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Abstract

While several tools have been developed to map axes of variation among individual cells, no 

analogous approaches exist for identifying axes of variation among multicellular biospecimens 

profiled at single-cell resolution. For this purpose, we developed ‘phenotypic earth mover’s 

distance’ (PhEMD). PhEMD is a general method for embedding a ‘manifold of manifolds’, in 

which each datapoint in the higher-level manifold (of biospecimens) represents a collection of 

points that span a lower-level manifold (of cells). We apply PhEMD to a newly generated drug-

screen dataset and demonstrate that PhEMD uncovers axes of cell subpopulational variation 

among a large set of perturbation conditions. Moreover, we show that PhEMD can be used to infer 

the phenotypes of biospecimens not directly profiled. Applied to clinical datasets, PhEMD 

generates a map of the patient-state space that highlights sources of patient-to-patient variation. 

PhEMD is scalable, compatible with leading batch-effect correction techniques and generalizable 

to multiple experimental designs.
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Single-cell experimental designs are becoming increasingly complex, with data now often 

collected across numerous experimental conditions to characterize libraries of drugs, pools 

of CRISPR knockdowns or groups of patients undergoing clinical trials1–7. The challenge in 

these experiments is to characterize the ways in which not only individual cells but also 

multicellular experimental conditions vary. Comparing single-cell experimental conditions 

(for example, distinct perturbation conditions or patient samples) is challenging, as each 

condition is itself high-dimensional and comprises a heterogeneous population of cells with 

each cell characterized by many gene measurements (Supplementary Notes 1 and 2). To 

address this problem, we propose PhEMD, a ‘manifold of manifolds’ approach to 

understanding the state space of experimental conditions. PhEMD first leverages the 

observation that the structure of a single-cell experimental condition (multicellular 

biospecimen) can be well represented as a low-dimensional manifold (that is, cell-state 

embedding) using techniques such as PHATE8 or diffusion maps9. In this first-level 

manifold, individual datapoints represent cells, and distances between cells represent cell-to-

cell dissimilarity. PhEMD models the cellular state space of each experimental condition as 

a ‘low-level’ manifold and then models the experimental condition state space as a ‘higher-

level’ manifold. The ultimate goal of PhEMD is to generate this higher-level manifold, in 

which each datapoint represents a distinct experimental condition and distances between 

points represent biospecimen-to-biospecimen dissimilarity. We explore the properties of this 

final higher-level manifold in depth and show that it can be visualized and clustered to reveal 

the key axes of variation among a large set of experimental conditions. We also show that 

such embeddings can be extended with additional data sources to impute experimental 

conditions not directly measured with single-cell technologies.

To demonstrate the utility of PhEMD, we apply it to a newly generated, large perturbation 

screen performed on breast cancer cells undergoing TGF-β-induced epithelial-to-

mesenchymal transition (EMT), measured at single-cell resolution with mass cytometry. 

EMT is a process that is thought to play a role in cancer metastasis, whereby polarized 

epithelial cells within a local tumor undergo specific biochemical changes that result in cells 

with increased migratory capacity, invasiveness and other characteristics consistent with the 

mesenchymal phenotype10. In our experiment, each perturbation condition consists of cells 

from the Py2T breast cancer cell line stimulated simultaneously with TGF-β (to undergo 

EMT) and a unique kinase inhibitor, with the ultimate goal being to compare the effects of 

different inhibitors on our model EMT system. We use PhEMD to embed the space of the 

kinase inhibitors to reveal the main axes of variation among all inhibitors. We further 

validate these drug-effect findings by showing that they are consistent with the drug-effect 

findings of a previously published study that profiled the drug-target binding specificities of 

several of the same drugs as ours. To highlight the generalizability of the PhEMD 

embedding approach, we perform analogous analyses on three additional single-cell 

datasets: one generated dataset with known ground-truth structure, one collection of 17 

melanoma samples and a collection of 75 clear-cell renal cell carcinoma samples. 

Collectively, our varied analyses demonstrate PhEMD’s wide applicability to various single-

cell experiments.
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Results

Overview of PhEMD

PhEMD is a method for embedding a ‘manifold of manifolds’, that is, a set of datapoints in 

which each datapoint itself represents a collection of points that comprise a manifold. In the 

setting of analyzing single-cell data, each datapoint in the ‘manifold of manifolds’ represents 

an experimental condition (that is, single-cell specimen), which itself comprises a 

heterogeneous mixture of cells that span a cell-state manifold. PhEMD first embeds each 

biospecimen as a manifold and then derives a pairwise distance between the manifolds. 

Deriving a ‘higher-level’ embedding then involves using these pairwise specimen-to-

specimen distances to find a coordinate system (that is, axes of variability) such that each 

point represents a specimen, and the distance between the points represents the dissimilarity 

between specimens. PhEMD derives such an embedding using the following general steps 

(Fig. 1):

1. Compute a distance between each pair of datasets (that is, experimental 

conditions) as follows:

a. Embed points within each dataset using PHATE8

b. Cluster datapoints using spectral clustering

c. Represent each dataset as a vector of relative cluster proportions

d. Compute the distance between two datasets using earth mover’s 

distance (EMD)11 (Supplementary Note 2)

2. Take the distance matrix derived from the previous step and compute a diffusion 

map embedding of the data12

When specifically applied to single-cell data, PhEMD leverages PHATE and spectral 

clustering to define cell subtypes, EMD to compute pairwise distances between 

biospecimens (based on their cell-subtype relative abundances) and the diffusion map 

approach to generate a final low-dimensional embedding of biospecimens. Pseudocode and 

additional details on the PhEMD algorithm can be found in Methods.

PhEMD recovers the correct cell-state and biological-specimen embeddings for single-cell 
data with known ground-truth structure

PhEMD was applied to simulated single-cell data with known ground-truth structure to 

determine whether PhEMD could accurately model both the cellular heterogeneity within 

each specimen and the specimen-to-specimen heterogeneity based on cell-subtype relative 

abundances. The simulated cells lay on a continuous branched trajectory, wherein 

progression along a branch represented concurrent changes in gene expression in select 

differentially expressed genes13. The distribution of cell density across branches was varied 

between specimens to simulate a heterogeneous multi-specimen dataset. PhEMD correctly 

recovered the branched cell-state manifold structure using PHATE (Supplementary Fig. 

1a,b). The specimen-to-specimen EMD-based comparison and resulting embedding were 

also found to be accurate (Supplementary Note 3 and Supplementary Fig. 1c,d). A critical 

component of deriving the correct single-cell specimen embedding was computing accurate 
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specimen-to-specimen distances. Two existing methods for doing so were cellAlign14 and 

sc-UniFrac15, although they imposed limiting assumptions or faced scalability issues that 

were addressed in our implementation of EMD (Supplementary Note 4 and Supplementary 

Fig. 2).

Effect of drug perturbations on the EMT landscape in breast cancer

To study key regulators of EMT in breast cancer, we performed a drug screen consisting of 

300 inhibition and control conditions, collectively inhibiting over 100 unique protein targets 

in murine breast cancer cells undergoing TGF-β-induced EMT (Fig. 2 and Supplementary 

Table 1). These specimens collectively contained over 1.7 × 106 cells measured in a total of 

five mass cytometry runs. Time-of-flight mass cytometry (CyTOF) was used on day 5 of cell 

culture to measure the concurrent expression of 31 protein markers in each cell 

(Supplementary Table 2), and PhEMD was used to model both the cell-state transition 

process and the perturbation-effect manifold. Batch correction was performed using 

canonical correlation analysis (CCA)16 before modeling the cell-state and single-cell 

specimen embeddings to analyze all experimental conditions across all plates 

simultaneously.

