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Abstract
Background. Controversy exists as to what may be defined as standard of care (including markers for 
stratification) for patients with atypical teratoid/rhabdoid tumors (ATRTs). The European Rhabdoid Registry 
(EU-RHAB) recruits uniformly treated patients and offers standardized genetic and DNA methylation 
analyses.
Methods. Clinical, genetic, and treatment data of 143 patients from 13 European countries were analyzed 
(2009–2017). Therapy consisted of surgery, anthracycline-based induction, and either radiotherapy or high 
dose chemotherapy following a consensus among European experts. Fluorescence in situ hybridization, 
multiplex ligation-dependent probe amplification, and sequencing were employed for assessment of so-
matic and germline mutations in SWItch/sucrose nonfermentable related, matrix associated, actin de-
pendent regulator of chromatin, subfamily B (SMARCB1). Molecular subgroups (ATRT-SHH, ATRT-TYR, and 
ATRT-MYC) were determined using DNA methylation arrays, resulting in profiles of 84 tumors.
Results. Median age at diagnosis of 67 girls and 76 boys was 29.5 months. Five-year overall survival (OS) 
and event-free survival (EFS) were 34.7 ± 4.5% and 30.5 ± 4.2%, respectively. Tumors displayed allelic partial/
whole gene deletions (66%; 122/186 alleles) or single nucleotide variants (34%; 64/186 alleles) of SMARCB1. 
Germline mutations were detected in 26% of ATRTs (30/117). The patient cohort consisted of 47% ATRT-SHH 
(39/84), 33% ATRT-TYR (28/84), and 20% ATRT-MYC (17/84). Age <1 year, non-TYR signature (ATRT-SHH or 
-MYC), metastatic or synchronous tumors, germline mutation, incomplete remission, and omission of radi-
otherapy were negative prognostic factors in univariate analyses (P < 0.05). An adjusted multivariate model 
identified age <1 year and a non-TYR signature as independent negative predictors of OS: high risk (<1 
y + non-TYR; 5-y OS = 0%), intermediate risk (<1 y + ATRT-TYR or ≥1 y + non-TYR; 5-y OS = 32.5 ± 8.7%), and 
standard risk (≥1 y + ATRT-TYR, 5-y OS = 71.5 ± 12.2%).
Conclusions. Age and molecular subgroup status are independent risk factors for survival in children with 
ATRT. Our model warrants validation within future clinical trials.

Key Points

1.  Non-TYR DNA-methylation signature and age <1 year are independent risk factors 
in ATRT.

2.  Patients <1 year with a non-TYR signature have a significantly poorer prognosis 
(5-y OS 0%) compared with those above 1 year and those with a TYR signature.

3.  Patients with an ATRT-TYR signature and age ≥1 year have the best prognosis 
among the proposed risk groups (5-y OS 71.5 ± 12.2%).

Atypical teratoid/rhabdoid tumors (ATRTs) are aggres-
sive malignancies of the central nervous system (CNS) 
affecting mainly children below 3 years of age. Defining ge-
netic lesions are inactivating mutations of SWItch/sucrose 
nonfermentable related, matrix associated, actin dependent 
regulator of chromatin, subfamily B (SMARCB1)1–3 or (rarely) 
SMARCA4.4 ATRTs exhibit a tendency for large and invasive 

tumors, metastatic spread, and chemotherapy resistance.5 
Reported 5-year overall survival (OS) rates between 15% 
and 50% remain unsatisfactory, even if improvement has 
been documented in recent years.6–9 Young age, incomplete 
resection, metastatic disease, high-dose chemotherapy 
(HDCT) or radiotherapy (RT), and the presence of SMARCB1/
SMARCA4 germline mutations have been suggested to be 

Importance of the Study

For patients suffering from ATRT, no validated prog-
nostic markers are currently known. Data of 143 uni-
formly treated patients from 13 countries involved with 
the EU-RHAB registry suggest that young age (<1 y vs 
≥1y) and DNA methylation subgroup status (ATRT-TYR 
vs non-TYR) are independent predictors of OS. Patients 

with an ATRT-TYR signature, age ≥1 year, have the best 
prognosis (5-y OS 71.5 ± 12.2%), while patients with 
a non-TYR signature and age <1  year have the worst 
prognosis (5-y OS 0%). All other patients are at inter-
mediate risk (5-y OS 32.5 ± 8.7%). This risk model has 
potential as a treatment stratification tool in the context 
of future clinical trials. It deserves further validation in 
independent cohorts.
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prognostic.5,10–14 Despite negative prognosticators, patients 
with prolonged survival times have been reported.6,9,10,15

While recurrent genetic alterations explaining clinical 
heterogeneity have not been identified,1–3 DNA meth-
ylation and expression profiling studies by different 
research groups have uncovered 3 distinct molecular 
subgroups: ATRT–sonic hedgehog (SHH), corresponding 
to Group  1; ATRT-tyrosinase (TYR)/Group  2A; and ATRT-
MYC/Group  2B.16,17 These subgroups display not only 
distinct DNA methylation profiles, gene expression sig-
natures, and differences in SMARCB1 mutation patterns, 
but also characteristic clinical features, including patients’ 
age, tumor location, and findings on neuroradiological 
imaging.16–20

Using data from a well-defined cohort of patients re-
cruited to the EU-RHAB registry, we explored whether 
clinical or molecular factors may identify high-risk 
patients.

