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Abstract

Purpose—The standard treatment of patients with locally advanced rectal cancers comprises 

preoperative 5-fluorouracil-based chemoradiotherapy followed by standardized surgery. However, 

tumor response to multimodal treatment has varied greatly, ranging from complete resistance to 

complete pathologic regression. The prediction of the response is, therefore, an important clinical 

need.

Methods and Materials—To establish in vitro models for studying the molecular basis of this 

heterogeneous tumor response, we exposed 12 colorectal cancer cell lines to 3 μM of 5-

fluorouracil and 2 Gy of radiation. The differences in treatment sensitivity were then correlated 

with the pretherapeutic gene expression profiles of these cell lines.

Results—We observed a heterogeneous response, with surviving fractions ranging from 0.28 to 

0.81, closely recapitulating clinical reality. Using a linear model analysis, we identified 4,796 

features whose expression levels correlated significantly with the sensitivity to chemoradiotherapy 

(Q <.05), including many genes involved in the mitogen-activated protein kinase signaling 

pathway or cell cycle genes. These data have suggested a potential relevance of the insulin and 

Wnt signaling pathways for treatment response, and we identified STAT3, RASSF1, DOK3, and 

ERBB2 as potential therapeutic targets. The microarray measurements were independently 

validated for a subset of these genes using real-time polymerase chain reactions.
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Conclusion—We are the first to report a gene expression signature for the in vitro 
chemoradiosensitivity of colorectal cancer cells. We anticipate that this analysis will unveil 

molecular biomarkers predictive of the response of rectal cancers to chemoradiotherapy and enable 

the identification of genes that could serve as targets to sensitize a priori resistant primary tumors.
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INTRODUCTION

Many features of primary tumors are recapitulated in derived cell lines. For instance, the 

genomic and transcriptomic aberration profiles that so dominantly define solid tumors are 

usually highly conserved (1, 2). This validates cell lines as in vitro models for functional 

analyses, and, accordingly, they have been widely used as model systems for target 

screening, drug discovery, and the determination of drug efficacy. The drug screening panel 

of the National Cancer Institute, for instance, has been used to correlate gene expression 

signatures and drug activity patterns (3) and to generate gene expression-based classifiers of 

drug sensitivity (4). More recent studies have demonstrated the value of cell culture systems 

for the prediction of radiosensitivity (5, 6) or the response to 5-fluorouracil (5-FU) (7).

Such attempts to predict in vitro responses are prompted by the thorny clinical problem of 

profoundly heterogeneous responses of primary tumors to therapeutic interventions. For 

locally advanced rectal cancer, preoperative 5-FU–based chemoradiotherapy represents the 

standard treatment; however, some tumors will have a complete pathologic response and 

others will be completely resistant (8, 9). The identification of biomarkers to predict the 

response to chemoradiotherapy is therefore urgently needed in clinical practice (10).

In the present study, we exposed colorectal cancer (CRC) cell lines to doses of both 5-FU 

and radiation similar to those used clinically. We hypothesized that identifying differentially 

expressed genes between the resistant and sensitive cell lines would point to gene expression 

signatures that could unveil relevant pathways involved in the heterogeneous treatment 

response. We also anticipated that the present analysis will enable the identification of novel 

target genes whose modification could be harnessed to sensitize a priori resistant primary 

tumors.

METHODS AND MATERIALS

Cell lines and cell culture

Twelve human CRC cell lines (Table 1) were obtained from the American Type Culture 

Collection (Manassas, VA), and cultured in their recommended medium (Invitrogen, 

Karlsruhe, Germany), supplemented with fetal bovine serum (Pan, Aidenbach, Germany) 

and 2 mM L-glutamine (BioWhittaker, Verviers, Belgium). Periodically, mycoplasma 

contamination was excluded by polymerase chain reaction (PCR) (11), and cell line cross-

contamination was excluded by short tandem repeat profiling (12).
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5-FU–based chemoradiotherapy

