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Abstract

Background: A current challenge in osteoporosis is identifying patients at risk of bone fracture.

Purpose: To identify the machine learning classifiers that predict best osteoporotic bone 

fractures and, from the data, to highlight the imaging features and the anatomical regions that 

contribute most to prediction performance.

Study Type: Prospective (cross-sectional) case–control study.

Population: Thirty-two women with prior fragility bone fractures, of mean age = 61.6 and body 

mass index (BMI) = 22.7 kg/m2, and 60 women without fractures, of mean age = 62.3 and BMI = 

21.4 kg/m2.

Field Strength/Sequence: 3D FLASH at 3T.

Assessment: Quantitative MRI outcomes by software algorithms. Mechanical and topological 

microstructural parameters of the trabecular bone were calculated for five femoral regions, and 

added to the vector of features together with bone mineral density measurement, fracture risk 

assessment tool (FRAX) score, and personal characteristics such as age, weight, and height. We 

fitted 15 classifiers using 200 randomized cross-validation datasets.

Statistical Tests: Data: Kolmogorov–Smirnov test for normality. Model Performance: 

sensitivity, specificity, precision, accuracy, F1-test, receiver operating characteristic curve (ROC). 

Two-sided t-test, with P < 0.05 for statistical significance.

*Address reprint requests to: Uran Ferizi, Center for Biomedical Imaging, Department of Radiology, New York University Langone 
Medical Center, 660 First Ave., 4th Fl., New York, NY 10016. uran.ferizi@nyumc.org. 

Additional supporting information may be found in the online version of this article.
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Results: The top three performing classifiers are RUS-boosted trees (in particular, performing 

best with head data, F1 = 0.64 ± 0.03), the logistic regression and the linear discriminant (both 

best with trochanteric datasets, F1 = 0.65 ± 0.03 and F1 = 0.67 ± 0.03, respectively). A 

permutation of these classifiers comprised the best three per-formers for four out of five 

anatomical datasets. After averaging across all the anatomical datasets, the score for the best 

performer, the boosted trees, was F1 = 0.63 ± 0.03 for All-features dataset, F1 = 0.52 ± 0.05 for 

the no-MRI dataset, and F1 = 0.48 ± 0.06 for the no-FRAX dataset.

Data Conclusion: Of many classifiers, the RUS-boosted trees, the logistic regression, and the 

linear discriminant are best for predicting osteoporotic fracture. Both MRI and FRAX 

independently add value in identifying osteoporotic fractures. The femoral head, greater 

trochanter, and inter-trochanter anatomical regions within the proximal femur yielded better F1-

scores for the best three classifiers.

OSTEOPOROSIS is a debilitating disease that can lead to a higher incidence of bone 

fracture. In diagnosing a patient with osteoporosis, their bone mineral density (BMD) is 

compared with that of a reference group: a gender-and ethnicity-matched healthy, young 

adult population.1 This method, however, leads to many individuals not receiving clinically 

prudent treatment. There are a few reasons for this. BMD is measured via dual-energy x-ray 

absorptiometry (DXA), a 2D projection imaging technique. The nature of this test often 

results in the underestimation or overestimation of the BMD.2 For example, in patients with 

small bones the BMD is underestimated, and in patients with overlying vascular 

calcifications or osteophytes the BMD is inflated. As a result of this inaccuracy, the majority 

of patients who suffer osteoporotic fractures do not meet the DXA criterion for osteoporosis.
3

In recent years, however, magnetic resonance imaging (MRI) has brought added diagnostic 

power to many diseases, including musculoskeletal ones. The parameters it provides can be 

sensitive to microstructural changes in the bone, which in turn may be useful for predicting 

fracture risk.3 Parallel to developments in the field of MRI, machine learning (ML) has 

made inroads into many domains of science. The results obtained are of a statistical nature, 

dependent on the data used, the models employed, and the metrics of performance. Previous 

studies have looked at the methods for comparing ML algorithms. A study by Demšar,5 

which followed the proceedings of the International Conference on Machine Learning from 

1999 to 2003, found a surprisingly high over-reliance on classification accuracy alone, 

reiterating the need for more performance measures. Sokolova et al.6 stress as important 

properties of a classifier the ability to not only correctly identify classes but also to 

discriminate between the label classes.