Materials and Methods

The EU-RHAB Registry

The European Rhabdoid Registry (EU-RHAB) was de-
signed as a clinical registry including an expert consensus 
therapy recommendation (http://www.rhabdoid.de/down-
loads.html). EU-RHAB prospectively collects data on 
uniformly treated patients with rhabdoid tumors of all ana-
tomic locations across participating European countries. 
A system of high-quality reference diagnostics and expert 
counseling for diagnostics and therapy (Supplementary 
Figure 1) is provided. Inclusion criteria are (i) diagnosis of 
ATRT according to World Health Organization (WHO) cri-
teria confirmed by central neuropathology review, (ii) age 
below 18 years, and (iii) informed consent. EU-RHAB has 
received continuous approval by the ethics committee of 
the University of Münster (ID 2009–532-f-S, latest amend-
ment 12/2016). Informed consent was obtained from all 
participating patients. Data collection follows a Case 
Report Form (CRF)–based approach including queries and 
collection of reference reports. Between June 2009 and 
July 2017 EU-RHAB contained 329 patient files. Out of 
201 ATRTs, 19 had not been treated according to recom-
mendations and 39 demonstrated either incomplete and/
or inconsistent datasets or were still on treatment. A total 
of 143 patients were eligible for analyses (Fig. 1). For all 
143 patients, completed and validated CRFs were avail-
able. Whenever inconsistencies were noted, source file 
data were requested and/or treating physicians contacted. 
Once inconsistencies could not be resolved, patients were 
excluded from analyses. The only SMARCA4-mutated 
case of the cohort was excluded from statistical analysis.

Validation Cohort

Data on an independent cohort of 69 patients (all with 
confirmed ATRT) with information on DNA methyla-
tion subgroup (classifier score >0.9), age at diagnosis, 
and OS (but incomplete information on treatment mo-
dalities) were retrieved from the archives of the Institute 

of Neuropathology, University Hospital Münster and 
the Department of Neuropathology, NN Burdenko 
Neurosurgical Institute Moscow (see Supplementary Table 
1 and Supplementary Figure 2).

Diagnostic Measures

The central Neuropathology Reference Center in Münster, 
Germany (M.H., W.P.,) reviewed all tumors according to WHO 
criteria and routinely included immunohistochemistry for 
SMARCB1/integrase interactor 121 and SMARCA4/Brahma/
SWI2-related gene 1 (BRG1). Neuroradiological imaging 
studies were reviewed centrally according to criteria of 
the German National Reference Center for Neuroradiology 
(M.W-M.).22 Fluorescence in situ hybridization (FISH), mul-
tiplex ligation-dependent probe amplification (MLPA), 
and sequencing of SMARCB1/SMARCA4 were performed 
at reference institutions in Kiel and Ulm (R.Si., until/after 
2016) and Hamburg, Germany (R.Sch., U.K.) according to 
standard protocols (Supplementary Methods 1).23,24

Toxicity

Toxicity was assessed following the Common Terminology 
Criteria for Adverse Events v3.0. Reporting of serious ad-
verse events was requested but not monitored.

DNA Methylation Subgrouping

According to an analysis including subgroup data from 
Heidelberg, Toronto, Newcastle, and Paris, ATRT-SHH tumors 
of the Heidelberg cohort correspond to Group 1 tumors of the 
Toronto group, while ATRT-TYR tumors match with Group 2A 
and ATRT-MYC with Group  2B (https://doi.org/10.1093/
neuonc/noy059.010). Within this study we chose to employ 
the internationally acknowledged terms ATRT-SHH, ATRT-
TYR, and ATRT-MYC. Molecular subgrouping was performed 
at the Institute of Neuropathology, University Hospital 
Münster in cooperation with Life & Brain (Bonn, Germany) 
or at the German Cancer Research Center Genomics and 
Proteomics Core Facility. For allocation of samples to the re-
spective subgroups we used a stepwise procedure: We first 
considered the calibrated score as obtained from the re-
cently published “Neuropath Classifier.” 25 To review the ac-
curacy of subgrouping and to validate the consistency with 
the classifier predictions, we clustered the samples using 
confirmatory t-distributed stochastic neighbor embedding 
(t-SNE). Only samples with an unequivocal subgroup alloca-
tion in both methods were considered. The main output of 
these analyses was a classification score allowing for assign-
ment to one of the subclasses ATRT-TYR, -SHH, and -MYC 
(for details, see Supplementary Methods 2).