To estimate the sensitivity to chemoradiotherapy, tumor cells growing in log phase were 

seeded as single-cell suspensions into 6-well plates and allowed to adhere (Table e1). Before 

irradiation, the cells were exposed to 3 μM of 5-FU (Sigma, Steinheim, Germany). Sixteen 

hours later, the cells were irradiated with a single dose of 2 Gy of X-rays (200 kV, 15 mA, 

0.5 mm Cu filter, Gulmay Medical, Camberley, United Kingdom). Drug treatment was 

stopped by a medium exchange, and colony formation was monitored as described in the 

next section. The experimental setup is shown in Fig. 1. In addition to chemoradiotherapy, 

we also tested the sensitivity of all cell lines to radiation alone (2 Gy).

No correlation was found between chemoradiosensitivity and TP53 and KRAS mutation 

status or doubling time (data not shown).

Determination of cell survival

To calculate the respective surviving fractions (SF) after treatment with 5-FU and radiation 

and with radiation alone, a standard colony-forming assay was performed, as previously 

described (13). The cells were treated for defined periods (Table e1), fixed with 70% 

ethanol, and stained with either crystal violet or Mayer’s hemalaun (Merck, Darmstadt, 

Germany). Nonirradiated cultures that were not exposed to 5-FU were used for 

normalization. Colonies with >50 cells were scored as survivors. The experiments were 

performed in triplicate, independently repeated three times, and calculated as the median.

RNA isolation

For each cell line, total RNA was isolated at three different passages (passages four to six 

after thawing), when the cells were approximately 60–70% confluent, using the RNeasy 

Mini kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Using a 

2100 Bioanalyzer analysis (Agilent Technologies, Palo Alto, CA), only samples with an 

RNA integrity number >9.5 were considered for additional experiments.

Gene expression profiling

Gene expression profiling was performed as previously described (14). In brief, 800 ng of 

total RNA was reverse transcribed, amplified, and labeled with Cy3 using the Low RNA 

Input Linear Amplification Kit PLUS (Agilent Technologies). Subsequently, 1.65 μg of 

labeled cRNA was fragmentized and hybridized overnight to a 4 × 44k gene expression 

microarray (Agilent Technologies). After a washing step, the arrays were scanned on an 

Agilent DNA microarray scanner G2505B (Agilent Technologies) at 5 micron resolution. 

The respective gene expression data have been deposited in the National Center for 

Biotechnology Information Gene Expression Omnibus (GSE20298).

Statistical analysis of gene expression data

The expression levels were analyzed using log2 transformation and quantile normalization 

(15). Except for control spots, all 43,376 features were used without any a priori filtering. 

Linear models, fitted on a gene-by-gene basis, were used to assess a linear correlation 

between the gene expression levels and the SFs at 2 Gy (SF2). We applied an empiric Bayes 
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estimator (16) to compute the linear models for thousands of genes in parallel and assess 

their significance. To not exceed a false-discovery rate (Q value) of 5%, the p values were 

adjusted for multiple testing using the Benjamini-Hochberg method (17). Leave-one-out 

cross-validation was used to estimate the performance of selected genes for predicting the 

sensitivity to chemoradiotherapy. All analyses were performed using the free statistical 

software R (version 2.9.2; available from: www.r-project.org). Linear models were 

computed using the “limma” package (18).

Functional annotation and biologic pathway analysis

Gene lists were assessed for functional annotations and involvement in canonical pathways 

using Ingenuity Pathway Analysis (IPA) software (Ingenuity, Mountain View, CA). The 

significance of enriched pathways from the Kyoto Encyclopedia of Genes and Genomes 

database (available from: www.genome.jp/kegg/pathway.html) was established using a 

Wilcoxon rank test.

Real-time PCR

Total RNA (1 μg) was reverse transcribed in a 25-μL reaction volume into first-strand cDNA 

using Superscript III and random hexamers (Invitrogen). Next, 3 μL of cDNA mix was 

added to 12.5 μL of iQ SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA) and 

375 ng primer solution to atotal of 25 μL/reaction. The amplification efficiency was assessed 

using LinRegPCR (19). The corresponding primer sequences can be found in Table e2. 