Cell-subtype definition via manifold clustering—By design, all cells undergoing 

EMT were derived from the same homogeneous epithelial cell population. Thus, a 

continuous manifold with potentially branched structure (as modeled by PHATE) was ideal 

to model the cell-state space. CCA successfully corrected for batch effect in the full dataset 

(Supplementary Fig. 3 and Supplementary Note 5), and PHATE identified nine cell subtypes 

across all unperturbed and perturbed EMT conditions (Fig. 3a,b). These included the starting 

epithelial subtype (C-1), main mesenchymal subtype (C-6) and transitional subtypes on the 

major EMT axis (C-2 to C-5), with gene expression patterns consistent with known 

epithelial, mesenchymal and ‘hybrid’ EMT cell phenotypes (Supplementary Note 6)17–26.

In addition to modeling the main EMT trajectory that one would expect to recover in our 

experiment, the PHATE cell-state embedding identified additional cell subtypes mapped to 

regions off of the main EMT axis. C-7 and C-8 were mesenchymal cell subtypes mapped 

close to C-5, the predominant mesenchymal subtype (Fig. 3a,b). C-9 formed a branch off of 

the main EMT trajectory and demonstrated high E-cadherin and cleaved caspase-3 

expression, consistent with an epithelial subpopulation undergoing apoptosis. By using 

PHATE, which applied no previous assumptions on the intrinsic geometry of the cell-state 

embedding, we were able to uncover a more complex, continuous model of EMT than has 

been previously reported.

Constructing and clustering the EMD-based drug-inhibitor manifold—After 

modeling the EMT cell-state space with PHATE, PhEMD mapped the experimental variable 

(that is, multicellular biospecimen) state space as a low-dimensional embedding (Fig. 3c). 

Hierarchical clustering revealed clusters of inhibitors with similar net effects on EMT. 

Moreover, ‘uninhibited’ controls (TGF-β applied in absence of any inhibitor) and ‘untreated’ 

controls (neither TGF-β nor inhibitor applied) were included to distinguish inhibitors with 

notable effects on EMT.
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The final embedding of drug inhibitors highlighted the variable extent of EMT that had 

occurred in the different inhibition conditions (Fig. 3c,d). This diffusion map embedding 

was low-dimensional with an intrinsic dimensionality of 2.4 (Supplementary Fig. 4), 

implying relatively few axes of variation that could be appropriately visualized in three 

dimensions. Fourteen inhibitor clusters (Clusters A–N) were identified (Supplementary 

Table 3). Cluster A included the untreated controls and the TGF-β-receptor inhibitor 

condition, each of which consisted almost entirely of epithelial cells (C-1). These were 

experimental conditions in which EMT was effectively not induced. On the other hand, 

Cluster I included all uninhibited control conditions and inhibitors ineffective at modulating 

EMT; inhibitors in this cluster were found to have mostly mesenchymal (C-6) cells. Clusters 

B to H included inhibitors that had generally decreasing strength with respect to halting 

EMT (Fig. 3c,d). The inhibitors in Clusters J and K formed a prominent trajectory off the 

main EMT-extent trajectory in the inhibitor embedding (Fig. 3c). Clusters J and K were 

enriched in cell subtype C-8, with Cluster K inhibitors inducing cell populations that almost 

entirely consisted of C-8 cells.

All of the Cluster K inhibitors targeted PI3K, Akt, or mTOR protein kinases: three members 

of a well-characterized pathway. Compared to the predominant mesenchymal subtype 

observed in the uninhibited controls (C-6), C-8 comprised cells with similarly high 

expression of vimentin and CD44 and markedly higher expression of phospho-S6 (Fig. 3). 

This expression profile was consistent with an alternative-mesenchymal EMT subtype. 

Examining the cell yield of these inhibitors compared to the respective uninhibited control 

conditions in their respective batches, we found that the cell yield of the Cluster K inhibitors 

was on average 60% lower than the TGF-β-only controls (Supplementary Table 4). Based on 

these findings and a previous report that high expression of phospho-S6 was associated with 

resistance to PI3K inhibitors27, the C-8 subtype is likely a mesenchymal cell population 

relatively resistant to inhibition of the PI3K-Akt-mTOR axis.

In general, small-molecule inhibitors that had the same molecular target tended to cluster 

together, consistent with the intuitive notion that drugs with similar mechanisms of action 

likely have similar net effects on a given cell population (for example, Cluster C and Cluster 

G). However, several inhibitors with the same reported primary target generated different 

resulting single-cell profiles and were clustered into different inhibitor clusters. This 

phenomenon may be due to differences in inhibitor potency and differences in off-target 

effects.

An analysis of 60 inhibition and control conditions measured in the same mass cytometry 

run (and hence not requiring batch normalization) was performed to assess whether applying 

PhEMD to batch-normalized and single-batch expression data would yield consistent results 

(Supplementary Note 7, Supplementary Fig. 5 and Supplementary Tables 3 and 5). Three 

replicates involving independent cell culture experiments measured in distinct mass 

cytometry runs were analyzed to demonstrate reproducibility of results (Supplementary Fig. 

6 and Supplementary Table 5). Consistent results were observed across all single-batch and 

multibatch analyses, demonstrating PhEMD’s reproducibility and robustness to batch-

normalized data (Fig. 3 and Supplementary Figs. 5 and 6).
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Imputing the effects of inhibitors based on a small measured dictionary

In the final PhEMD embedding of the abovementioned drug-screen experiment, single-cell 

biospecimens were distributed along a branched, continuous manifold with varying density. 

For example, the embedding space containing Cluster I inhibitors was characterized by high 

point density, while the embedding space containing Cluster B points was more sparsely 

populated (Fig. 3c). The high-density regions suggested that perhaps not every inhibition 

condition needed to have been measured to capture the geometry of the drug-inhibition state 

space. Applying a previously published sampling technique to the PhEMD drug-screen 

embedding28, we found that 34 landmark points could fully capture the EMT perturbation 

state space (Supplementary Fig. 7); the phenotypes of the remaining experimental conditions 

could be inferred in relation to these 34 (Supplementary Note 8). This finding highlighted a 

potential opportunity for reducing the cost of future single-cell drug-screen experiments, as 

it suggested that only a small fraction (11%) of all inhibitors may need to be experimentally 

measured using expensive single-cell profiling techniques to learn the full range of 

perturbation effects.

Validating the PhEMD embedding using external information on similarities between small-
molecule inhibitors

We sought to validate our PhEMD drug-screen embedding by comparing the drug–drug 

similarities learned from our experiment (in the context of effects on EMT) to drug–drug 

similarities based on known drug-target binding specificities from a previous experiment29. 

Since the previous experiment and ours measured an overlapping set of inhibitors, they 

could be conceptualized as two complementary ‘views’ of the same shared inhibitors. We 

hypothesized that for the inhibitors shared between the two experiments, one view of the 

data might inform the other. Intuitively, this would support the notion that drugs with more 

similar protein targets action may tend to have more similar effects on EMT (and vice 

versa). Our approach to assessing this hypothesis was twofold: (1) we used a measure of 

inhibitor–inhibitor similarity, derived from the drug-target specificity data, to extend our 

PhEMD embedding and predict the effects of unmeasured inhibitors on our model EMT 

system, and (2) we used our PhEMD embedding to predict the drug-target specificity of 

inhibitors shared between the two drug-screen experiments.