Statistical Analyses

OS and event-free survival (EFS) were determined ac-
cording to Kaplan–Meier estimates. OS was defined as 
the time from diagnosis until death of any cause or last 
visit. EFS was defined as the time from diagnosis until 

http://www.rhabdoid.de/downloads.html
http://www.rhabdoid.de/downloads.html
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
https://doi.org/10.1093/neuonc/noy059.010
https://doi.org/10.1093/neuonc/noy059.010
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
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first progression, relapse, death of any cause, or last con-
tact. Analysis of factors influencing OS and EFS was as 
follows: Kaplan–Meier analyses were performed for age, 
metastases, tumor location, extent of resection, germline 
mutation (GLM), HDCT, RT, maintenance therapy, achieve-
ment of a complete remission (CR), and relapse or pro-
gression. Time-dependent factors including RT, CR, and 
maintenance therapy were evaluated using Cox regression 
for time-dependent covariates. Multivariate Cox regres-
sion identified independent prognostic factors of OS. After 
model building and variable selection, the final model and 
corresponding results were confirmed in an independent 
validation cohort. P-values were regarded as significant for 
P ≤ 0.05. To evaluate the impact of DNA methylation sub-
group on survival, a stepwise approach was taken. Within 
the multivariate model, individual groups were tested 
against each other and eventually also in an approach of 
one individual group versus all other groups combined.

Results

The EU-RHAB Cohort

The EU-RHAB cohort comprised 143 ATRT patients 
(76 boys and 67 girls) (Fig.  1). For all patients, diag-
nostic and therapeutic measures followed a specific 
protocol. Details can be found in detail at http://www.
rhabdoid.de. At diagnosis, 35% (n = 50) of patients 
were younger than 1 year; 51% (n = 73) between 1 and 
3  years; and 14% (n = 20) over 3  years. Tumors were 
located infratentorially in 60% of patients (n = 86), 
supratentorially in 37% (n = 53), and spinally in 2%  
(n = 3). One patient harbored a large tumor extending 
to both supra- and infratentorial regions. Metastatic 
disease at diagnosis was detected in 30% (n = 43) of pa-
tients. In 34% (n = 49) of children, a gross total resec-
tion (GTR) was achieved (Tables 1 and 2).

The OS and EFS estimates at 5 years were 34.7 ± 4.5% 
and 30.5 ± 4.2%, respectively (Fig.  2A). The median 
follow-up was 49.9  months (range, 4–104 mo). At the 
time of analyses, 57% (82/143) of patients had died. 
In total 64% (n = 91) of patients suffered from relapse 
or progression. In 75% (68/91), relapse occurred lo-
cally (21 relapses; 47 progressions), in 13% (n = 12) it 
was combined, and in 12% (n = 11) distant only (n = 1 
extracerebral in lung and liver, all others within the 
CNS). No patient died due to toxicity. Essentially all 
evaluable patients (n = 109) demonstrated grade 3 or 4 
hematologic toxicity at any time during therapy. A total 
of 20 severe adverse events (SAEs) were specified. 
Eleven of these were associated with veno-occlusive 
disease (VOD) (all of which resolved), and 5 were CNS 
toxicities (2 infections, 2 leukoencephalopathies, and 1 
case of central apnea). Three cases of secondary acute 
myeloid leukemia (AML) were reported (23, 32, and 
53 mo following diagnosis of ATRT). Two of these died 
due to the AML. One patient demonstrated a stable 
ATRT residue and no GLM, the other exhibited a GLM 
in SMARCB1 and died in CR of the ATRT. The third pa-
tient continues to be in CR for ATRT and AML following 
chemotherapy for both. All clinical, toxicity, and treat-
ment variables are summarized in Tables  1 and 2 and 
Supplementary Table 2.

Association of clinical factors with outcome

As radiotherapy was not recommended in patients below 
1  year of age, we employed a rough distinction into 3 
age groups: <1  year, 2–3  years, and >3  years. Age rep-
resented the most significant determinant of survival, 
with a 5-year OS of only 16.7 ± 5.7% for patients <1 year  
(n = 50) at diagnosis (Fig.  2B; 5-y OS above 12 mo 
45.3 ± 6%, n = 93). Metastatic disease was also a signif-
icant prognostic factor, with only 16.9 ± 6.1% of M+ pa-
tients surviving 5 years or longer (M0, 5-y OS = 43 ± 5.7%, 
n = 100). Synchronicity of lesions, most commonly 
involving the CNS and the kidney, was associated with an 
inferior prognosis, with none of the 9 patients with syn-
chronous tumors surviving (P < 0.05).