Real-time PCR analysis was performed in a Bio-Rad iCycler iQ5 (Bio-Rad, Munich, 

Germany) using the following cycling parameters: 10 min at 95°C, 40 cycles of 15 s at 

95°C, and 1 min at 60°C. The resulting cycle threshold (Ct) values were normalized 

according to the mean of three housekeeping genes (i.e., FBXL12, HPRT1, and OTUB1). 
These genes were selected because their expression levels showed minimal variance within 

the 12 cell lines.

RESULTS

Sensitivity of CRC cell lines to chemoradiotherapy

To establish in vitro models to study the molecular basis of a heterogeneous tumor response 

to multimodal treatment, we exposed 12 CRC cell lines to 5-FU and radiation (Fig. 1). We 

chose a 5-FU concentration of 3 μM because it is similar to the serum concentration of 

patients treated with 5-FU–based chemoradiotherapy (unpublished data). However, to ensure 

that the tumor cells were still viable and proliferating at the point at which they were 

irradiated (Fig. 1), we first measured the cellular viability for all cell lines 16 hours after 

incubation with 3 μM of 5-FU, and cellular viability had not been impaired (data not 

shown).

To establish the sensitivity to chemoradiotherapy, all cell lines were treated with 3 μM 5-FU 

and subsequently irradiated with 2 Gy, close to the clinically applied single dose of 1.8 Gy. 

We observed a heterogeneous response, recapitulating clinical reality. The most sensitive 

cell line was LS411N, with a SF2 of 0.28. The most resistant cell line, HT-29, had a SF2 of 

0.81. The results for 5-FU–based chemoradiotherapy are displayed in Fig. 2. As shown in 
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Fig. e1, the addition of 5-FU to radiation clearly changed the sensitivity of most cell lines 

compared to treatment with radiation alone. Hence, the sensitivity of the CRC cell lines is a 

combination of the sensitivity to both 5-FU and radiation.

A Gene expression signature for chemoradiosensitivity

Next, we used genome-wide gene expression profiling to generate signatures of 

chemoradiosensitivity. The visualization of the gene expression levels using a correlation 

matrix showed that all biologic replicates clustered together, with the exception of one array 

(Caco-2), demonstrating the reliability of the experimental conditions (Fig. e2). To identify 

the genes whose expression levels correlated significantly with the sensitivity to 

chemoradiotherapy, we used a linear model analysis and identified 4,796 features that 

showed a correlation with chemoradiosensitivity at a significance level of Q <.05, 

corresponding to 2,770 genes (Table e3). A total of 2,065 features showed expression levels 

that increased with resistance to chemoradiotherapy, and 2,731 showed expression levels that 

decreased with resistance. The top 99 features are listed in Table 2, and their corressponding 

linear models are displayed in Fig. e3. Two examples of the linear model are provided in 

Fig. 3 a. Because the observed correlations between gene expression and 

chemoradiosensitivity were very high, only a very few genes would actually be required to 

accurately predict the respective SF2 (Fig. e4).

The cell lines were cultured in their recommended media (Table e1). To ensure that the 

sensitivity signatures were independent of the tissue culture medium, we grew three cell 

lines (i.e., SW480, SW837, and Caco-2) in their recommended medium and in Roswell Park 

Memorial Institute medium, and established gene expression signatures for each cell line 

specific for each culture medium. None of the genes of the “sensitivity signature” was 

differentially expressed at Q <.05 as a consequence of different media for Caco-2 and 

SW480. For SW837, only 171 features were differentially expressed (data not shown). 

Therefore, the effect of the tissue culture medium on the expression levels of genes from our 

“chemoradiosensitivity signature” was negligible.

Functional annotation of signature genes and pathway involvement

To interrogate the functional annotation of our signature genes, we used the IPA software. 

Focusing on the top 10 net-sssworks (as defined by the IPA), prominent networks centered 

around ERBB2 (Fig. 4a, IPA score 28), CCL5 and CDK2 (Fig. e5), STAT3 and ERK (Fig. 