Leveraging Nystrom extension30–32, a method of extending a diffusion map embedding to 

include new points based on partial affinity to existing points, we accurately predicted the 

effects of three unmeasured inhibitors on EMT using drug-target specificity data (P < 0.05, 

Fig. 4a–c and Supplementary Note 9). We also performed leave-out-out cross validation on 

all 39 inhibitors in our CyTOF experiment with known drug-target specificity data and 

found that single-cell profile predictions leveraging our imputed PhEMD embedding were 

significantly more accurate than a null model (P = 0.005). Altogether, these findings 

suggested that PhEMD offered information that could be integrated with additional data 

sources and data types to support not only comparison of biospecimens directly measured 

but also prediction of single-cell phenotypes for additional, unmeasured specimens.

We then sought to assess whether the reverse was true—whether the learned relationships 

between inhibitors from our EMT perturbation experiment could be used to predict drug-
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target binding specificities. For this prediction task, we used the 39 inhibitors present in both 

the drug-target profiling experiment and ours, and those that had at least one protein target 

identified by their experiment. Our predictive model that incorporated PhEMD results into 

the prediction was significantly more accurate than the null model (P = 6.57 × 10−5; 

Supplementary Fig. 8). This suggested that while the two experiments measured two distinct 

sets of inhibitor features, the inhibitor–inhibitor relationships learned from both experiments 

were consistent.

PhEMD highlights manifold structure of tumor specimens in CyTOF and single-cell RNA-
sequencing experiments

To demonstrate an additional application of the PhEMD analytical approach, we used 

PhEMD to characterize the specimen-to-specimen heterogeneity in immune cell profiles of 

multiple tumor specimens. We first applied PhEMD to a single-cell RNA-sequencing dataset 

consisting of the ‘healthy’ (nonmalignant) cells of 17 melanoma biopsies2. The cell-state 

embedding identified a total of ten cell subtypes with gene expression profiles consistent 

with previously reported subpopulations of B cells, T cells, endothelial cells, epithelial cells, 

natural killer (NK) cells and monocytes (Fig. 5a,b)2. When comparing patient specimens, 

PhEMD identified the specimen ‘Mel75’ as having a unique immune cell profile 

characterized by the greatest proportion of exhausted CD8+ cells. These cell-state and 

tumor-comparison findings corroborated previously published results on the immune cell 

subtypes and interspecimen heterogeneity present in this cohort2. In addition to confirming 

previous findings, this analysis yielded an embedding that revealed the manifold structure of 

the single-cell specimen state space. With respect to a reference group of biospecimens 

(Group D) that consisted mostly of CD4+ T cells and were mapped to one part of the 

manifold, three axes of variation emerged that corresponded to increasing relative 

proportions of B cells (C-5, C-6), macrophages (C-7) and exhausted CD8+ T cells (C-1) 

(Fig. 5c,d and Supplementary Table 6). While it was well-understood that a set of individual 

cells, such as those undergoing differentiation, may demonstrate manifold structure33,34, our 

PhEMD embedding suggested that a set of patients with a shared phenotype (for example, 

melanoma) may also lie on a continuous manifold35.

To further explore this concept, we applied PhEMD to a mass cytometry dataset containing 

the T cell infiltrates of 75 clear cell renal cell carcinoma (ccRCC) specimens3. At the 

cellular level, our analysis recapitulated previous findings of important T-cell subpopulations 

present, including prominent CD8+ PD1+ CD38+ Tim-3+ exhausted T-cell (C-9, C-10) and 

CD4+ regulatory T-cell (C-4) populations (Fig. 6a,b). We then modeled the diversity in 

immune cell signatures as a tumor-specimen embedding that could be used to characterize 

specimen-to-specimen variation (Fig. 6c). A group of tumor specimens (Cluster B) mapping 

to one end of the PhEMD embedding was characterized by a marked predominance of CD4+ 

T cells (C-2, C-3), and progression toward the other end of the tumor-space manifold 

represented a relative decrease in CD4+ T cells and marked relative increase in CD8+ PD1+ 

exhausted T cells (C-9, C-10) (Fig. 6c and Supplementary Table 7). This finding was 

supported by the initial report of substantial interpatient variability in T-cell profiles 

especially related to CD8+ cells3. The detection of a subset of patients with exhausted T cell 

enrichment may be of particular clinical interest, as immunotherapy agents that combat T-
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cell exhaustion have become a mainstay of advanced-stage ccRCC treatment, but patients 

continue to have highly variable treatment responses36,37. Future single-cell tumor-profiling 

experiments assessing treatment response may be able to use PhEMD as a tool to identify 

subgroups of patients that might especially benefit from PD-1 or PD-L1 inhibitor 

immunotherapy.

Discussion

Here, we have demonstrated the successful mapping of single-cell experimental conditions 

using our proposed PhEMD embedding technique. We extensively studied the Py2T murine 

breast cancer cell line treated with TGF-β and perturbed with over 200 kinase inhibitors, 

measured using mass cytometry. In this experiment, PhEMD revealed the structure of the 

kinase inhibitor space based on each drug’s effect on the Py2T cell populations undergoing 

EMT. The final embedding of inhibitors was found to have low-dimensional structure, with 

drugs mapping to one of three main axes. We have shown that the embedding produced by 

PhEMD is useful in several ways:

1. Visualizing the experimental variable (that is, single-cell specimen) state space

2. Identifying clusters of similar experimental variable settings (for example, 

similar drugs with respect to their measured effects on a given cell population)

3. Characterizing axes of variability among specimens in terms of biologically 

interpretable differences in the types and abundances of cell subpopulations 

present

4. Extending the experimental variable state space through inference of unmeasured 

experimental settings based on similarity to existing (measured) settings

PhEMD can enable a new pattern of searching for effective therapeutic agents by identifying 

a small subset drugs that collectively capture the network geometry of a larger drug set. We 

demonstrated this application by computing a dictionary of 34 experimental conditions and 

showing that these experimental conditions were sufficient to capture the network geometry 

of the 300-specimen state space. This finding has the potential to reduce experimental 

burden in future drug discovery efforts. For example, one can first apply PhEMD to 

measurements obtained using one profiling technique (for example, mass cytometry) to 

identify a small set of dictionary specimens from a large set of candidates and then 

investigate this smaller set further using complementary technologies that may be more 

limited in scale (for example, single-cell RNA-sequencing).

The PhEMD embedding can be integrated with additional data sources and data types for 

even larger and richer analyses. By using drug-target specificity data from a complementary 

inhibitor profiling experiment along with data imputation approaches, we were able to 

accurately predict the effects of inhibitors not directly measured in our experiment on TGF-

β-induced breast cancer EMT. This approach is useful for analyzing drug-screen 

experiments, as it enables an initial mapping of a modest set of drugs (‘dictionary points’) 

measured with single-cell resolution to be extended to include additional drugs. This 

application is not limited to perturbation screen data and can be useful for imputing the 
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phenotypes of specimens (of any type) that are not directly measured using single-cell 

profiling. For example, examining a cohort of patients in which only some patients were 

biopsied and genomically profiled, one could potentially incorporate a nongenomic-based 

measure of patient-to-patient similarity (for example, based on clinicopathologic features) to 

predict the single-cell-based phenotypes of all patients in the cohort.

