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Abstract

Many conventional antidepressants can quickly raise the levels of extracellular serotonin, yet their 

positive effects on mood ensues only weeks later. This delay in efficacy is a clinical problem that 

has proven difficult to overcome. Early investigation noted that the initial increases in extracellular 

serotonin engaged strong feedback inhibition of serotonin neurons via 5-HT1A autoreceptors, 

resulting in a profound reduction in their firing rate. Over the course of chronic treatment, 

however, firing rate returned to normal and the inhibition via 5-HT1A receptor agonists was 

attenuated. The coincident timeline of these phenomena led to the influential hypothesis that the 

relationship was causal and that gradual loss of feedback inhibition mediated by 5-HT1A receptors 

was critical to the delayed therapeutic onset. Simple and appealing, the desensitization hypothesis 

has taken strong hold, yet much of the supporting evidence is circumstantial and there are several 

observations that would refute a causal relationship. In particular, even though 5-HT1A receptors 

may desensitize, there is evidence that feedback inhibition mediated by remaining receptors 

persists. That is, baseline serotonin firing rate returns to normal not because of 5-HT1A 

desensitization but rather despite ongoing feedback inhibition. Thus, while 5-HT1A receptors 

remain important for emotional behavior, it may be other slow-adaptive changes triggered by 

antidepressants that allow for therapeutic effects, such as those involving glutamatergic synaptic 

plasticity.
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Serotonin-selective and serotonin-nonselective reuptake inhibitors (SSRIs and SNRIs) are 

widely prescribed classes of antidepressants that exert their pharmacological action entirely 

or in part by blocking the serotonin transporter (SERT). The simplistic idea is that blocking 

SERT would increase the concentration of extracellular serotonin, theoretically enhancing its 

signaling capacity.1,2 The ability of SSRIs and SNRIs to increase extracellular serotonin is 

rapid, within hours.3 However, the clinical efficacy of these drugs is only obtained with 

chronic use, typically several weeks, which is a major disadvantage and a problem that has 

proven difficult to overcome.4

The 5-HT1A receptor has been centrally implicated in contributing to the delayed efficacy of 

antidepressants. 5-HT1A receptors are inhibitory and are richly expressed by serotonin 

neurons themselves, and thus, they play an important role in providing feedback inhibition 

of serotonin neurons. Since antidepressants elevate synaptic serotonin levels, they also lead 

to activation of 5-HT1A autoreceptor-driven feedback inhibition of serotonin neurons, 

causing a decrease in serotonin neuron firing and serotonin release.4–7 With chronic SSRI 

administration, the serotonin neuron firing rate recovers and at the same time there is 

desensitization of 5-HT1A autoreceptors.5–9 An appealing hypothesis is that the 

desensitization of 5-HT1A autoreceptors and subsequent loss of feedback inhibition is causal 

in the restoration of serotonin neuron firing and this process in turn accounts for the delay in 

clinical efficacy.5,10–12

The attractive simplicity of this hypothesis has resulted in its widespread acceptance, 

perhaps to a greater degree than may have been originally anticipated. It should be pointed 

out that there are a number of implicit causative relationships involved in this hypothesis that 

are supported by only suggestive evidence such as coincident time-lines. For example, while 

it is well established that there is a slow recovery of baseline firing rate and desensitization 

of 5-HT1A receptors, the precise contribution of each of these in delayed efficacy is not 
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clear. In addition, there is no direct evidence that reduced feedback inhibition directly causes 
the recovery of baseline firing-rate. That is, there is no reason to assume either that feedback 

inhibition has a linear relationship to the sensitization-state of 5-HT1A receptors, or that 

feedback inhibition via 5-HT1A receptors is the sole regulator of serotonin neuron firing rate.

With respect to feedback inhibition and 5-HT1A receptor desensitization, recent evidence has 

provided new insight into how these are related over the time-course of antidepressant 

exposure. To understand this relationship, it is worth emphasizing how each of these factors, 

desensitization and feedback inhibition, are measured. Sensitization state is determined by 

the number of receptors and their capacity to signal, for example their capacity to activate 

second messengers or inhibit neuronal firing. Studies determining these end points use 

receptor agonists to measure receptors in isolation from their endogenous ligand. In contrast, 

the level of feedback inhibition relates to the endogenous function of the receptor, which is 

both a consequence of the receptor itself and the availability of its ligand as it is 

physiologically released. In order to probe receptor-ligand interactions, antagonists are used, 

compounds that disrupt the relationship between the receptor and its endogenous ligand. A 

few receptors in the presence of overwhelming ligand may have the same functional effect 

as many receptors activated by scant ligand. In addition, serotonin released during behavior 

may have unique local concentrations and kinetics that could regulate receptors in ways that 

are not mimicked by an agonist, or for that matter by nonphysiological neuronal activation. 

Thus, there is a fundamental difference between agonist-based studies that investigate 

receptors and antagonist-based studies that investigate receptor-ligand interactions. 