Medical diagnostic measurements have recently been analyzed with ML to extract new and 

unexpected risk factors and disease patterns. A study by Madelin et al.7 employed many ML 

classifiers, and used sodium MRI data from cartilage, for diagnosing osteoarthritis. Using 

both standard and adjusted accuracy, as well as sensitivity and specificity, the study 

identified the linear models as best performers, over neural networks, K-nearest neighbors 

(KNN), or quadratic-kernel support vector machine (SVM).
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In studies of osteoporosis, ML has already been applied to predict hip fractures. Kruse et al.8 

used clustering, an unsupervised ML method, to extract nine layers of different osteoporotic 

fracture risk from data on 10,775 subjects. A later study by the same group9 used twenty-

four different models to identify hip fractures from a Danish cohort of 5439 women and 

men. In both of these reports, the parameters include DXA measurements, age, and even 

dental or medication expenses (but not MRI data).

In this study we used MRI data for osteoporosis to compare 15 ML classifiers. We also 

investigated the impact that MRI and fracture risk assessment (FRAX) metric have in 

identifying osteoporotic fractures and, in particular, which of the five proximal femoral 

regions provided better classification.

Materials and Methods

The next sections describe the data acquisition and preprocessing (first three subsections), 

followed by an explanation of the feature selection process and the resulting datasets. Then 

we describe the classifiers, and the metrics we use to compare them.

Cohort Characteristics

The study was approved by the Institutional Review Board and was performed in 

compliance with HIPAA. All subjects provided informed written consent. The only criteria 

for inclusion is postmenopausal women, older than 18 years of age, and with no upper limit; 

none of the participants had any known comorbidities. The dataset consisted of 92 women 

who presented for examination at our hospital, of whom 32 had prior fragility fractures (age 

= 61.6 ± 8.4, body mass index [BMI] = 22.7 ± 3.1) and 60 who did not (age = 62.3 ± 7.8, 

BMI = 21.4 ± 2.8). Of those with fractures, there were 20 subjects with one fracture, 9 

subjects with two fractures, and 3 subjects with more than two fractures. The type of 

fractures were: wrist (n = 7), spine (n = 2), humerus (n = 1), hip (n = 3), humerus +hip (n = 

1), sacrum (n = 1), sacrum+wrist (n = 1), sacrum+hip (n = 1), and other (n = 15).

Imaging Data

The dataset’s 92 subjects presented for high-resolution 3T MRI (Magneton Prisma, Siemens, 

Erlangen, Germany) examination of the proximal femur (D-FLASH, repetition time [TR] = 

37 msec, echo time [TE] = 4.92 msec, flip angle = 25, bandwidth = 130 Hz/pixel, field of 

view [FOV] = 100 mm, matrix = 512 × 3 × 512, voxel = 0.234 × 0.234 × 1.5 mm3, GRAPPA 

parallel imaging factor = 2, scan-time = 15 min). Mechanical and microstructural MRI 

measures of bone quality were obtained via finite element and topological analysis, as 

described by Wehrli et al.10 and Saha et al.,11 in five 10 × 10 × 10 mm3 volumes of interest 

within the femoral head (hereafter referred to as “head”), femoral neck (“neck”), Ward’s 

triangle (“ward”), greater trochanter (“troch”), and intertrochanteric region (“inter-troch”).

Complete Feature Set

From the MRI data we extracted parameters that are expected to be altered by osteoporosis 

and, therefore, reflect deterioration in the microarchitecture of the trabecular bone 
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compartment. Our criterion for labeling any one data vector as osteoporotic was the presence 

of bone fractures; this dichotomous separation disregards the actual number of fractures.

The mechanical parameters for subregional analysis are described in Wehrli et al.,10 whereas 

the topological parameters are described in Saha et al.11 as “characterizing the local 

topology of each bone voxel after skeletonization of the binary bone images.” Here, each 

voxel of trabecular bone network is labeled as either surface, curve or junction structure. The 

topology of the network is characterized by the surface-to-curve ratio and erosion index. 

(For clarity, in this study, we reserve the term parameters to measurements from MRI.)

In summary, the MRI parameter types are:

• mechanical: elastic moduli X/Y/Z, and shear moduli G11/G22/G33;

• physical: the mean/SD of bone volume/density/thickness;

• topological: the edges/interiors/junctions of the curve/surface;

• statistical: the normalized topological features of the above.