We explored the applicability of PhEMD to other experimental designs besides drug screens 

by applying it to single-cell data from two clinical tumor-biopsy cohorts. These analyses 

revealed that PhEMD can uncover manifold structure in the tumor-specimen space that is 

biologically meaningful based on the observed proportions of the specimens’ cell 

subpopulations. When applied to the melanoma and ccRCC datasets, PhEMD revealed 

‘trajectories’ of patients, with the most notable axis in both datasets consisting of patients 

with an increasing proportion of exhausted CD8+ T cells. It is possible that the abundance of 

tumor-infiltrating, exhausted T cells may predict response to immunotherapy, although 

additional studies are needed to assess this. The PhEMD method may be useful for 

developing personalized cancer treatment regimens involving immunotherapy.

This study is not without limitations. Our approach specifically compares cell-subtype 

relative abundances among biospecimens, which entails normalizing each biospecimen by 

its total cell count. In this setting, since relative abundances by definition sum to one for 

each biospecimen, the EMD is a true metric and is robust across all pairwise comparisons of 

biospecimens. Comparing cell-subtype relative abundances rather than absolute abundances 

is also often preferable from a biological perspective, as biospecimens (for example, biopsy 

samples) may demonstrate variation in cell yield that is a technical artifact of little biological 

interest. Nevertheless, there exist experimental scenarios in which cell yield is of biological 

importance. In future work, we aim to incorporate cell yield into specimen-to-specimen 

comparisons and into the final biospecimen embedding. Another area of active investigation 

is exploring alternative methods of embedding the cell-subtype and biospecimen-state space. 

In the presented experiments, PHATE was used to model the cell-subtype space and 

diffusion maps were used to generate the biospecimen-state space. Future work may assess 

the use of other methods that are potentially applicable for these tasks.

In the present study, PhEMD was used to characterize mass cytometry and single-cell RNA-

sequencing data, although PhEMD may be applied to data generated by other single-cell 

profiling platforms as well. Many experimental designs may benefit from PhEMD—for 

example, comparisons of specimens pre- and post-treatment (or receiving different 

treatments), time-series analyses of cells undergoing transition processes and organization of 

heterogeneous-yet-related specimens for the purpose of disease subtyping. Additionally, 

applying PhEMD to large-scale functional genomics (for example, single-cell CRISPR) 

screens may yield embeddings that reveal complex relationships between genes. We have 

demonstrated in our analysis of over 1.7 × 106 cells across 300 specimens and five mass 

cytometry runs that PhEMD is highly scalable and robust to batch effect. PhEMD offers the 

efficiency, flexibility and model interpretability necessary to analyze single-cell experiments 

of increasingly large scale and complexity.

Chen et al. Page 9

Nat Methods. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

The PhEMD analytical approach

In single-cell data, each cell is characterized by a set of features, such as protein or transcript 

expression levels of genes. The purpose of measuring these expression-based features for 

each cell (for example, via single-cell RNA-seq or mass cytometry) is to answer biological 

questions especially related to the cell subpopulations present in a biospecimen. In 

particular, the features may be used for defining phenotypes of cells1,38, resolving cellular 

dynamics using transition-process modeling39–41 and studying signaling networks42,43. In 

sum, the features are shared, quantitative characteristics of cells that may be used to organize 

a set of cells into a data geometry. An analogy can be made when attempting to compare 

single-cell specimens rather than individual cells. A biospecimen is a collection of cells. To 

compare single-cell biospecimens for the purpose of organizing a set of cell collections (for 

example, different patient specimens or perturbation conditions), one must first determine 

useful features for a cell collection. Previous studies have shown that cell subtypes are 

highly useful features that are shared across all specimens and can be quantitatively 

measured. Moreover, they can be used to represent single-cell specimens efficiently for 

downstream analyses (Supplementary Note 2). Just as transcript counts can be measured for 

selected genes in a single cell, so can cell counts be measured for selected cell subtypes in a 

cell collection.

We use PHATE for the task of defining cell subtypes8. PHATE is a diffusion-based single-

cell dimensionality reduction technique that both identifies unique cell subpopulations and 

relates them to one another on a low-dimensional manifold. Of note, PHATE preserves an 

information theoretic distance between points (that is, cells) in the diffusion space to derive a 

stable low-dimensional embedding that reveals local, global, continual and discrete 

nonlinear structures in single-cell data. By applying PHATE to an aggregate of cells in a 

single-cell experiment, we can represent a biospecimen as the relative frequency of cells in 

each cell subtype. This representation of single-cell specimens is consistent with the 

‘signatures-and-weights’ representation of multidimensional distributions, first formalized 

by Rubner et al.11, that was found to yield optimal data representation efficiency in other 

computer vision applications. In our case, a ‘signature’ can be thought of as a distinct cell 

subtype (for example, memory B cells or CD8+ effector T cells), and the corresponding 

‘weight’ represents the proportion of cells in a given specimen assigned to the cell subtype. 

However, comparing single-cell specimens represented as such is still a nontrivial task. 

Many studies represent single-cell specimens as their cell subtype composition and use 

known class labels (for example, normal lung versus lung adenocarcinoma) to group 

specimens and perform class-based comparisons (for example, identifying cell subtypes 

enriched in a disease state)4,5. However, this approach is limited to comparing a few 

predefined classes of specimens and does not reveal insights into intra-class heterogeneity. 

Other studies organize a set of many single-cell specimens based on their relative frequency 

of one or a few important cell subtypes6,38,44. However, this approach requires a priori 

knowledge of the most important cell subtypes and does not provide a complete view of 

specimen-to-specimen dissimilarity, especially in the context of high intra-specimen cellular 

heterogeneity.

Chen et al. Page 10

Nat Methods. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We posit that the ideal metric for comparing specimens should take into account both the 

difference in weights of matching bins (for example, number of CD8+ T cells) for all bins 

and the dissimilarity of the bins themselves (for example, intrinsic dissimilarity between 

CD8+ and CD4+ T cells). EMD is a nonparametric metric that can capture both of these 

concepts to yield a final singular measure of distance, or dissimilarity, between two 

specimens11. EMD can be conceptualized as the minimal amount of ‘effort’ needed to move 

mass (for example, cells) between bins of one histogram so that its shape matches that of the 

other histogram (that is, all matching bins of two histograms have the same counts). 

Mathematically, EMD is defined by the following optimization problem:

EMD(P, Q) =
∑i = 1

m ∑j = 1
n fijdij

∑i = 1
m ∑j = 1

n fij
(1)

such that ∑i = 1
m ∑j = 1

n fijdij is minimized subject to the following constraints:

1. fij ≥0 for all 1≤ I ≤ m,1≤ j ≤ n

2. ∑j = 1
n fij = wpi for all 1 ≤ i ≤ m

3. ∑i = 1
m fij = wqj for all 1 ≤ j ≤ n

Definition 1. EMD as an optimization problem. P = (p1, wp1), …, (pm, wpm), where pi 

represents histogram bin i in the initial starting signature P and wpi represents the amount of 

‘mass’ present in the bin. Similarly, Q = (q1, wq1), …, (qn, wqn), where qj represents histogram 

bin j in the final signature Q and wqi represents the amount of ‘mass’ present in the bin. fij
represents the ‘flow’ of mass from bin pi to bin qj. dij represents the ‘ground distance’ 

between bins pi and qj. Constraint 1 ensures that P and Q are the starting and final 

signatures, respectively. Constraints 2 and 3 ensure that no more mass is moved from any 

bin pi than is present initially.

EMD has been used in various applications including image retrieval11,45, visual tracking46 

and melodic similarity musical analysis47—all tasks that require accurate comparison of 

multidimensional distributions (analogous to comparing single-cell specimens). 

