Skip to main content
. 2020 Jun 30;14:653. doi: 10.3389/fnins.2020.00653

Table 5.

Imagenet network topologies for conversion training.

Model Configuration BackRes
VGG16 Input–Conv1(3,64,3x3/1)–Conv2(64,64,3x3/1)– Not applicable
–Pool(2 × 2/2)–Conv3(64,128,3 × 3/1)–Pool(2 × 2/2)–Conv4(128,256,3 × 3/1)–
–Conv5(256,256,3 × 3/1)–Conv6(256,256,3 × 3/1)–Pool(2 × 2/2)–Conv7(256,512,3 × 3/1)–
–Conv8(512,512,3 × 3/1)–Conv9(512,512,3 × 3/1)–Conv10(512,512,3 × 3/1)–Conv11(512,512,3 × 3/1)–
–Conv12(512,512,3 × 3/1)–Conv13(512,512,3 × 3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–
–FC1(25088,4096)–FC2(4096,1000)
VGG11x2 Input–Conv1(3,64,3 × 3/1)–Conv2(64,64,3 × 3/1)– [Conv5]& [Conv7-Conv8-Conv9] repeated 2 times
–Pool(2 × 2/2)–Conv3(64,128,3 × 3/1)–Pool(2 × 2/2)–Conv4(256,256,3 × 3/1)–Conv5(256,256,3×3/1)
Conv5(256,256,3×3/1)–Pool(2 × 2/2)–Conv6(256,512,3 × 3/1)–Conv7(512,512,3×3/1)
Conv8(512,512,3×3/1)–Conv9(512,512,3×3/1)Conv7(512,512,3×3/1)Conv8(512,512,3×3/1)
Conv9(512,512,3×3/1)–Pool(2 × 2/2)–Pool(2 × 2/2)–
–FC1(25088,4096)–FC2(4096,1000)

Notations are same as that of Table 3. Layers with BackRes connections and repeated computations have been highlighted in red.