image whole cells and tissues at 4–8 nm isotropic 

voxels over volumes as large as 107 μm3 makes it an ideal tool to map in toto the 3D 

ultrastructural relationships in living systems. However, to unlock its full potential, robust 

automated identification and segmentation of specific intracellular features of interest is 

required, ideally in relationship to neighboring structures with which such features might 

interact. This remains challenging to accomplish at scale, given the magnitude of the data 

involved (e.g., 100 GB in Fig. 7 and 19.5 TB in (12)), the diversity, spatial density, and 

conformational complexity of intracellular compartments, and the monochromatic nature of 

the data. Cryo-SR can play an important role in the development of scalable segmentation, 

both in the validation of training sets for machine learning, and in confirmation of the 

resulting segmented outputs.
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We can also envision a number of possible improvements to our pipeline. First, live cell 

imaging immediately prior to freezing would allow correlation of dynamics to ultrastructure 

(61), refine selection to cells of physiological behavior, and enable pharmacological, 

optogenetic, or other perturbations to be applied. However, the logistics for rapid and 

noninvasive transition from live imaging to the frozen state will require substantial 

technological development. Second, an extension of cryo-SR/FIB-SEM to specimens such 

as small gene-edited organisms or organoids that are more physiologically relevant than the 

isolated adherent cells with ectopically expressed markers presented here should be feasible 

within the 200 μm thickness limit for HPF by incorporating adaptive optics for aberration-

free deep imaging. Third, the axial resolution of both cryo-SIM and cryo-SMLM could be 

improved ~5–10× by designing a dual window cryostat using opposed objectives and 

coherent detection, such as in I5S (91) and iPALM (92). A next generation pipeline 

combining these improvements could prove an even more powerful discovery platform to 

link 3D subcellular dynamic processes in cells, small whole organisms, and acute tissue 

sections to the nanoscale spatial distribution of the proteins driving these processes, all in the 

context of the global intracellular ultrastructure. However, even in its current form, our cryo-

SR/FIB-SEM system can address a broad range of biological questions and is available to 

outside users wanting to do so (93).

Materials and methods

Preparation of vitrified samples

Specimens were cultured on 3 mm diameter, 50 μm thick sapphire disks (Nanjing Co-

Energy Optical Crystal Co., Ltd, custom order, supplementary note 2) before cryofixation 

with a Wohlwend Compact 2 high pressure freezer. Sample-specific protocols and plasmid 

maps can be found in supplementary note 14.

Cryogenic light microscopy

To optically image vitrified samples at diffraction-limited resolution and beyond, they must 

be maintained below 125K to avoid de-vitrification (94), and present a clean, optically flat 

surface for aberration-free imaging. To achieve these ends, we built our microscope around a 

modified commercial liquid helium flow cryostat (Janis Research Company, ST-500, 

supplementary note 3, fig. S6) and imaged cells plated on sapphire coverslips 

(supplementary note 2) through the opposite surface, after clearing this surface of residual 

ice in a custom cryo-preparation chamber (fig. S5 and movie S2, and supplementary note 2). 

We transferred samples from cold storage to the imaging cryostat using custom tools and 

procedures adapted to a commercial cryogenic vacuum transfer system (Quorum 

Technologies, PP3010T, fig. S6, and supplementary note 3). SIM images were processed as 

previously described (95) and SMLM processing is described in supplementary note 15.

EM sample preparation

Following optical imaging, samples were transferred back to cryo-storage before being 

freeze-substituted, resin embedded, and re-embedded (supplementary notes 6B, 6C). Desired 

regions of interest (ROIs) were identified in the plasticized specimens (fig. S12) using an 
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XRadia 510 Versa micro X-Ray system (Carl Zeiss X-ray Microscopy, Inc.) and then 

trimmed to expose small (~100 x 100 x 60 μm) stubs (supplementary note 6D).