4b, IPA score 19), the NFkB complex and PI3K (Fig. 4c, IPA score 16), and MAPK14 
(TP38) and WRN (Fig. 4d, IPA score 16). One network reflected TP53 signaling (Fig. e5). 

Other networks sigssssssnaled through CTNNB1, CASP1, and IgG (Fig. e5), FSH and LH 
(Fig. e5), RNA polymerase II, Histone H3, and Histone H4 (Fig. e5), and the E2F family 

and HNRNPA1 (Fig. e5). We then performed a pathway overrepresentation analysis to 

identify biologically annotated pathways using the Kyoto Encyclopedia of Genes and 

Genomes database. Potentially relevant pathways are listed in Table 3 and included the 

insulin, Wnt, and mitogen-activated protein kinase (MAPK) signaling pathways, cell cycle, 

apoptosis, and the spliceosome.
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Real-time PCR validation

To independently validate the results obtained from our microarray platform, we selected the 

first 10 genes from our linear model analysis and measured their respective expressions 

levels in four cell lines using real-time PCR. As shown in Fig. 3b, the PCR results accurately 

confirmed the array-based measurements. The respective correlation coefficients for these 

genes ranged from 0.88 to 0.99 (Fig. e6), again demonstrating very robust and reproducible 

experimental conditions.

DISCUSSION

Patients with locally advanced rectal carcinomas benefit from preoperative combined 

modality therapy because local tumor control is significantly improved. Therefore, the 

standard treatment now includes 5-FU–based chemoradiotherapy followed by standardized 

surgery (8, 9). However, the heterogeneous tumor response and the lack of molecular 

markers to predict it remain major clinical problems.

Chemoradiosensitivity of CRC cell lines

To understand the molecular basis of the heterogeneous tumor response, we used cancer cell 

lines as a model system to identify the genes that contribute to this phenomenon. Toward this 

goal, we established the sensitivity of 12 CRC cell lines to chemoradiotherapy. Because of 

the limited number of immortalized cell lines from rectal cancers (SW837, SW1463), we 

included cell lines established from colon cancers, which exhibit analogous genomic and 

transcriptomic aberrations (20, 21). To recapitulate the clinical conditions, we chose doses of 

both chemotherapy and radiation that are close to those used for the treatment of cancer 

patients (i.e., 3 μM of 5-FU and 2 Gy of radiation). The sensitivity to chemoradiotherapy 

was measured using a colony formation assay, and the respective SFs ranged from 0.28 to 

0.81 (Fig. 2). Accordingly, we observed a heterogeneous response, similar to the clinical 

situation. We then correlated the respective chemoradiosensitivities with the pretreatment 

gene expression profiles obtained from these cell lines. Because we observed a gradient in 

the sensitivity, the analysis of the differential gene expression levels was done using a linear 

regression model.

Signature for chemoradiosensitivity and involvement of pathways and networks

When we examined our list of sensitivity-correlated genes, we were reassured to find genes 

with a reported role for tumor progression and, occasionally, response to therapy. One of 

those genes that negatively correlated with chemoradioresistance was DOK3. DOK3 blocks 

the complex formation of GRB2 and SOS and, therefore, represents an inhibitor of the RAS 

signaling pathway (22). Although the relevance of KRAS mutations on the response of 

primary rectal cancers to preoperative chemoradiotherapy remains to be ultimately resolved 

(23, 24), our analysis has corroborated the interpretation that the deregulation of this 

pathway plays a prominent role for chemoradioresistance. This is supported by the manifold 

appearance of members of the RAS-MAPK cascade as signature genes (Table 2 and Table 

e3), through our pathway and network analyses that also showed enrichment (Fig. 4 and Fig. 

e3), and by recent publications that have provided functional evidence (25–27).
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The RAS association domain family member 1 (RASSF1) also correlated negatively with 

chemoradioresistance. The loss of RASSF1 protein expression was recently demonstrated to 

correlate with a decreased responsiveness to DNA damaging therapy, and clonogenic 

survival of siRNA-transfected HeLa cells increased after radiation with 2 Gy compared with 

control cells (28).