  

SMARCB1 Genetic
Analyses [n = 130]

SMARCB1 Germline
[n = 117]

SMARCB1 Tumor
FISH + DNA Sequence + MLPA

[n = 93] 186 alleles

DNA-methylation
profiling [n = 84]

MYC
[n = 17]

Germline Mutation
[n = 30]

64/186
SNVs

122/186
partial/whole
gene deletion

TYR
[n = 28]

SHH
[n = 39]

EU-RHAB Population
[n = 182] 

n = 39
incomplete/
inconsistent data

n = 13
no genetics
SMARCB1

n = 39 no 450k
n = 7 excluded 
after clustering

Eligible Patients
[n = 143]

Fig. 1 The ATRT cohort of the EU-RHAB registry. A  total of 143 
ATRTs were analyzed. In 130 cases, enough DNA was available for 
SMARCB1 mutation analyses. In 93 tumors (= 186 alleles), enough 
material was present for analyses by FISH; sequencing and MLPA 
germline information was obtained in 117 patients. A  total of 84 
samples could be subclassified by 450k DNA methylation arrays.
  

http://www.rhabdoid.de
http://www.rhabdoid.de
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
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Influence of treatment modalities on outcome

A total of 75% (107/143) of patients completed chemo-
therapy and demonstrated a 5-year OS of 43.5 ± 5.5% 

versus 8.8 ± 5.4% for those who did not, mostly due to 
progressions (Table  2). Radiotherapy had a significant 
impact on OS (hazard ratio [HR] = 0.2, 95% CI: 0.06–0.6). 
These data have to be interpreted with caution, as age is 
a potential confounder despite the fact that we analyzed 
patients >12 months of age at RT only. Median age at RT 
was 40  months (range, 12–163 mo). No improvement in 
survival was seen for patients treated by HDCT. HDCT had 
no significant prognostic importance for OS (HR = 0.8, 95% 
CI: 0.5–1.4). Complete response to multimodal treatment 
had a significant influence on OS (HR = 0.3, 95% CI: 0.2–
0.5). Finally, progressive disease on therapy and relapse 
were additional poor prognostic factors. Only 14% (7/49) of 
children with a lack of response or progression were alive 
5 years following diagnosis (HR vs patients without pro-
gression = 242, 95% CI: 33–1800, P < 0.05). Only 5% (2/42) 
of patients with early relapse were alive 5 years ensuing di-
agnosis (HR vs patients without progression = 489, 95% CI: 
64–3722, P < 0.05) compared with 98% (51/52) of patients 
without progression.

Spectrum of somatic tumor and germline SMARCB1/
SMARCA4 mutations

Analyses of genetic alterations in SMARCB1 were available 
for 91% (130/143) (tumor and/or blood; Fig. 1). A  total of 
66% (122/186 alleles in 93 tumors with complete genetic in-
formation) of SMARCB1 alterations were structural variants 
(partial or whole gene deletions) and 34% (64/186 alleles) 
were single nucleotide variants (nonsense and frameshift 
mutations). With the exception of a single missense muta-
tion, all alterations were truncating. SMARCB1 GLMs were 
detected in 26% (30/117) (Supplementary Table 3). A single 
tumor demonstrated loss of SMARCA4/BRG1. Only 13% 
(4/30) of patients with a GLM lived longer than 5  years 
(P < 0.05). In a multivariate model the factor GLM had no 
significant impact on outcome. No other significant asso-
ciations between genetic alterations and clinical factors 
were detected.

DNA methylation subgroup status and outcome

DNA methylation profiling in 58% (84/143) of cases clearly 
categorized ATRT into one of the 3 described molecular 
subgroups, ie, 47% (n = 39) ATRT-SHH, 33% (n = 28) ATRT-
TYR, and 20% (n = 17) ATRT-MYC. On t-SNE analysis, 
DNA methylation profiles formed 3 independent clus-
ters (Supplementary Figure 2A). Patients with available 
DNA methylation profiling data did not differ significantly 
from the whole study population except for a higher per-
centage of patients with GTR (43% vs 22%). This, how-
ever, is an unavoidable bias as DNA methylation profiling 
can only be performed if there is sufficient material (ide-
ally from a GTR). Supplementary Table 4 summarizes the 
clinical characteristics of patients according to molecular 
subgroup.

Patients with a germline mutation were more commonly 
detected in the DNA methylation subgroups ATRT-SHH 
(41%; 14/34) and ATRT-TYR (27%; 7/26). Only one patient 
of the ATRT-MYC subgroup demonstrated a germline 
mutation (7%; 1/15; ATRT-SHH vs ATRT-MYC: P < 0.05). 