FIB-SEM imaging

Standard (8 x 8 x 8 nm3 isotropic voxel) FIB-SEM datasets were generated using a 

customized Zeiss Merlin crossbeam system previously described (12) and further modified 

as specified in supplementary note 16. The SEM image stacks were acquired at 500 kHz/

pixel with an 8 nm x-y pixel using a 2 nA electron beam at 1.2 kV landing energy for 

imaging and a 15 nA gallium ion beam at 30 kV for FIB milling. 4 x 4 x 4 nm3 voxel 

datasets were generated using a similarly customized Zeiss GeminiSEM 500-Capella 

Crossbeam system. The block face was imaged by a 250 pA electron beam with 0.9 kV 

landing energy at 200 kHz. The final image stacks were registered using a SIFT (96) based 

algorithm.

Computing resources

For most of the data analysis, except initial SMLM peak detection and fitting, we used a 

stand-alone Windows-10 x64 workstation with dual Xeon Gold 5122 CPUs (3.60 GHz) and 

1 TB of RAM. For SMLM peak detection and fitting we used up to 256 nodes on the Janelia 

cluster.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cryogenic photophysical characterization of fluorophores for single molecule 
localization microscopy (SMLM)
(A) Dynamic and (B) static contrast ratios for six different fluorophores at ~8K (blue) and 

~77K (orange) ordered by increasing emission wavelength. (C) Corresponding images of 

mitochondrial outer membrane protein TOMM20 with detailed insets shown below. (D) 
Comparison of mEmerald and JF525 in cryo-SMLM imaging. Top row: U2OS cell 

transiently expressing ER membrane marker mEmerald-Sec61β and mitochondrial 

membrane marker Halo-TOMM20 conjugated to JF525. Bottom row: U2OS cell transiently 

expressing mEmerald-TOMM20 and Halo/JF525-Sec61β. Scale bars: 5 μm and 0.5 μm in 

(C), first and second rows; 1 μm in (D).
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Figure 2. High accuracy correlation of cryo-SMLM and FIB-SEM data using organelle 
landmarks.
(A) A perspective view of mitochondrial (spheres) and ER (cubes) landmarks used for 

registration along with the plasma (grey) and nuclear (pink) membranes as determined by 

FIB-SEM of two COS-7 cells. Arrows point in the direction of and are sized according to 

the magnitude of the non-linear component of the final displacement field. Arrows are color 

coded according to the magnitude of the local difference (ΔDF) between the displacement 

fields determined by the mitochondrial or the ER landmarks separately. The pink surface 

indicates the boundaries of the sub-volume containing sufficient landmarks of both types for 

quantitative comparison of their respective displacement fields. (B) XY orthoslice 

illustrating landmark selection and determination of the displacement vectors (fig. S14). 

Scale bar: 1 μm. (C) Histograms of the correlation accuracy, ε (cf. supplementary note 7), 

for the sub-volume bounded by the pink surface (magenta) and the 61 μm3 sub-volume 

defined by the red box (red), where density of both types of landmarks is higher.
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Figure 3. Whole-cell correlative cryogenic single molecule localization and block face electron 
microscopy.
(A) Perspective overview of a cryo-SMLM and FIB-SEM (orange and grey) data set of a 

COS-7 cell transiently expressing mEmerald-ER3 (ER lumen marker, green) and Halo/

JF525-TOMM20 (mitochondrial outer membrane marker, magenta) (Movie 2). Cyan, 

yellow, and white boxes indicate regions with ortho slices shown in panels (B-M) and inset. 

Inset: SMLM (left column), FIB-SEM (middle column), and correlative (right column) 

orthoslices in XY (top row) and XZ (bottom row) through an intranuclear ER-positive 

vesicle. Scale bar: 200 nm. (B, E) SMLM, (C, F) FIB-SEM and (D, G) correlated overlay of 

orthoslices in XY (B-D) and XZ (E-G) in a lamellipodial region. Scale bar: 1 μm. (H, K) 
SMLM, (I, L) FIB-SEM and (J, M) correlated overlay of orthoslices in XY (H-J) and XZ 