Additionally, a previous study demonstrated proof-of-concept that EMD can be used 

effectively to differentiate flow cytometry specimens of phenotypically distinct 

individuals48. By design, EMD is a distance measure between probability distributions that 

is particularly invariant to small shifts in data (that is, noise or technical variability) across 

specimens11,48. EMD also gives a ‘complete’ measure of overall dissimilarity between two 

specimens, largely attributable to the fact that it takes into account both the difference in 

height of corresponding histogram bins between specimens (for example, number of CD8+ 

cells) and the concept that certain bins (for example, cell subtypes) have a smaller ‘ground 

distance’ (that is, are more similar) than others. Including ground distance between bins in 

the EMD computation allows us to incorporate the idea that it requires more ‘effort’ to move 

mass to a faraway bin than to a nearby bin (that is, it requires more effort to convert cells to a 

more dissimilar cell signature than to a more similar cell signature). In our application, we 
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define the ground distance between two cell subtypes as the manifold distance between the 

cluster centroids of the two cell subpopulations representing the subtypes (Supplementary 

Note 2).

Leveraging these features of EMD, we developed PhEMD as an approach to simultaneously 

relating a large set of single-cell specimens (Fig. 1a). PhEMD first aggregates cells from all 

biospecimens and applies a single-cell embedding technique (for example, PHATE) to 

model the cell-state space. PHATE simultaneously identifies all cell subtypes and relates 

them in a low-dimensional manifold. After constructing the cell-state manifold, PhEMD 

represents each specimen to be compared as a frequency histogram capturing relative 

abundance of each cell subtype. In the event that subsampling is performed when 

constructing the cell-state manifold, cells are assigned to a subtype using a nearest-neighbor 

approach (Supplementary Note 10). PhEMD then uses EMD, incorporating manifold 

distance as ground distance between bins, to compare two relative abundance histograms 

and derive a single value representing the dissimilarity between two single-cell specimens. 

PhEMD computes EMD pairwise for each pair of specimens to generate a distance matrix 

representing specimen-to-specimen dissimilarity. Finally, using this distance matrix, PhEMD 

generates a low-dimensional embedding of single-cell specimens using diffusion maps to 

highlight specimen-to-specimen relationships in the context of overall network structure49. 

Diffusion maps are useful in this case as they learn a nonlinear mapping of samples from 

high- to low-dimensional space, capture both local and global structure, and have intrinsic 

denoising properties. PhEMD identifies and visualizes clusters of similar samples based on 

the compositional similarity of their respective cell populations.

Pseudocode for the PhEMD algorithm is shown in Algorithm 1.

Algorithm 1

Pseudocode for the PhEMD analytical approach

1: procedure PHEMD(multispecimen.data)

2: ▹Map first-level manifold (e.g., cell-state embedding)

3: data.all←aggregateData all specimens(multispecimen.data)

4: first.level.embedding←embedDatapoints(data.all)

5: first.level.clusts←clusterPoints(first.level.embedding)

6: cluster.ground.dists←computeGroundDists(first.level.embedding; first.level.clusts)

7:

8: ▹Map higher-level manifold (e.g., single-cell specimen embedding)

9: specimen.clus.prop←GetClusterProportions(data.all; first.level.embedding; first.level.clusts)

10: for each pair of specimens si; sj do

11: Dists[i; j]←EMD(cluster.ground.dists; specimen.clus.prop[i]; specimen.clus.prop[j])

12: specimen.embedding←DiffusionMap(Dists)

13: specimen.clusters←ClusterSpecimens(Dists)
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Py2T cell culture and stimulation

Py2T cells were obtained from the laboratory of G. Christofori, University of Basel, 

Switzerland50. Cells were tested for mycoplasma contamination on arrival and regularly 

during culturing and before being used for experiments. Cells were cultured at 37 °C in 

DMEM (Sigma Aldrich), supplemented with 10% FBS, 2 mM l-glutamine, 100 U ml−1 

penicillin and 100 μg ml−1 streptomycin, at 5% CO2. For cell passaging, cells were 

incubated with TrypLE Select 10X (Life Technologies) in PBS in a 1:5 ratio (v/v) for 10 min 

at 37 °C.

Human recombinant TGF-β1 was purchased from Cell Signaling Technologies as 

lyophilized powder and was reconstituted in PBS containing 0.1% carrier protein, according 

to the manufacturer’s protocol to 400 ng ml−1. The stock solution was kept at −20 °C until 

use. For daily treatment, TGF-β1 stock was diluted into medium to 40 ng ml−1 working 

concentration. Following small-molecule inhibitor treatment, 10 μl of TGF-β1 was added to 

the cells for a final concentration of 4 ng ml−1. As a control, PBS containing carrier protein 

diluted with growth medium was used.

Small-molecule inhibitors

A library of 234 small-molecule kinase inhibitors was purchased from Selleckchem 

(Supplementary Table 1). Small-molecule inhibitors were distributed within the 60 inner 

wells of five separate 96-well format deep well blocks with exception of wells within row E, 

which contained DMSO. Stock solutions of 2 mM small-molecule inhibitor in DMSO were 

kept at −80 °C until used. For daily treatment, the stock solution was equilibrated at room 

temperature for 1 h and then 5 μl of stock solution was added 995 μl of medium. Small-

molecule inhibitor (or DMSO) was added to cells once per day, immediately after the cell 

growth media change and before application of TGF-β1. Small-molecule inhibitor treatment 

was performed by adding 10 μl of pre-diluted reagent to the cells in 80 μl of cell growth 

medium; this resulted in a final concentration of 1 μM of small-molecule inhibitor and 0.1% 

DMSO.

Chronic kinase inhibition screen

For the chronic inhibition experiment, Py2T cells were seeded in 96-well plates (Techno 

Plastic Products AG) with a seeding density of 1,800 cells per well in 80 μl of growth cell 

media. Only the 60 inner wells were used for analysis. To acquire sufficient sample size, five 

96-well plates were used for single condition. After seeding, cells were allowed to recover 

for 36 h to reach 50% confluence. Cells were treated simultaneously with TGF-β1 or vehicle 

(PBS) and small-molecule inhibitor or vehicle (DMSO) for 5 d, and medium was changed 

daily. All pipetting procedures were performed at room temperature using a Biomek FX 

Laboratory Automation Workstation (Beckman Coulter) supplied with 96-well pipetting 

pod.

In addition to experimental conditions treated with small-molecule inhibitors, at least five 

‘uninhibited’ control conditions and five ‘untreated’ control conditions were included on 

each 96-well plate. Uninhibited control conditions were those in which TGF-β was applied 
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to induce EMT in absence of any inhibitor. Untreated control conditions were those in which 

neither TGF-β nor inhibitor was applied and no EMT was induced.

Cell collection

The cell collection protocol was performed using a Biomek FX Laboratory Automation 

Workstation. The cell growth medium was removed using the multiple aspiration pipetting 

technique, and cells were washed twice with 37 °C PBS. Dissociation reagent TrypLE Select 

10X (Life Technologies) was diluted into PBS at a 1:5 ratio (v/v) was added to the cells and 

incubated for 10 min at 37 °C. Cells were detached from plates. Five identically treated 96-

well plates were combined into a single deep well block and were fixed for 10 min with 

paraformaldehyde (PFA) at the final concentration of 1.6% v/v. PFA was blocked with the 

addition of 600 μl of 10% BSA in cell staining media (CSM). The cells were centrifuged for 

5 min at 1,040g, at 4 °C. The supernatant was removed and the cells were resuspended in 

300 μl of −20 °C MeOH. Samples were then transferred onto dry ice and to −80 °C storage.