  
Table 1 Clinical characteristics of 143 eligible patients with ATRT

Total %

Median age, mo (range) 29.5 (0–231)  

Age, y, at diagnosis   

<12 50 35

12–36 73 51

>36 20 14

Origin   

Germany 110 77

Other countries 33 23

Sex   

Female 67 47

Male 76 53

Localization   

Infratentorial 86 60

Cerebellum 54  

IVth ventricle 18  

Cerebellopontine angle 2  

Brainstem 1  

Mesencephalon 5  

Tectum mesencephalii 2  

Medulla oblongata 4  

Supratentorial 53 37

Hemisphere 32  

Lateral ventricle 6  

Basal ganglia 4  

Pineal gland 5  

Suprasellar area 2  

Thalamus 1  

Ist–IIIrd ventricle 2  

Hypothalamus 1  

Infra + supratentorial 1 1

IVth ventricle + lateral ventricle,  
IIIrd ventricle

1  

Spinal 3 2

Synchronous tumors 9  

eMRT 5 56

RTK 3 33

eMRT + RTK 1 11

Stage   

M0 100 70

M1 7 5

M2 7 5

M3 24 17

M4 5 3

Abbreviations: eMRT, extracranial/extrarenal malignant rhabdoid 
tumor; RTK, rhabdoid tumor of the kidney.

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz244#supplementary-data
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As shown in Fig.  3, somatic mutations in SMARCB1 al-
leles differed among DNA methylation groups: somatic 
whole gene deletions were common in the ATRT-MYC 
subgroup and nonsense mutation in the ATRT-SHH sub-
group (P < 0.05). Frameshift mutations were rare in the 
ATRT-SHH group and absent in ATRT-MYC. Interestingly, 
frameshift mutations represented 27% of alterations in the 
ATRT-TYR cohort (P < 0.05) (data derived from 72 tumor 
samples for which 450k and SMARCB1 DNA sequence 
data were available).

Patients whose tumors exhibited an ATRT-MYC signature 
were significantly older (median age 25.0, 7–136 mo, vs 
12.5, 1–84 mo in ATRT-TYR and 16.0, 0–72 mo in ATRT-SHH; 
Supplementary Table 4) and tumors were more commonly 
located in the supratentorial compartment (ATRT-MYC: 
82%, 14/17 vs ATRT-TYR: 11%, 3/28 and ATRT-SHH: 36%, 
14/39; P < 0.05).

Progression on chemotherapy or relapse occurred fre-
quently (34% and 30% responses out of 143 patients) 
without significant differences between the 3 subgroups 
(ATRT-MYC: 65%, ATRT-SHH: 67%, and ATRT-TYR: 57%). 

ATRT-TYR patients achieved a CR in 71% (Supplementary 
Table 4). Consistently, the 5-year OS was superior in the 
ATRT-TYR group (48.8 ± 10.2% vs 19 ± 8.8% ATRT-SHH and 
final level not reached for ATRT-MYC; Fig. 2C).

As the ATRT-TYR group appeared to be distinct from 
the other 2 groups in terms of survival, we summarized 
data for 2 strata (ATRT-TYR vs ATRT non-TYR = ATRT-
SHH + ATRT-MYC). Median follow-up in the ATRT-TYR 
group was 44.6 months and 35.1 months in the non-TYR-
group. Median OS in the non-TYR group was 20.8 months 
and 38.3 in the ATRT-TYR DNA-methylation subgroup 
(P < 0.05; Fig. 2D).

A Combined Clinical and Genetic Risk Model for 
the Stratification of ATRT

Clinical and genetic factors were included in a multivariate 
Cox regression model. The following candidate prognostic 
factors were considered: age at diagnosis <1 year versus 
≥1  year, tumor location infratentorial (it)/supratentorial 
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Fig. 2 (A) Five-year survival (OS) of 143 consecutive patients treated according to the EU-RHAB consensus therapy. The 5-year overall survival 
(5y-OS) of the EU-RHAB cohort of 143 patients with ATRT was 34.7 ± 4.5% while the 5-year event-free survival (5y-EFS) of the same cohort was 
30.5 ± 4.2%. OS was defined as the time from diagnosis until death of any cause or last visit. EFS was defined as the time from diagnosis until first 
progression, relapse, death of any cause, or last contact. (B) Age <1 year at diagnosis as an independent negative prognostic factor. The 5-year 
OS was 45.3 ± 6% for patients diagnosed after age 1 and 16.7 ± 5.7% for those <1 year at diagnosis. (C) Patients of the ATRT-TYR group demon-
strate superior outcome compared with those of the ATRT-SHH and ATRT-MYC groups. The 5-year OS was superior in patients of the ATRT-TYR 
subgroup (48.8 ± 10.2%) versus 19 ± 8.8% for ATRT-SHH and final level not reached for the ATRT-MYC DNA-methylation subgroup (36.4 ± 12.5%). 
(D) Patients of the ATRT-TYR DNA-methylation subgroup have a significantly better prognosis compared with those of the non-TYR group. The 
5-year OS was superior in patients of the ATRT-TYR subgroup (48.8 ± 10.2%) compared with those of the non-TYR subgroup (23.5 ± 7.7%).
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(st)/st + it/spinal, synchronous tumor (yes/no), metastases 
(yes/no), GTR, GLM, ATRT‐MYC versus -TYR versus -SHH, 
ATRT‐MYC versus non‐MYC, ATRT‐TYR versus non‐TYR, 
and ATRT‐SHH versus non‐SHH. All of these factors were 
included in a stepwise selection procedure. The proce-
dure resulted in a final multivariate model with the prog-
nostic factors being age at diagnosis (<1 y vs ≥1 y) and 
ATRT‐TYR (vs non‐TYR) significantly impacting OS. Thus, 
age below <1  year and classification into the non-TYR 
DNA-methylation subgroup (ATRT-SHH or ATRT-MYC) pre-
dicted negative outcome better than any other risk factor 
(P-values in Table  3). Even when excluding all patients 
with M+ disease from analysis, significant differences 
remained.