(K-M) in a thicker region with ER sheets. Scale bar: 1 μm. Red arrows: TOMM20-positive 

vesicles; orange arrows: varicosities in the ER.
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Figure 4. Diversity of peroxisome morphologies and peroxisome-organelle interactions.
(A-D) FIB-SEM segmentations (top) of four peroxisomal targeting signal (SKL) containing 

peroxisomes (magenta) and corresponding orthoslices (bottom) with cryo-SMLM overlays 

of SKL (green) from two HeLa cells expressing mEmerald-SKL. (E-G) Three examples of 

peroxisome/organelle interactions, showing both segmentations (top) and orthoslices 

(bottom) with overlaid contours of matching colors. Scale bars: 200 nm. (H) Surface-to-

volume relationship for 466 peroxisomes (fig. S17), with the specific peroxisomes in (A)-

(G) indicated, showing the increasing deviation from spherical shape with increasing 

volume. See also Movie 3.
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Figure 5. Cryo-SIM/FIB-SEM accurately identifies endosomal compartments and reveals their 
diverse morphologies at the nanoscale.
(A) Volume rendered FIB-SEM overview (interior, orange; plasma membrane, cyan) of a 

SUM159 cell, with cutaway correlative cryo-SIM showing endolysosomal compartments 

containing AF647-conjugated transferrin (green). (B) Segmented Tfn-AF647 containing 

compartments (colored surfaces) with superimposed 3D cryo-SIM data (green voxels) in the 

13 μm3 subvolume denoted by the red box in (A). (C) XY (top) and ZY (bottom) orthoslices 

of the same region in (B) showing the FIB-SEM (left) overlaid with segmentations of 

transferrin labeled compartments (middle) and cryo-SIM of Tfn-AF647 (right). (D, E) Same 

as (B) and (C) for the 19.5 μm3 subvolume denoted by the yellow box in (A). Scale bars, (A, 

inset) 10 μm, (C, E) 1 μm.
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Figure 6. Membrane proteins correlate to membrane ultrastructure at cell-cell adhesions.
(A) Cryo-SIM volume of cultured mouse cerebellar granule neurons transiently expressing 

JF549i/SNAP-JAM-C (green) and 2x-mVenus-Drebrin (magenta). (B) MIP through an ~3 

μm thick slab (white box in (A)) centered on the contact zone between two cell bodies. (C) 
FIB-SEM volume of the same region in (A), with plasma membrane (cyan), intracellular 

content (orange), and segmented electron dense regions of the contact zone (white). (D) 
FIB-SEM MIP through the same region in (B), after masking the nuclei. (E) Single FIB-

SEM slice through the contact zone at the central vertical line in (D). (F) same as (E), with 

more (blue) and less (red) electron dense membranes traced; (G) same as (E) overlaid with 

the JAM-C signal. Scale bar: 500 nm. (H) Histograms of the curvedness (supplemental note 

9) for the high (blue) and low (red) electron density membrane regions. (I) Partial 

segmentation of the cells’ membranes in the contact zone, color coded according to 

curvedness, with brighter colors indicating larger values. Note the high correlation between 

JAM-C (B), electron density (D), and membrane curvedness (I) (Movie 5).
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Figure 7. Cryo-SIM/FIB-SEM reveals nuclear rearrangements associated with cerebellar 
granule neuron progenitor (GNP) differentiation.
(A) Live-cell lattice light sheet time-lapse images showing an EGFP-Atoh1 positive GNP 

(top row) condensing its nuclear size to that of a CGN while the size of an EGFP-Atoh1 

negative CGN nucleus (bottom row) remains constant. Scale bar: 3 μm. (B) Quantification of 

GNP and CGN nuclear volume for both static (histograms at left, 85 CGNs and 71 GNPs) 

and time lapse imaging (box plots at right, 5 GNPs and 5 CGNs), showing that, on average, 

GNPs are 40% larger than CGNs and condense their nuclei to the size of CGNs in 

approximately 2 hours. (C) Top: FIB-SEM (left) and SIM (right) volume renderings of a 

group of GNPs. Bottom: One such GNP nucleus (orange boxes at top), with cutaway, 

showing color-coded chromatin territories (heterochromatin, euchromatin or nucleoli) as 

identified on the basis of the EM data alone. (D-F) HP1α (green) or H3.3 (magenta) Cryo-

SIM, FIB-SEM and correlative XZ ortho slices of the plane bordered in cyan in (C). 