In addition to the above 32 MRI parameters, the primary dataset also includes these 

measurements: height, weight, BMI, age, two FRAX (hip and overall), and two DXA 

metrics (spine and femoral neck t-score).

Feature Selection

We apply the principal component analysis (PCA) method12,13 on the primary dataset to 

construct a reduced feature set. Each of the many principal components is a linear 

combination of the original features, with every feature being weighted differently. The 

weights are the inverse of the variance of each original feature. The components are 

conventionally ordered by the amount of variance that each explains. So, the first component 

explains the most, the second aims to capture as much variance as possible that could not be 

captured by the first, and so on (the components are also linearly independent, or orthogonal; 

that is, no one component can be reconstructed from a combination of the rest). Choosing 

the number of these components, ie, the dimension of the feature space is not so 

straightforward, and there are many “rules of thumb”, generally based on the amount of 

variance explained. For comparison, here we try three low/medium/maximum levels of 

components from a total of 55 features in the original dataset: the minimum required to 

explain 95% of the variance in the data (the results show this to be 5), another level close to 

the middle (we chose 30), and the maximum (55).

Datasets

The primary and the three PCA-feature datasets are four of the six datasets we will use. The 

remaining two datasets are derived from the primary dataset: one excludes the FRAX 

features (No-FRAX), whereas the other (No-MRI) excludes the MRI features. The purpose 

for doing this is to, first, evaluate the benefit that each of FRAX and MRI bring to the 

fracture prediction; and second, to compare FRAX’s diagnostic power with that of the 

imaging parameters.
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ML Classifiers

To each dataset we fit 15 classifiers, roughly belonging to the groups below. Here we give a 

brief description of each class of classifiers, as taken from Michie et al14 and Friedman et al,
15 from which a more detailed description of these classifiers can be found.

• linear models (the logistic regression and the linear discriminant). The logistic 

regression and the linear discriminant are both linear classifiers. Although 

closely related, the logistic regression is less dependent on the data distribution—

the linear discriminant prefers normally distributed data—when separating the 

sample space (with lines in 2D, planes in 3D, or hyperplanes in higher 

dimensions). The shape of the clusters of the separated data classes dictates the 

location and direction of these dividing planes.

• SVM (of linear, quadratic, and cubic kernels). SVMs attempt to improve linear 

model fitting by searching for the maximum-margin hyperplane separating the 

two classes. Additionally, for cases where the classes overlap, thus requiring 

nonlinear boundaries, SVMs allow the use of (here, quadratic or cubic) kernels 

that transform the original sample space into a higher-dimensional space where a 

linear boundary can be drawn.

• trees (simple, medium, and complex tree). A decision tree is a tree-like chart, 

root-to-leaf, where at each node a test (dependent on previous steps/nodes) is 

carried out, and the branch carries the result (ultimately to the leaf ). This can be 

seen as a recursive partitioning of the sample space. In our case, a “simple” tree 

has four maximum splits (there-fore, few leaves to distinguish between the 

classes), a medium tree has at most 20 splits, whereas a complex tree has 100 

splits at most (more leaves to make finer distinctions between the classes). The 

maximum number of splits is typically referred to as the maximum depth of a 

tree. Other than being relatively easy to understand and follow, another 

advantage of trees is that they are fairly immune to variable transformations, the 

variables of low relevance, and outliers. Because of these advantages, the 

decision trees have become the most popular tool in data mining.

• KNN (fine, weighted) The idea for a KNN partitioning is that each given datum 

is most likely to be near to observations from its own proper class population. 

So, one looks at, say, the five nearest observations from all previously recorded 

subjects, and classifies the observation according to the most frequent class 

among its neighbors. In the “fine” KNN classifier, the number of neighbors is set 

to 1, i.e., a fine distinction between the classes; whereas in the “weighted” KNN 

classifier, the number of neighbors is set to 10, and the classes are 

distinguishable using a distance metric.

• ensemble (for KNN, linear discriminant, RUS-boosted, and bagged trees). The 

ensemble learning combines the strengths of a collection of simpler base models. 

In tree bagging, a committee of trees each cast a vote for the predicted class. In 

boosting, the committee of weak learners evolves over time, and the members 

cast a weighted vote.
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Using the MatLab Statistics Toolbox (MathWorks, Natick, MA), we fit the classifiers via the 

commands given in the Appendix (Supplementary Information). In fitting the classifiers we 

settle for the standard fitting routines as provided by MatLab, which can hopefully be 

utilized by the clinician with minimal effort. Notwithstanding this caveat, we do consider 

some variations (such as the kernel degree in SVM, or lasso regularization with logistic 

regression) which can potentially alter the classifier’s performance.