Metal-labeled antibodies

Antibodies were obtained in carrier/protein free buffer and labeled with isotopically pure 

metals (Trace Sciences) using MaxPAR antibody conjugation kit (Fluidigm) according to the 

manufacturer’s standard protocol. After determining the percent yield by measurement of 

absorbance at 280 nm, the metal-labeled antibodies were diluted in Candor PBS Antibody 

Stabilization solution (Candor Bioscience GmbH) for long-term storage at 4 °C. Antibodies 

used in this study are listed in Supplementary Table 2.

Mass-tag cellular barcoding and antibody staining

Cell samples in methanol were washed three times with CSM (PBS with 0.5% BSA, 0.02% 

NaN3) and once with PBS at 4 °C. The cells were then resuspended at 1 × 106 cells ml−1 in 

PBS containing barcoding reagents (102Pd, 104Pd, 105Pd, 106Pd, 108Pd and 110Pd; Fluidigm) 

were conjugated to bromoacetamidobenzyl-EDTA (BABE, Dojindo) and two indium 

isotopes (113In and 115In, Fluidigm) were conjugated to 1,4,7,10-

tetraazacyclododecane-1,4,7-tris-acetic acid 10-maleimide ethylacetamide (mDOTA, 

Mycrocyclics) following standard procedures51,52. Cells and barcoding reagent were 

incubated for 30 min at room temperature. Barcoded cells were then washed three times 

with CSM, pooled and stained with the metal-conjugated antibody mix (Supplementary 

Table 2) at room temperature for 1 h. Unbound antibodies were removed by washing cells 

three times with CSM and once with PBS. For cellular DNA staining, an iridium-containing 

intercalator (Fluidigm) was diluted to 250 nM in PBS containing 1.6% PFA, added to the 

cells at 4 °C, and incubated overnight. Before measurement, the intercalator solution was 

removed and cells were washed with CSM, PBS and doubly distilled H2O. After the last 

wash step, cells were resuspended in MilliQ H2O to 1 × 106 cells ml−1 and filtered through a 

40-μm strainer.

Mass cytometry data processing

EQ Four Element Calibration Beads (Fluidigm) were added to the cell suspension in a 1:10 

ratio (v/v). Samples were measured on a CyTOF1 system (DVS Sciences). The 
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manufacturer’s standard operation procedures were used for acquisition at a cell rate of ~300 

cells s−1 as described previously53. After the acquisition, all .fcs files from the same 

barcoded sample were concatenated using the Cytobank concatenation tool.

Data were then normalized54 and bead events were removed. Cell doublet removal and de-

barcoding of cells into their corresponding wells was done using a doublet-free filtering 

scheme and single-cell deconvolution algorithm51. Subsequently, data were processed using 

Cytobank (http://www.cytobank.org/). Additional gating on the DNA channels (191Ir and 
193Ir) was used to remove remaining doublets, debris and contaminating particles. Final 

events of interest were exported as .csv files.

In-depth analysis of breast cancer EMT cell-state space and drug-inhibitor manifold from a 
single mass cytometry run

CyTOF measurements of cells undergoing unperturbed and perturbed EMT were generated 

and processed as described above. Data were then pooled from all experimental conditions, 

taking an equal random subsample from each condition to generate the cell-state embedding. 

Cell-state definitions and relationships were modeled with PHATE. Subsequently, all cells 

from all experimental conditions were assigned a cell subtype using a nearest-neighbor 

approach (Supplementary Note 10).

Next, the cell-subtype composition of each inhibition condition (that is, relative frequencies 

of each cell subtype that sum to one for each sample) was determined. Using this cell 

subtype frequency-based representation of inhibition conditions, EMD was computed 

pairwise between single-cell samples. Euclidean distances between cluster centroids in the 

PHATE space (which approximate diffusion-based potential distances derived from the 

expression data native dimensions8) were used as a measure of intrinsic dissimilarity 

between cell subtypes for the EMD ground-distance matrix. EMD in this case represented 

the minimum ‘effort’ required to transform one inhibition condition to another (conceptually 

equivalent to the total ‘effort’ needed to move cells from relatively ‘overweight’ parts of the 

branched, continuous, EMT cell-state manifold to relatively ‘underweight’ parts). The EMD 

between every pair of inhibition conditions was computed to construct a network of drug 

inhibition conditions, represented as an EMD-based distance matrix. The resulting distance 

matrix was embedded using the diffusion map approach (as implemented in the ‘destiny’ 

Bioconductor R package9) and partitioned using hierarchical clustering (applied to the 

untransformed distance matrix) to highlight inhibitors with notable effects on EMT or 

similar effects to one another.

Integrating batch-effect correction to compare 300 EMT inhibition and control conditions 
measured in five experimental runs

CyTOF measurements of cells undergoing unperturbed and perturbed EMT were generated 

and processed as described in the above sections. Markers shared across all batches (n = 31) 

were used for downstream analyses. Data were pooled from all experimental conditions on a 

per-batch basis. Expression values were then linearly scaled for each gene to ensure all 

values were positive and in the same range across batches. After this initial normalization, 

an equal random subsample of cells from each batch (20,000 × 5) was used as the input for 
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canonical correlation analysis (CCA)16. CCA mapped expression data from each batch into 

an aligned, eight-dimensional space shared by all batches. The cell-state manifold and cell-

subtype definitions were modeled by applying the PHATE dimensionality reduction and 

clustering method8 to the eight dimensions of the CCA-aligned space as input.

All cells from all experimental conditions were assigned a cell subtype using a nearest-

neighbor approach (Supplementary Note 10). Next, the cell-subtype composition of each 

inhibition condition (that is, relative frequencies of each cell subtype that sum to one for 

each sample) was determined. Using this cell subtype-based representation of inhibition 

conditions, EMD was computed pairwise between single-cell samples. The ground distance 

(that is, intrinsic dissimilarity) between cell subtypes was defined as the Euclidean distance 

between their respective centroids in the three-dimensional PHATE space. The resulting 

sample-to-sample distance matrix was embedded using the ‘destiny’ Bioconductor R 

package9 and partitioned using hierarchical clustering (applied to the untransformed distance 

matrix) to identify 13 clusters of inhibitors with similar effects on EMT.

Intrinsic dimensionality analysis of the EMT perturbation state space

To assess the intrinsic dimensionality of the EMT perturbation state space, we applied the 

bias-corrected maximum likelihood estimator approach55. We computed the sample-to-

sample distance matrix for the 300 samples as described above and estimated intrinsic 

dimensionality of this embedding using the ‘ider’ R package56. Intrinsic dimensionality was 

estimated over a range of values for (k-nearest neighbors (knn) parameter k from 1 to 100. 

The final value of intrinsic dimensionality was determined by examining the stable 

estimated value across a range of sufficiently large values for k (defined as >30).

