Skip to main content
. 2020 Jun 30;10:1065. doi: 10.3389/fonc.2020.01065

Table 4.

Summarized best predictive performances for each classification task using RF model and three omics layers.

Task Method MCC_cv (CI) MCC_ts (CI) PREC_cv (CI) PREC_ts (CI) REC_cv (CI) REC_ts (CI) Nf
BRCA-ER juXT 0.785 (0.776, 0.795) 0.797 (0.778, 0.819) 0.935 (0.932, 0.938) 0.946 (0.935, 0.957) 0.962 (0.959, 0.965) 0.955 (0.949, 0.962) 1801
rSNF 0.792 (0.782, 0.801) 0.804 (0.779, 0.830) 0.938 (0.935, 0.941) 0.947 (0.934, 0.961) 0.961 (0.958, 0.965) 0.958 (0.949, 0.966) 1801
rSNFi 0.820 (0.808, 0.831) 0.830 (0.803, 0.857) 0.955 (0.951, 0.959) 0.951 (0.939, 0.962) 0.956 (0.952, 0.960) 0.967 (0.956, 0.977) 55.5
BRCA-subtypes juXT 0.778 (0.771, 0.785) 0.795 (0.771, 0.817) - - - - 1801
rSNF 0.769 (0.762, 0.777) 0.811 (0.787, 0.835) 1801
rSNFi 0.788 (0.778, 0.798) 0.838 (0.794, 0.879) 301.5
KIRC-OS juXT 0.266 (0.243, 0.289) 0.305 (0.229, 0.382) 0.540 (0.509, 0.570) 0.579 (0.494, 0.664) 0.299 (0.280, 0.317) 0.343 (0.300, 0.393) 2319
rSNF 0.253 (0.230, 0.276) 0.274 (0.189, 0.348) 0.539 (0.505, 0.571) 0.628 (0.507, 0.739) 0.253 (0.235, 0.270) 0.257 (0.200, 0.314) 3313
rSNFi 0.268 (0.239, 0.298) 0.378 (0.288, 0.464) 0.485 (0.449, 0.521) 0.594 (0.512, 0.668) 0.321 (0.296, 0.347) 0.490 (0.380, 0.600) 111
AML-OS juXT 0.141 (0.120, 0.163) 0.223 (0.146, 0.307) 0.675 (0.669, 0.681) 0.704 (0.682, 0.725) 0.860 (0.849, 0.870) 0.880 (0.850, 0.907) 6559
rSNF 0.180 (0.157, 0.202) 0.263 (0.175, 0.366) 0.685 (0.679, 0.691) 0.717 (0.692, 0.743) 0.876 (0.867, 0.886) 0.873 (0.847, 0.903) 656
rSNFi 0.274 (0.245, 0.301) 0.176 (0.068, 0.278) 0.726 (0.718, 0.735) 0.673 (0.639, 0.706) 0.870 (0.858, 0.882) 0.835 (0.785, 0.880) 91.5

CI: 95% bootstrap confidence interval; {MCC,PREC,REC}_cv: best average MCC, precision, recall in cross-validation on training set splits; {MCC,PREC,REC}_ts: average MCC, precision, recall on test set splits; Nf: median number of features leading to MCC_cv. Bold indicates best performance (highest MCC and smallest signature size). Precision and recall were computed for binary classification tasks only.