One of the genes that correlated positively with chemoradioresistance was the signal 

transducer and activator of transcription 3 (STAT3). Through its cooperation with other 

transcription factors, STAT3 regulates the expression of a plethora of genes that mediate 

cellular proliferation and survival, including survivin, FOS, MYC, and Cyclin D1 (29). 

STAT3 mediates the survival of CRC cells in response to topoisomerase inhibition (30) but 

has not yet been associated with resistance to chemoradiotherapy. However, RNAi-mediated 

silencing of STAT3 resulted in radiosensitization of squamous carcinoma cells (31). Also, 

one of the top IPA networks was centered around STAT3 and ERK (Fig. 4b).

Another IPA network revealed ERBB2 as a focus gene (Fig. 4a). Although overexpression of 

ERBB2 has been correlated with chemoradioresistance of esophageal cancers (32), the 

potential involvement of ERBB2 in the resistance of rectal cancers to chemoradiotherapy is 

a novel finding.

We also identified the insulin signaling pathway as significantly deregulated (Table 3). The 

binding of insulin to its receptor induces receptor autophosphorylation and activation of 

PI3K and, subsequently, AKT (33). The insulin receptor was also capable of forming a 

hybrid receptor with the insulin-like growth factor 1 receptor. Preliminary evidence has 

suggested that RNAi-mediated silencing of insulin-like growth factor 1 receptor sensitizes 

colon cancer cells to radiation (34).

Surprisingly, the expression levels of many components of the spliceosomal complex 

correlated significantly with chemoradiosensitivity (Table 3). The spliceosome is involved in 

RNA splicing and has been very recently discovered as a novel anticancer target (35). 

Although, to the best of our knowledge, we are the first to report this novel association 

between the spliceosome and sensitivity to chemoradiotherapy, it remains to be elucidated 

whether this link is of functional relevance.

Finally, we observed a significant overrepresentation of genes involved in the Wnt signaling 

pathway in our “sensitivity signature” (Table 3). The Wnt signaling pathway plays a central 

role in colorectal tumorigenesis and interacts with several regulatory pathways for cell cycle, 

cell proliferation, and cell survival (36). Despite the notoriety of this pathway, its 

involvement in the resistance to chemoradiotherapy is a novel finding. Preliminary evidence 

has suggested, however, that activated Wnt/beta-catenin signaling mediates radiation 

resistance of mammary progenitor cells in mice (37).

Comparison with other signatures of sensitivity

We then compared our gene expression signature with the gene lists from other publications 

that sought to identify signatures of response to therapy (5, 6, 38, 39). Our own group had 

previously identified a set of 54 genes that were differentially expressed between primary 
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rectal cancers that were either responsive or resistant to preoperative 5-FU–based 

chemoradiotherapy (38). Of these 54 genes, 35 were represented on our array platform; 12 

of these 35 genes were also present in our gene list, and 6 genes were deregulated in the 

same direction, comparing primary tumors and cancer cell lines (Table e4). The incomplete 

overlap of both signatures could have been because of several reasons. In our previous 

analysis, we analyzed primary rectal cancers (38). It might, therefore, be possible that this 

signature was enriched by expression changes caused by the tumor stroma or the interaction 

of the tumor with its microenvironment. Additionally, we previously defined a response as 

downsizing of the T category of the primary tumor after preoperative chemoradiotherapy 

(38). In the present study, we analyzed the clonogenic survival of the irradiated tumor cells.

Although the present study is the first to establish a gene expression signature of in vitro 
sensitivity of CRC cell lines to a combination of 5-FU and radiation, two recent reports 

described the development of a gene expression-based model for the sensitivity to radiation 

alone. Eschrich et al. (5, 6) analyzed 48 cancer cell lines. They correlated the respective SF2 

with gene expression profiles, KRAS and TP53 mutation status, and tissue of origin and 

extracted a network of 10 signature genes. One of those nine genes that were also 

represented on our array platform, STAT1, was also significantly correlated in our data set 

(Table e5).

