Skip to main content
. 2020 Jun 30;14:653. doi: 10.3389/fnins.2020.00653

Table 3.

CIFAR10 network topologies for Conversion training.

Model Configuration BackRes
VGG7 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3 × 3/1)– Not applicable
–Conv3(64,64,3 × 3/1)– Conv4(64,64,3 × 3/1)–
–Conv5(64,64,3 × 3/1)–Pool(2x2/2)–Pool(2 × 2/2)–
–Pool(2 × 2/2)–FC1(2048,512)–FC2(512,10)
VGG2x4 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3×3/1) [Conv2] repeated 4 times
Conv2(64,64,3×3/1)Conv2(64,64,3×3/1)
Conv2(64,64,3×3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–
–Pool(2 × 2/2)–FC1(2048,512)–FC2(512,10)
VGG3x2-v1 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3×3/1) [Conv2–Conv3] repeated 2 times
Conv3(64,64,3×3/1)Conv2(64,64,3×3/1)
Conv3(64,64,3×3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–
–Pool(2 × 2/2)–FC1(2048,512)–FC2(512,10)

ConvN(I,O,k × k/s) denotes Nth convolutional layer with I input channels, O output channels, kernel of size k × k with stride s. Pool(p × p/sp) denotes average pooling layer with pooling window size p × p and pooling stride sp. FC(X,Y) denote a fully-connected layer with X input nodes and Y output nodes. Layers with BackRes connections and repeated computations have been highlighted in red.