Arrowheads indicate different types of labeled chromatin domains, see legend. Scalebar, 1 
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μm. (G-J) Same as (C-F) but for a representative CGN nucleus (Movie 6). (K) 
Quantification of EM segmented and (L) cryo-SIM defined chromatin domains and their 

correlation for 7 GNP and 9 CGN nuclei.
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Movie 1. Raw single molecule frames over time since initial illumination illustrating dark state 
conversion efficiency and background as functions of temperature and emission wavelength.
High pressure frozen U2OS cells expressing fluorescent protein or dye labeled TOMM20 to 

mark the outer mitochondrial membrane, as seen at ten different intervals over 3.5 hours of 

illumination. Bright continuous emitters are fluorescent bead fiducial markers. As seen, all 

six emitters asymptote to better single molecule contrast at ~8K than 77K, yielding more 

accurate single molecule localization (Fig. 1A–C, fig. S9).
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Movie 2. Correlative cryogenic 3D super-resolution and block face electron microscopy of whole 
vitreously frozen cells.
Two COS-7 cells expressing markers for the endoplasmic reticulum (mEmerald-ER3, green) 

and mitochondria (Halo/JF535-TOMM20, magenta), shown in relation to orthoslice 

(grayscale) or volume rendered (plasma membrane, cyan; intracellular volume, orange) FIB-

SEM data. An ER3-positive intranuclear vesicle and several cytosolic TOMM20-positive 

vesicles identified by correlation are also highlighted (Fig. 3, fig. S15, S16).
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Movie 3. Structural diversity of peroxisomes and their inter-organelle contacts.
Peroxisomes from a HeLa cell expressing mEmerald-SKL. Part 1 shows orthoslices of the 

FIB-SEM and cryo-SMLM data followed by segmentations of SKL labeled peroxisomes. 

Part 2 shows the same but with segmentations of other organelles in contact with SKL 

labeled peroxisomes (Fig. 4).
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Movie 4. Cryo-SIM/FIB-SEM reveals the morphological heterogeneity of the endolysosomal 
system.
A correlative data set of a SUM-159 cell after endosomal uptake of Alexa Fluor-conjugated 

transferrin. Part 1: 3D cryo-SIM data (green), correlative orthoslices, and correlative volume 

render (plasma membrane, cyan; cellular interior, orange). Part 2: ~13 μm3 sub-volume 

showing segmentations of all transferrin containing compartments. Part 3: same, but for a 

different ~20 μm3 sub-volume (Fig. 5).
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Movie 5. Correlative cryo-SIM/FIB-SEM reveals a web-like adhesion pattern between adjacent 
cerebellar granule neurons.
Part 1: cryo-SIM and FIB-SEM volume renderings of a field of CGNs expressing adhesion 

proteins JAM-C (green) and drebrin (magenta). Part 2: correlation between electron density 

at the PM, JAM-C cryo-SIM signal, and PM curvature at the interface between two CGNs 

(Fig. 6).
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Movie 6. Chromatin compaction during differentiation and identification of novel chromatin 
subdomains.
Correlative data sets of granule progenitor (GNP, left) and cerebellar granule neurons (CGN, 

right). Part 1: overall correlation between the FIB-SEM (plasma membrane, cyan; cellular 

interior orange) and cryo-SIM of the nuclear domain reference proteins HP1α (green) and 

H3.3 (magenta). Part 2: cutaway views of EM-defined chromatin domains for a GNP 

nucleus (left) and a CGN nucleus (right). Part 3: orthoslices through the CLEM volumes 

indicating subdomains defined by overlap between EM-defined nuclear domains and nuclear 

domain reference proteins. Part 4: 3D surface renderings of CLEM defined nuclear 

chromatin subdomains for the GNP and CGN nuclei (Fig. 7).
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