Statistics

We examined the pairwise linear correlation between the features through Pearson’s 

correlation coefficient r; this is the product of the standard deviations of the two feature 

pairs, divided by their covariance. Whenever two populations are compared, we use a two-

sided t-test. We use a P value threshold of 0.05 for statistical significance. When comparing 

two data vectors we ensure, through the Kolmogorov–Smirnov test, that they follow a 

normal distribution.

The metrics for comparing the classifiers are:

sensitivity = tp
tp+fn

specificity = tn
tn + fp

precision = tp
tp + fp

accuracy = tp+fp
tp+fp + tn + fn

F1 = 2 * sensitivity *specificity
sensitivity + specificity

AUC= area under the ROC curve

Here, tp stands for the true positives, tn for true negatives, fp for false positives, and fn for 

false negatives. For the AUC calculation we use the implementation of Will Dwinnell, using 

the Ling et al16 algorithm. All metrics range from 0 to 1.

The k-fold crossvalidation (CV) is a natural model selection technique that penalizes 

complexity and helps identify the classifier most robust to noise. In our 23-fold CV, the 

classifier is trained on 22/23rds of the randomly sampled dataset, and then is tested on the 

remaining 1/23rd. The aggregate predicted fracture vector is then compared with the 
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original, and the above six performance metrics are then calculated. This is repeated 200 

times, each time using a random starting seed point for partitioning the dataset into folds. 

We report the metrics’ mean and standard deviation across these 200 CV iterations.

Results

Figure 1 shows representative proximal femur MR images from a patient with fragility 

fracture and a control subject.

In Fig. 2, the positional variance diagram for the features’ pairwise correlations maps the 

interdependence of the features. Although the mechanical features (first six from the top left) 

have strong interdependence, r = 0.99 ± 0.004, they are independent from the rest, r = 0.06 ± 

0.03. The other imaging features (ie, the remainder, bar age, height, weight, FRAX, and 

DXA) show some correlation, r = 0.53 ± 0.29.

Figure 3 explores the redundancy in the feature set (as suggested by Fig. 1). PCA analysis on 

the representative head data reveals that the first three components explain 90% of the data 

variance, while five explain over 95%. The next subplot shows the weight of each original 

head data feature on the first three PCA components. We see that bone thick-ness, 

topological features (such as ratios of surface-to-curve or plate-to-rod), and non-imaging 

data (e.g., weight and age) have the largest impact. Similar feature families appear over other 

anatomical regions, as shown in the third subplot.

Figure 4 shows the classifiers’ performance in identifying unseen labels, averaged over all 

anatomical datasets (head, troch, etc.). In ordering the classifiers, the plots use the F1-score 

of ALL features dataset. In the ALL features ranking, the top three classifiers are the RUS-

boosted trees, the logistic regression, and the linear discriminant, with F1 = 0.63 ± 0.04, 0.62 

± 0.05, 0.60 ± 0.07, respectively; KNN variations come last, with F1 = 0.21 ± 0.06 for the 

weighted-KNN classifier. When compared with the dataset with ALL features, PCA with 

five components performs worse in the better 12 of the 15 classifiers. PCA with 30 

components performs better in 12 classifiers with mixed performance; in particular, there is 

no statistically significant difference in good classifiers such as cubic SVM (fourth in the 

ranking) or the linear discriminant (ranked third) when compared with the ALL data. The 

same number of PCA components as ALL (55) makes no statistically significant 

improvement in two out of three best classifiers after comparison with ALL data results 

(these are denoted with arrows in the figure). Because of this picture of classifiers 

performance on PCA, in the next plots we will only use the original data with ALL features.

The six subplots of Fig. 5 show the classifiers performance in the six metrics: sensitivity, 

specificity, accuracy, precision, AUC, and F1-score. Each subplot shows the classifier 

ranking for three datasets: marked red is the complete ALL features dataset (as also 

observed in Fig. 4), marked green is the complete dataset excluding the MRI features, and 

marked blue is the complete dataset without FRAX. Through almost all classifiers, and 

certainly all the top 10, and across all metrics, adding MRI and FRAX improves the 

performance. For example, for the RUS-boosted trees, the F1-score for ALL, no-MRI, and 

no-FRAX were respectively 0.63 ± 0.03, 0.52 ± 0.05, 0.48 ± 0.06. The sensitivity 
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performance of classifiers shows an opposite trend to that specificity. The precision metric 

offers some models, such as linear SVM (0.68 ± 0.07), which is clearly better than the rest 

(eg, boosted trees’ precision, at 0.49 ± 0.04).