Imputing the effects of inhibitions based on a small measured dictionary

To assess whether the network geometry of all 300 inhibition and control conditions could 

be captured using a smaller subset of conditions, we applied a previously published 

sampling technique for identifying landmark points of an embedding28. The technique, 

called incompletely pivoted QR-based (ICPQR) dimensionality reduction, learns a concise 

embedding of a large collection of data points by identifying a subset of ‘landmark points’ 

that collectively capture the geometry of the full collection of samples. The fundamental 

concept is that these N landmark points comprise an N-dimensional subspace and that all 

other existing and new points can be mapped in relation to these. ICPQR identifies the 

concise ‘landmark point’ dictionary based on known pairwise distances between samples 

(for example, our EMD-based distance matrix of sample-to-sample distances). The ICPQR 

procedure was applied as follows: first, the PhEMD distance matrix containing pairwise 

distances between our 300 experimental conditions was converted to an affinity matrix using 

a Gaussian kernel (σ=2) and Markov-normalized to obtain probabilities. The (ICPQR) 

dimensionality reduction technique was then applied to this affinity matrix, using a μ 
distortion parameter of 0.01, to identify 34 landmark points. To assess whether the 34 

landmark points adequately captured the geometry of the full collection of 300 samples, the 

landmark points identified were then used to impute the geometric coordinates of the 

remaining (nonlandmark) points using the out-of-sample extension technique associated 

with ICPQR28. The result was a 34-dimensional embedding of all 300 samples. We 
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computed a 300 × 300 distance matrix based on the pairwise Euclidean distances between 

samples in this 34-dimensional space and then embedded using the ‘destiny’ Bioconductor 

R package9.

Incorporating drug-target binding specificity data to extend the PhEMD embedding and 
predict the effects of unmeasured inhibitors on TGF-β-induced breast cancer EMT

We hypothesized that we could predict the influence of additional inhibitors on TGF-β-

induced EMT based on knowledge of inhibitor–inhibitor similarity from another data source. 

To test this, we obtained drug-target specificity data from a previously published 

experiment29 for a set of 39 inhibitors that overlapped between our experiment and theirs. 

We then selected saracatinib, ibrutinib and dasatinib as three nonspecific Src inhibitors 

whose drug-target specificity data were known and whose effects on EMT we wanted to 

predict. Next, we generated a PhEMD embedding based on our CyTOF experimental results 

(not including the three selected inhibitors). To predict the effects of the three inhibitors on 

EMT relatively to other inhibitors in our experiment, we performed Nystrom extension on 

the diffusion map embedding. All 39 inhibitors that were found to have an effect on EMT in 

our experiment and that had known drug-target specificity profiles were included in the 

Nystrom extension. Pairwise distances between each ‘extended’ point and each existing 

point in the original diffusion map were required for Nystrom extension. These distances 

were based on the similarity of drug-target specificity profiles between the two inhibitors, 

defined as (1 − cosine similarity)20 × 4 for all pairs of inhibitors with known drug-target 

specificity profiles. The remaining pairwise distances were imputed based on known 

PhEMD-based inhibitor–inhibitor dissimilarity and known pairwise drug-target specificity-

based dissimilarity using the MAGIC imputation algorithm57.

We observed a global shift in embedding coordinates between the original diffusion map 

(based on PhEMD distances) and the Nystrom extension points (based on normalized cosine 

similarity using drug-target specificity data). This was likely due to a difference in scale 

between PhEMD-based distances and cosine similarity-based distances. Nonetheless, we 

were able to use the Nystrom extension points alone to predict the effect of the three selected 

inhibitors on EMT. First, we visualized the Nystrom extension embedding to show the 

predicted relation of the three inhibitors to other inhibitors with known (measured) effects on 

EMT. Next, we used partial least squares regression (‘pls’ R package) to predict the cell-

subtype relative frequencies that would result from applying the inhibitors to breast cancer 

cells undergoing TGF-β-induced EMT. Nystrom extension embedding coordinates were 

used as the input variables for the regression model. To validate our findings, we measured 

the three selected inhibitors directly using CyTOF and included them along with the rest of 

the inhibitors in the PhEMD analysis pipeline. We compared the actual to the predicted cell-

subtype relative frequencies and the actual to the predicted embedding coordinates relative 

to other similar, ‘nearby’ inhibitors. To assess prediction accuracy, we compared our 

prediction error to the prediction error of the null hypothesis modeled by first randomizing 

the PhEMD-based and drug-target specificity-based distance matrices and then generating a 

predictive model in the same way as in the alternative model. Prediction error was defined as 

the EMD between the predicted and actual (measured) cell-subtype relative frequency 

distributions. The null hypothesis was modeled as a distribution of EMDs generated by 
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randomizing the PhEMD-based and drug-target specificity-based distance matrices 1,000 

times and subsequently imputing cell-subtype frequencies. P values were computed by 

performing a permutation test comparing our prediction error to that of the empirical null 

distribution (n = 1,000) and applying a one-sided significance test at a significance level of 

0.05.

To more comprehensively assess PhEMD as a predictive tool, we performed leave-one-out 

cross validation on the 39 inhibitors with known (measured) cell-subtype relative 

frequencies and drug-target specificity data. For each inhibitor, we constructed a PhEMD 

embedding based on known measurements of the 39 others and performed a Nystrom 

extension to impute the relationship between the inhibitor and the measured ones. We then 

constructed a partial least squares regression model using the same input variables as above 

to predict the cell-subtype relative frequencies of the inhibitor. Prediction error was defined 

the same as above (that is, EMD between predicted and actual cell-subtype relative 

frequency distributions). The null model was also defined in the same way as above by 

randomizing the PhEMD and distance matrices 100 times for the prediction of each 

inhibitor. To determine whether our alternative model was effective, we assessed whether the 

prediction errors in the alternative model (n = 39) were lower than the EMDs in the null 

model (n = 3,900) using a one-sided Mann–Whitney U-test.

Predicting drug-target binding specificities based on PhEMD results from EMT 
perturbation experiment

We hypothesized that if the PhEMD embedding were meaningful, it would have predictive 

power. To test this, we used the PhEMD embedding of inhibitors to predict the inhibitors’ 

drug-target binding specificities. The drug-target binding specificity data were obtained from 

a previously published study that used a chemical proteomic approach to identify the protein 

targets of many clinical kinase inhibitors29. We chose to predict the profiles of 39 inhibitors 

that were present in both the drug-target binding specificity experiment and ours, and that 

had at least one protein target identified by the binding specificity experiment. Next, we 

computed a 39-by-39 knn kernel (k = 3) using the PhEMD inhibitor–inhibitor distances and 

then row-normalized the resulting matrix to one to turn it into a Markov operator. We then 

performed a leave-one-out cross validation, in which we set one of the inhibitor target values 

(that is, drug-target binding specificity profiles) in the Klaeger et al. data to be unknown. 

Note that a drug-target binding specificity profile was represented as a vector of length 270, 

which represented the binding specificity between the drug and each of 270 potential protein 

targets. We predicted the drug-target binding specificity values using the MAGIC imputation 

method57 with the PhEMD Markov operator as input and a diffusion parameter t of 2. We 

computed leave-one-out predictions for each of the 39 inhibitors. To quantify the 

performance of our predictive model, we computed Pearson correlation between the original 

ground-truth (experimentally measured) target values and the predicted values. To determine 

the accuracy of our predictions, we compared our results to a null model, in which we 

randomized the PhEMD matrix 1,000 times and each time ran the prediction using this 

randomized matrix. Prediction accuracy (Pearson correlations) of our alternative model (n = 

39 predictions, one per inhibitor) was compared to that of the null model (n = 39,000 

predictions, 1,000 per inhibitor) using a one-sided Mann–Whitney U-test.
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Generation and analysis of dataset with known ground-truth branching structure

To evaluate the accuracy of the PhEMD analytical approach, high-dimensional single-cell 

data (‘Synthetic Dataset A’) were generated using Splatter, a previously published tool 

designed to simulate single-cell expression data13. The basic tree structure represented in 

Supplementary Fig. 1a was generating using the following Splatter parameters: nGenes=100, 

de.prob=0.5, path. from=c(0,0,0,3,3,5,5,7,7,7). Each single-cell sample consisted of 2,000 

cells sampled from this cell-state manifold at varying degrees of cellular density spread 

across the cell-state space. For Samples A-I, cellular density was concentrated in cell 

subtypes C-1 to C-9 (constituting the main axis), with 55% of Sample A consisting of C-1 

and C-2 cells and 55% of Sample I consisting of C-8 and C-9 cells. Samples B-H consisted 

of progressively fewer cells in the starting cell states (that is, C-1 and C-2) and progressively 

more cells in the terminal cell states (that is, C-8 and C-9). Samples X, Y and Z were 

enriched for cells in C-10, C-13 and C-14, respectively. Samples J-M consisted 

predominantly of C-11 cells and Samples N-Q consisted predominantly of C-12 cells at 

increasing degrees of cell-type enrichment.