Then, we employed the independent risk factors of our 
multivariate analysis to construct a model for potential 
stratification:

Patients at high risk demonstrated a significantly inferior 
5-year OS (<1 y + non-TYR; 5-y OS 0%) compared with those 
with at intermediate risk (<1 y + ATRT-TYR or ≥1 y + non-TYR; 
5-y OS 32.5 ± 8.7%) and a standard risk group (≥1 y + ATRT-
TYR; 5-y OS 71.5 ± 12.2%, P < 0.05; Fig. 4A, B). Within the in-
termediate risk cohort (≥1 y), non-TYR patients accounted 
for 75% (39/52), 64% (25/39) of whom were ATRT-SHH. There 
was no significant difference between the number of ATRT-
SHH and -MYC patients in this cohort.

Independent validation cohort

The risk model was corroborated in an independent val-
idation cohort (see below and Supplementary Figure 
3A, B). Median age of the 69 patients of this cohort was 
1.4  years (0–28 y) (Supplementary Table 2). The 5-year 
OS was 28.6 ± 9.0%. On confirmatory t-SNE analysis, 
DNA methylation profiles formed 3 independent clusters 
(Supplementary Figure 2B). The OS of ATRT-TYR patients 
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Fig. 3 The genetic heterogeneity of SMARCB1 mutations 
in ATRT. The spectrum of SMARCB1 mutations in ATRT DNA-
methylation subgroups among 72 patients is presented. Each 
column represents a DNA methylation subgroup as defined by a 
DNA methylation classifier. The x-axis gives the percentage of 
mutations detected in alleles in each subgroup. Whole gene de-
letions were rather common, followed in frequency by exon dele-
tions and nonsense single nucleotide variations.
  

  
Table 2 Treatment details of 143 eligibile patients with ATRT

Total %

Extent of surgical resection   

Complete 49 34

Incomplete 94 66

HDCT   

Yes 34 24

No 109 76

Completed chemotherapy according to  
EU-RHAB

  

Yes 107 75

No 36 25

Radiotherapy#   

Yes 81 87

No 12 13

Complete remission   

Yes 76 53

After surgery 23  

After chemotherapy 53  

No 67 47

Progression   

No 52 36.5

PD on CT* 49 34

PD after CT** 42 29.5

SAE n = 20  

VOD§ 11  

CNS toxicities& 5  

Severe infection (pneumonia) 1  

AML*** 3  

Present status   

CR 44 31

Stable disease 10 7

Progressive disease 7 5

Death 82 57

Abbreviations: CR, complete remission; CT, chemotherapy; HDCT, 
high dose chemotherapy; PD, progressive disease; SAE, serious 
adverse event; VOD, veno-occlusive disease; AML, acute myeloid 
leukemia.
#Only patients >12 months at diagnosis (n = 93) were analyzed.
*During CT, analyzed within 4 months from diagnosis.
**After CT, <1 year from diagnosis.
§All VOD resolved.
&2 infections, 2 leukoencephalopathies, 1 central apnea.
***32, 23, and 53 months from diagnosis. Two of them died due to 
AML (one with SD of the ATRT and no GLM, the other with a GLM in 
SMARCB1 in CR of the ATRT). The third patient continues to be in CR 
following GTR for ATRT and is in first CR following chemotherapy for 
AML which was diagnosed 4 years after the diagnosis of ATRT.
110 patients were from German speaking countries (Germany, Austria, 
and Switzerland), the remainder (n = 33) from the Czech Republic, 
Denmark, Norway, Sweden, Hungary, Ireland, Italy, the Netherlands, 
Poland, Portugal, and Spain.
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was longer compared with ATRT-SHH and ATRT-MYC 
(P < 0.05; Supplementary Figure 3A). Furthermore, OS of 
standard risk patients (≥1 y + ATRT-TYR) was significantly 
longer compared with intermediate and high risk patients 
(Supplementary Figure 3B).

Discussion

Analyzing 143 patients with ATRT we identified supe-
rior outcome for children older than 1 year of age, those 
achieving a CR, and patients displaying a constitutional 
wild-type gene SMARCB1.12,18,26,27 Patients whose tumors 
were classified by DNA methylation as ATRT-TYR had a sig-
nificantly better outcome than those of the ATRT-MYC or 
ATRT-SHH groups.