Beyond the standard logistic regression, which ranks as one of the best three classifiers, we 

also tried lasso (not shown in the figures), which provides L1-regularization to the fitting.17 

While lasso improved the specificity (from 0.71–0.83) and accuracy (from 0.66–0.71), it 

penalized sensitivity (down from 0.60–0.50), resulting in a slight F1-score change (from 

0.65–0.67). Additionally, the fitting of the regularization parameter lambda is very sensitive 

to variations in the data.

In Fig. 6 we show the F1-score performance through the five anatomical regions. We see 

similar patterns of classifier performance as in Fig. 4. The previously identified three 

classifiers remain the best for three regions: the head, the inter-troch, and troch. The linear 

discriminant (F1 = 0.67 ± 0.03) is best in the troch dataset, as is the logistic regression (F1 = 

0.65 ± 0.03); boosted trees are best with head data (F1 = 0.64 ± 0.03). It is clear that, for the 

best three classifiers, the neck data provides the worst results (coming 5th/5th/5th), followed 

by ward (4th/4th/2nd), and the better regions are head (3rd/3rd/2nd), inter-troch (2nd/2nd/3rd) 

and troch (1st/1st/3rd); however, there is no statistically significant difference between head, 

troch, and inter-troch when using the logistic regression.

Discussion

A current challenge in osteoporosis is identifying patients with a higher propensity for bone 

fracture. In this initial study, we applied ML techniques to bone microstructural MRI data 

collected at our hospital. Our first finding is that the combination of MRI plus FRAX data 

improved the ability of ML models to predict patients’ osteoporotic fracture status compared 

with MRI or FRAX data alone. The second finding is that linear classifiers and boosted trees 

perform best in predicting fracture. The third finding is that certain anatomical regions 

within the proximal femur (head, inter-troch, and troch) yielded better F1-scores (than ward 

or neck).

The finding that the combination of MRI plus FRAX improves the predictive abilities of ML 

models, rather than either MRI or FRAX, suggests that MRI-derived microstructural 

measures could potentially have value for clinicians in terms of more accurately diagnosing 

and therefore more accurately treating patients at risk for fracture. If this were validated in a 

prospective fracture incidence study, it would improve patient outcomes and potentially save 

healthcare costs by preventing future osteoporotic fractures, as suggested in a previous cost-

effectiveness study.18 Furthermore, the finding that certain proximal femur datasets yielded 

better F1-scores suggests that more informative indices about patients’ bone quality/health 

may be obtained within these proximal femur subregions; again, this result needs to be 

confirmed in the future, ideally in prospective longitudinal studies.

Differently from other ML studies on osteoporosis, our study uses MRI data. The evidence 

of correlation between the features, shown in the first two figures, pertains to the linear 

correlation only, and other nonlinear dependencies were not accounted for. This is also the 
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case for the PCA analysis. Even though PCA with half the original number of features did 

almost as well or slightly better, we made a choice to show the remainder of the analysis use 

ALL of the original features instead. One reason is that the principal components have 

generally little clinical interpretability. In our case, given the limited data, it would have 

been impractical trying to go beyond the linear dependence. Without strong evidence of 

linear dependence between the features, here we argue that obtaining PCA components that 

can capture the majority of the data variance comes at the risk of diminished sensitivity, and 

therefore may not necessarily translate into correct labeling. Nevertheless, the top three 

classifiers remained the same with both PCA and ALL features. In the future, parameters 

such as blood and genetic tests may add more predictive ability; and with this greater 

quantity of data, the choice of methodology for feature selection and classification will 

remain important.

Our study showed that simple classifiers, such as logistic regression and linear discriminant, 

remain good models for datasets of this size, alongside boosted trees and SVM. Considering 

that different classifiers may be more appropriate in different applications, this is consistent 

with the classifier comparison study by Madelin et al,7 which also finds that linear models 

are better predictors over Naive Bayes, quadratic-kernel SVM, or KNN. Sokolova et al6 

suggest that Naive Bayes does better on positive examples (middle-rank performer in our 

ranking), while SVM does better on negative examples (linear SVM was top classifier for 

precision, whereas the cubic kernel SVM’s F1-score was fourth best).