We applied PhEMD to the library-size normalized Splatter data as outlined in Fig. 1. First, 

the tree structure was modeled by PHATE based on cells aggregated from all biological 

samples. Then, the relative frequency of cells across different cell subtypes was computed 

for each sample. EMD was computed pairwise for all cells using PHATE distances as a 

measure of ground distance between cell subtypes. A final diffusion map embedding of 

biological samples was generated using the ‘destiny’ Bioconductor R package (Fig. 3).

Analysis of melanoma single-cell RNA-sequencing dataset

Data from a previous single-cell RNA-sequencing experiment were downloaded from the 

NCBI Gene Expression Omnibus website, accession number GSE72056 (ref. 2). These data 

contained read-count expression values that were log TPM-normalized values. Two of the 19 

samples were excluded from analysis due to low cell yield of immune cells. Initial feature 

selection was performed by selecting 44 features found in the initial publication 

characterization of this dataset to distinguish between key cell types2. The PHATE model of 

the cell-state space was constructed using default parameters to identify ten cell subtypes. 

The remaining PhEMD analysis pipeline was completed as described in In-depth analysis of 

breast cancer EMT cell-state space and drug-inhibitor manifold from a single mass 

cytometry run; a final embedding of biopsy samples was generated using the ‘destiny’ 

Bioconductor R package and partitioned using hierarchical clustering.

Analysis of clear cell renal cell carcinoma dataset

CyTOF data from a recent publication characterizing the immune landscape of clear cell 

renal cell carcinoma were downloaded from https://premium.cytobank.org/cytobank/

projects/875 (ref. 3). Cell data were filtered and normalized using the method described in 

Methods section ‘Mass cytometry data processing’. The PHATE model of the cell-state 

space was constructed with a diffusion parameter ‘t’ of 40 to identify 10 cell subtypes. The 

remaining PhEMD analysis pipeline was completed as described in In-depth analysis of 

breast cancer EMT cell-state space and drug-inhibitor manifold from a single mass 

cytometry run.
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Statistical methods

Statistical tests were performed as detailed in the above subsections. Differences in group 

medians were assessed using a Mann–Whitney U-test. Benchmarking of prediction accuracy 

(point estimate) against a null distribution was performed using a permutation (that is, 

randomization) test. All statistical comparisons were performed at a two-sided significance 

level of 0.05 unless otherwise stated.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The mass cytometry data that support the findings of this study are available at https://

community.cytobank.org/cytobank/projects/1296. Source data for Figs. 3–6 are provided 

with the paper. Any additional data supporting the findings of this study are available from 

the corresponding author upon request.

Code availability

PhEMD takes as input a list of N matrices representing N single-cell specimens. An R 

implementation of PhEMD is publicly available as a Bioconductor R package (package 

name: ‘phemd’) and can alternatively be downloaded from https://github.com/wschen/

phemd. Note that the cell-state space for all analyses presented in this manuscript was 

modeled using the PHATE method8. However, alternative approaches are viable and we 

have provided support for PHATE, Monocle2 (ref. 41) and Louvain community detection (as 

implemented in the Seurat software package)16 for this purpose in the R package.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. The PhEMD approach.
a, Flow diagram outlining the sequential steps performed in the PhEMD analysis pipeline. b, 

Schematic of the EMD computation, which accounts for both the differences in heights of 

matching bins and the intrinsic similarity of bins (that is, cell subtypes). d, distance. c, 

Visual representation of ‘ground distance’ (dissimilarity) between cell subtypes. The ground 

distance between subtypes C-2 and C-6 can be conceptualized as the length of the dotted 

path drawn in gray.
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Fig. 2 |. Experimental design for measuring perturbation effects of small-molecule inhibitors on 
EMT.
Perturbation and control conditions for TGF-β-induced EMT. Time of flight–mass 

spectrometry (TOF-MS) was used to characterize the cellular composition of each EMT 

experimental condition. ICP, inductively coupled plasma.
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Fig. 3 |. Axes of variation among EMT perturbation conditions.
a, PHATE embedding of cells from all 300 experimental conditions, colored by cell subtype. 

b, Heatmap representing log2 protein expression levels for each cell subpopulation 

representing its respective cell subtype. c, Diffusion map embedding of control and drug-

inhibited conditions, colored by clusters determined by hierarchical clustering. d, Individual 

inhibitors assigned to each inhibitor group. Histograms represent bin-wise mean of relative 

frequency of each cell subtype for all inhibitors in a given group. The full list of inhibitors in 

each group can be found in Supplementary Table 3.
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Fig. 4 |. Nyström extension predicts single-cell profiles of unmeasured EMT perturbation 
conditions.
a, Nystrom extension embedding showing predicted effect of three selected inhibitors 

(dasatinib, ibrutinib, saracatinib) on EMT relatively to other measured inhibitors. b, PhEMD 

diffusion map embedding showing measured effects of three selected inhibitors on EMT. c, 

Histogram showing distribution of prediction error for null model (n = 1,000 independent 

permutations). Dotted red line represents prediction error for actual prediction (that is, 

alternative model). P values were computed using a one-sided permutation test.
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Fig. 5 |. PheMD applied to single-cell RNa-seq data of 17 melanoma samples (nontumor cells 
only) highlights heterogeneous immune profiles among different patients.
a, PHATE cell-state embedding colored by cell subtype. b, Heatmap showing mean rNA 

expression values of each cluster, colored by a log2 scale. c, Diffusion map embedding of 

samples (colored by group assignment) revealing multiple trajectories that represent 

increasing relative frequency of selected cell populations. d, Summary histograms, each 

representing the bin-wise mean relative frequency of cell subtypes for all samples assigned 
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to a given group. The sample IDs (as assigned in the original dataset published by Chevrier 

et al.3) of all samples in each inhibitor group can be found in Supplementary Table 6.
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Fig. 6 |. PheMD applied to mass cytometry data of 75 ccRCC samples gated for t cells.
a, PHATE embedding of T cell manifold colored by cell subtype. b, Heatmap showing mean 

protein expression values of each cell-subtype cluster, colored by a log2 scale. c, Diffusion 

map embedding of all tumors colored by tumor subgroup, defined by hierarchical clustering. 

The main axes of intersample variability are highlighted as dotted-black trajectories. d, 

Summary histograms, each representing the bin-wise mean relative frequency of cell 

subtypes for all samples assigned to a given group. The sample IDs (as assigned in the 

original publication of these data2) of all samples in each inhibitor group can be found in 

Supplementary Table 7.
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