Definition of Robust Clinical and Genetic Markers 
for Stratification

Prognostic markers for ATRT have been studied widely 
in the literature. In a multivariate analysis of prognostic 
factors for ATRT, age below 1 year, M+ disease, HDCT, ad-
juvant radiotherapy, and intraventricular  chemotherapy 
prevailed as prognostic factors for OS.9 Furthermore, 
Fischer-Valuck et  al demonstrated age below 2  years, 
M+ disease, trimodal therapy, and the “era” of diagnosis 
(2004–2008 vs 2009–2012) as prognostic.28 In an analysis 
of 56 patients recruited to the different HIT (HIrn-Tumor) 
cohorts cohorts (1998–2004, HIT 2000, HIT SKK92, -97, or 
HIT-91), age at diagnosis and M+ status were the only in-
dependent prognostic factors. Employing univariate ana-
lyses, significant factors were location (supratentorial 
vs infratentorial) and achievement of a CR (P < 0.05).29 
In the 20 patients reported by Chi et al, surgery leading 
to a CR and tumor site were the only prognostic factors 
withstanding multivariate analysis.7 Lafay-Cousin and 
colleagues suggested reduced survival in infants (<1 y) 
with less than a GTR.12 Interestingly, our own pilot cohort 
of 31 patients indicated only age above 3 years, surgical 

achievement of a CR, and radiotherapy as significant pos-
itive prognosticators.6

Results concerning post-baseline factors need to be in-
terpreted with caution—i.e., the improved prognosis of 
irradiated patients may be attributed to a beneficial effect 
of radiotherapy or to a confounder, as it may actually re-
sult from the patient’s positive general condition before 
radiotherapy influencing the decision to proceed even in 
younger children.

Our multivariate model, supported by an independent 
validation cohort, demonstrated age <1 year and the mo-
lecular subgroup “non-TYR” as the only independent 
negative prognostic factors. Dependent prognostic fac-
tors were radiotherapy, achievement of a CR, presence 
of a GLM, synchronous tumors, and metastatic disease. 
Presence of a GLM proved to be a robust marker cor-
roborated in 93 patients. Patients with a GLM did very 
poorly, with 5-year survival rates in the range of only 
9.0 ± 6.0%. When adjusting for age (≥1 and <1 y of age), 
significance was maintained (GLM was rarer among 
older patients), making this an important high risk 
marker.

Apart from clinical data, analyses for mutations in 
SMARCB1 and SMARCA4 should be routine in the diag-
nostic process for ATRT to exclude tumor predisposition 
such as in rhabdoid tumor predisposition syndrome 1 and 
2, which will trigger a screening program.

A Novel Risk Model Integrating Clinical and 
Molecular Risk Factors

Very recently DNA methylation analyses have taken center 
stage as an asset for the diagnosis of CNS tumors.25 The 
same tool has been applied to subgroup ATRT into at least 
3 strata.16,17 Integrating subgroup specification with clin-
ical and genetic information in a large series of pro- and 
retrospectively collected series of ATRT, we have been 
able to construct a stratification matrix. Even though the 
resulting risk stratification model provides exploratory 
rather than confirmatory scientific evidence, it deserves 

  
Table 3 Significant prognostic factors in ATRT

Univariate Analysis Multivariate Analysis

P RR (95% CI) P

Independent Age <1 y vs ≥1 y <0.0001 4.0 (2.2−7.4) <0.0001

 TYR vs non-TYR 0.04 0.4 (0.2−0.7) 0.004

Not independent Synchronous tumor yes vs no <0.0001   

 Metastases yes vs no <0.0001   

 Radiotherapy yes vs no* 0.006   

 CR yes vs no <0.0001   

 GLM yes vs no 0.0002   

Note. Age, localization, synchronous tumors, M+ status, GTR, conventional chemotherapy according to EU-RHAB, radiotherapy, HDCT, maintenance 
therapy, CR, progress or early relapse, GLM, and genetic subgroups were analyzed. Factors with significance on a univariate and multivariate level 
are listed (see also Supplementary Table 5).
Abbreviations: RR, relative risk; n.a., not applicable.
*Only patients irradiated with a curative intent (n = 93) were analyzed.
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further validation in independent cohorts. The brain 
tumor group of SIOPE (International Society of Pediatric 
Oncology–Europe) will launch a multinational European 
trial investigating the non-inferiority of HDCT versus 