In this study, among the six metrics, we used F1-score as our primary metric, capturing both 

sensitivity and specificity, and because we judged it better than others. As mentioned in the 

introduction, most current literature reports the accuracy.5 However, by definition this 

statistic assumes a balanced dataset of fracture versus control labels (otherwise good 

classifiers would be biased towards predicting the majority class, usually the negatives). 

Some researchers prefer ROC metrics; Ling et al16 argue that it is a better discriminator than 

accuracy. But the interpretation of results is not so straightforward as, for example, the ROC 

weighs sensitivity and specificity equally at all threshold levels.19 This is certainly not the 

case for every disease. Some studies report sensitivity and specificity, and a minority report 

Youden’s index, being sensitivity+specificity-1.20 Although this may be an improvement, it 

does not discriminate against scenarios where both sensitivity and specificity are at mediocre 

or extreme levels, as some of our worst performing classifiers’ results demonstrate.

Notwithstanding these results, our study has some limitations. The first comes from the 

rather limited size of the cohort (92 subjects, of which 30 had fractures). One obvious 

consequence is that the data are not naturally balanced; the fracture and no-fracture cohorts 

are not in equal proportion, which in turn will affect the CV sampling, potentially biasing 

certain statistics. On the subject of balance, we also mention here that our dataset consists of 

a purely female cohort, which is the predominantly osteoporosis-affected gender. Further 

studies may be necessary to examine the generalizability of the results.

Another inevitable limitation arises from the multitude of fitting routines that are possible 

for each of the classifiers. In the interest of repeatability, we compared off-the-shelf models 

with default settings and minimal optimization. With an ever-increasing model complexity, 
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the classifiers run the risk of being overtuned to the training dataset and its noise (although 

one could argue that CV already does penalize for overfitting). We also have the clinician in 

mind, who may wish to utilize a quick and standard ML method as an additional tool for 

assessing fracture risk in a patient with osteoporosis. Each model’s performance can of 

course be optimized for any given metric (eg, sensitivity or accuracy), sampling method (eg, 

bootstrapping or CV), and data (specific to a geographical location, anatomical region, age, 

gender, etc.).

In conclusion, we found that ML classifiers such as the logistic regression, the linear 

discriminant, or boosted trees provide the best balance of sensitivity and specificity for 

predicting osteoporotic fracture, and that both MRI and FRAX independently add value in 

identifying osteoporotic fractures through ML.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1: 
Representative coronal MR images of proximal femur from a control subject (left panel) and 

a subject with osteoporotic fracture (right panel).
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FIGURE 2: 
A positional variance diagram for the pairwise linear correlations between the features. The 

color scale indicates the correlation from 1 (strongly, positively correlated), through 0 (not 

correlated), to –1 (strongly, negatively correlated).
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FIGURE 3: 
The first subplot (on the left) shows the components produced by the PCA when using the 

head data. The first three components explain ~95% of the variance (as shown by the blue 

line). The second plot shows how much each feature weighs in producing the three most 

important principal components (accounting for ~95% of the variance) for the head dataset. 

Similarly, the third subplot summarizes the PCA weights over the five anatomical regions, as 

color marked in the legend.
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FIGURE 4: 
The plots show how the models perform through the F1-score, when using selected PCA 

components (first three bars on each classifier, as denoted in the legend), and the complete 

set of features (denoted in the legend as ALL, plotted in each classifier’s last bar). The 

results are averaged over the five anatomical subregions. In the legend, 5-PCA denotes a 

PCA with only five components, etc. The error bars denote the standard deviation around the 

mean across 200 random-seed initializations of the 23-fold CV. The arrows denote no 

statistically significant difference between the pointed population and that of ALL.
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FIGURE 5: 
The plots show how the classifiers perform via the sensitivity, specificity, precision, 

accuracy, AUC, and F1-score metrics, after averaging over the five anatomical subregions. 

The classifiers are ordered by the F1-score ranking. Clearly, both MRI and FRAX improve 

performance. The trend of sensitivity across the classifiers runs in the opposite direction to 

that specificity.
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FIGURE 6: 
Here we show the F1-score performance across the datasets of all five anatomical regions.
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