From our viewpoint, three potential reasons exist for why our results might be more 

representative of the clinical situation. First, the panel of cell lines used by Eschrich et al. (5, 

6) represented a mixture of tumor entities, not only cell lines derived from CRCs. Second, 

the seven CRC cell lines they analyzed included mismatch-repair proficient and mismatch-

repair deficient cell lines. However, the tumors from which these cell lines were derived 

develop through pathways that are fundamentally different (40). Third, they correlated the 

gene expression signatures with sensitivity to radiation alone; however, the clinical treatment 

of rectal cancer patients comprises a combination of 5-FU and radiation.

These limitations also apply to the study performed by Amundson et al. (39), who correlated 

the gene expression profiles of the entire NCI-60 panel with their respective SFs at 2 Gy and 

8 Gy and identified a set of 30 radiation-responsive genes. Twenty-seven of these genes were 

also represented on our array platform, but only Cathepsin D correlated with treatment 

sensitivity in our data set (Table e6).

Finally, it should be noted that survivin was not a part of our list. The expression of survivin 
has been previously shown by Rodel et al. (41–43) to correlate inversely with spontaneous 

and radiation-induced apoptosis, and they recently demonstrated that inhibition of survivin 
sensitizes CRC cells to radiotherapy.

CONCLUSION

We are the first to report a gene expression signature for in vitro chemoradiosensitivity of 

CRC cell lines. This signature now requires validation in primary rectal carcinomas. Our 

analysis has confirmed the prominent role of the MAPK signaling pathway and was 

enriched for cell cycle genes, and, importantly, revealed the potential relevance of the insulin 
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and Wnt signaling pathways and the spliceosome for treatment response. Furthermore, we 

identified STAT3, RASSF1, DOK3, and ERBB2 as potential novel targets to sensitize 

resistant tumor cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental setup. Twelve colorectal cell lines were treated with 3 μM of 5-fluorouracil, 

followed by radiation with 2 Gy.
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Fig. 2. 
Colorectal cancer cell lines showed a heterogeneous sensitivity to chemoradiotherapy. 

Respective surviving fractions are plotted after treatment with 3 μM of 5-fluorouracil and 

radiation at 2 Gy (SF2). Orange squares represent median values of three independent 

experiments.
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Fig. 3. 
(a) Linear model analysis of DOK3, which showed negative correlation between its 

expression levels and resistance to chemoradiotherapy, and FBP1, which showed positive 

correlation. For each cell line, microarray-based expression levels were plotted against 

respective surviving fractions at 2 Gy (SF2). Corresponding polymerase chain reaction 

(PCR)-based expression levels, measured in four cell lines, are also plotted. (b) Real-time 

PCR measurements nicely confirmed microarray-based gene expression measurements. 

Color-coded medians of gene expression levels of 10 genes in four cell lines are shown.
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Fig. 4. 
Ingenuity pathway analysis of genes correlated with chemoradiosensitivity. Red indicates 

genes with expression levels increasing with resistance to chemoradiotherapy; green, genes 

with expression levels decreasing with resistance.
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Table 1.

Characteristics of 12 colorectal cancer cell lines

Cell Line TP53 mutation KRAS mutation Doubling time (h) SF2

HT-29 + − 22 0.81

SW403 + + 51 0.76

SW837 + + 64 0.71

SW1116 + + 54 0.68

LS513 − + 24 0.59

LS1034 + + 25 0.59

Caco-2 + - 38 0.58

SW1463 + + 60 0.56

SW480 + + 32 0.55

SW620 + + 28 0.46

WiDr + − 16 0.40

LS411N + − 27 0.28

Abbreviation: SF2 = surviving fraction after treatment with 3 μM of 5-fluorouracil and 2 Gy of radiation.

No correlation was found between chemoradiosensitivity and TP53 and KRAS mutation status or doubling time (data not shown).
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