conventional chemotherapy plus radiotherapy in children 
12–35  months of age. The statistical design projects 
matching strata of children <1  year and those with non-
TYR signature among the 2 randomized arms.
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Fig. 4 A combined clinical and genetic risk model for stratification in ATRT Kaplan–Meier analyses (A). Patients with the risk factors age < or 
≥1 year and features of the ATRT-TYR or non-TYR DNA-methylation subgroups were analyzed for their 5-year OS. Three risk strata were delin-
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(non-TYR vs TYR) may predict the potential risk of patients affected by ATRT independently of any other clinical or known genetic factor.
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Other researchers have contributed significantly to the 
definition of potential molecularly defined risk groups. 
Torchia et  al had previously identified 2 distinct sub-
groups of ATRT18 (Groups 1 and 2)  with an impact on 
survival. As there was no unified treatment approach at 
the time of analysis, a conclusion as to the significance 
of individual factors was hard to achieve at that point. 
Nevertheless, the authors identified achaete-scute ho-
molog 1 (ASCL1) expression (by mRNA expression array 
and immunohistochemistry) as a potential positive pre-
dictor of survival. ASCL1 was present on average at higher 
levels in Group1/ATRT-SHH versus Group  2/ATRT-TYR/-
MYC (see Supplemental data in Torchia et al, Fig. S718). The 
significance of this factor has until now not been validated 
in an independent cohort.

In line with the findings of Torchia et al, we identify the 
significance of a molecular risk factor, a non-TYR signa-
ture, as an independent poor prognostic factor in both 
our test and validation cohorts. Of note, a sizable number 
of patients in the ATRT-MYC group had received radio-
therapy, adding a potential survival benefit. Nevertheless, 
this potential positive prognosticator did not improve 
survival.

A potential explanation for the potential discrepancy 
between the results of Torchia et  al and our series is of 
technical origin. It has been demonstrated that methyla-
tion patterns may be better suited at distinguishing sub-
groups than expression analyses.25 Prospective analyses 
will have to reconcile the fact that as opposed to Torchia 
et al, we detect a TYR signature as a positive predictor of 
survival.

The side-by-side comparison of all currently available 
subgroup data clearly warrants the urgent need for a con-
sensus agreement on molecular subgroups in ATRT.16–18 
Our results suggest that (epi)genetic data should be an 
integral part of the diagnostic workup of any child with 
ATRT.

EU-RHAB Provides a Large and Clinically Well-
Annotated Cohort of Patients with ATRT

Our analysis comprises the currently largest reported 
cohort of ATRT treated according to the same thera-
peutic framework.5,11,18,28 Reported survival rates for 
ATRT vary widely among reported cohorts. Dufour 
et  al had reported a median OS of 9  months in 58 
non-uniformly treated patients (1998–2008).8 Chi et  al 
demonstrated a 2-year OS of 70% in 20 children in the 
Dana-Farber Cancer Institute (DFCI) protocol.7 Five- and 
6-year OS rates, however, are in the range of 45–50% 
(S. Chi, personal communication). We recently reported 
comparable 6-year OS and EFS rates of 46% and 45%, 
respectively, on the pilot consensus regimen of the reg-
istry trial Rhabdoid 2007 (n = 31).6 The reason why OS 
and EFS of the current cohort are inferior to these series 
might be related to the fact that high risk patients repre-
sented a larger proportion of patients compared with the 
Rhabdoid 2007 and DFCI cohorts.6,7 For example, metas-
tases were present in only 19% of patients in Rhabdoid 
2007 but in 34.5% of patients in the EU-RHAB cohort. 
Furthermore, 37% of the patients of EU-RHAB were 

below 1  year at diagnosis, while in the DFCI trial only 
20% were in this age group. Only 35% of patients in the 
EU-RHAB cohort had a GTR compared with 50% in the 
DFCI series. The lower percentage of GTR in our series 
might well be related to the large number of very young 
patients often presenting with large, difficult-to-resect 
tumors. We suggest that our cohort is truly representa-
tive of ATRT in Europe as we find a near 100% correlation 
of patients with the population-based ATRT cohort of the 
German Childhood Cancer Registry.

A Pledge for an International Controlled Clinical 
Trial Framework in ATRT

Presuming our dataset can be validated in an independent 
cohort, we suggest that patients in the high-risk group 
should be preferentially treated in the frame of interna-
tional phase I/II trials, while the standard-risk group may 
be treated according to standard reduced-toxicity regi-
mens within phase III trials. The intermediate-risk group, 
and thus the largest cohort, deserves increased attention 
as it contains patients with a rather mixed prognosis not 
explained by any clinical or currently specified molecular 
factor. More in-depth analysis is urgently required to better 
understand the molecular structure of the different sub-
groups. This is especially true as Johann et al detected po-
tential additional clusters especially among the ATRT-SHH 
group suggestive of additional heterogeneity in their pro-
filing analyses of 150 ATRTs.

As early as 2002, reporting the results of an international 
workshop on ATRT, Packer and colleagues demanded 
that “given the rarity of these tumors,” unified protocols 
specifically designed for this disease should be “multi-
institutional and preferably . . . multinational.” 27 This state-
ment holds true 16 years later.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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