Pointedly one may not predict the other.

Many agonist-based studies provide convincing evidence for 5-HT1A desensitization after 

chronic exposure to high levels of extracellular serotonin. For example, repeated 

administration of the SSRI fluoxetine decreases the sensitivity of dorsal raphe serotonin 

neurons to 5-HT1A agonists as measured with single cell electrophysiology.6,7,13,14 

Fluoxetine treatment attenuates the ability of 5-HT1A agonists to decrease in forebrain 

serotonin release measured by microdialysis.8,15–17 In addition, fluoxetine treatment 

attenuates 5-HT1A autoreceptor-stimulated second messenger activation in the dorsal raphe.
9,18–20 Many of these same effects have been observed in a model of life-long elevated 

extracellular serotonin where mice lack functional SERT, SERT-knockouts (KOs).21,22

Inhibition can be difficult to measure because the output can be silent. However, when 

inhibition is blocked an output of disinhibition can be measured. By disrupting receptor-

ligand interactions with a 5-HT1A antagonist, typically WAY-100635, feedback inhibition 

can be blocked and levels of disinhibition studied. In normal mice and rats, the effects of 

WAY-100635 on most end points can be subtle or difficult to detect, suggesting a modest 

function of 5-HT1A receptors under normal conditions. However, in the SERT-KO, 

WAY-100635 has robust effects. For example, WAY-100635 strongly increases single unit 

activity recorded in the dorsal raphe nucleus in the SERT-KO indicating that WAY-100635 is 

disinhibiting raphe neurons by blocking 5-HT1A receptor-dependent feedback inhibition.23 

Also in the SERT-KO mouse, pharmacologic evidence caused Fox and colleagues to propose 

the existence of maintained 5-HT1A-mediated feedback inhibition.24
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Also using the SERT-KO our lab found evidence for presence of 5-HT1A dependent 

feedback inhibition using a slightly different approach. We studied the ability of 

WAY-100635 to disinhibit serotonin neurons as measured by expression of the immediate 

early gene product Fos, a marker of cellular activation. That is, we measured the appearance 

of Fos within serotonin neurons after feedback inhibition was blocked by WAY-1000635. In 

the SERT-KO WAY-100635 treatment caused a massive increase of Fos expression in 

serotonin neurons, more than in any other paradigm studied.25

In contrast to modest effects in normal rodents, WAY-100635 also had substantial behavioral 

effects in the SERT-KO acting like an antidepressant in the forced swim test.25 Thus, 5-

HT1A mediated feedback inhibition appears functional despite the desensitization of 5-HT1A 

receptors in this mouse model.

Feedback inhibition mediated by 5-HT1A receptors has more than one mechanism.26 

Serotonin neurons themselves express high levels of 5-HT1A receptors, referred to as 

autoreceptors. However, 5-HT1A receptors are also present in forebrain areas where they can 

activate multisynaptic feedback inhibition of serotonin neurons. Thus, when WAY-100635 is 

administered systemically, as in many of the preceding studies, action at 5-HT1A 

autoreceptors is very likely, but indirect mechanisms are possible. Worth noting is that there 

is additional evidence that 5-HT1A autoreceptors specifically continue to provide feedback 

inhibition in the SERT-KO. That is, Araragi and colleagues27 using electrophysiological 

approaches found evidence for desensitization in a reduced response of raphe neurons to a 5-

HT1A agonists, but they also found continued 5-HT1A autoreceptor-mediated inhibition of 

serotonin neurons. They concluded that the magnitude of desensitization of 5-HT1A 

autoreceptors does not necessarily translate to the degree of inhibition these receptors exert 

over serotonin raphe neurons.27

SERT-KO mice are an extreme model for studying the effects of elevated extracellular 

serotonin and thus may not be representative of chronic SSRI treatment. Two weeks of 

fluoxetine treatment in rats may be a model of greater face validity. That is, with initial 

treatment of fluoxetine, firing rate of serotonin neurons is depressed, but after a few weeks 

of treatment this baseline rate returns to normal. Using an experimental protocol for 

extended fluoxetine treatment where others had found that firing rate normalized,6 we found 

that WAY-100635 still caused a profound increase in Fos expression in serotonin neurons.28 

Thus, the pharmacological treatment over weeks mimicked the effects seen after life-long 

increases in extracellular serotonin indicating that feedback inhibition persists in both 

models of sustained extracellular serotonin. This finding is consistent with others; for 

example, Arborelius and colleagues found that a 5-HT1A antagonist disinhibited raphe 

neurons after chronic exposure to citalopram.29

These observations would suggest that the desensitization of 5-HT1A autoreceptors and 

restoration of baseline firing rate of serotonin neurons are coincidental, not causative. That 

is, it is a mistaken idea that loss of feedback inhibition causes restoration of baseline firing 

because feedback inhibition remains functional. This suggests that there are compensatory 

changes occurring in parallel that over-ride feedback inhibition to restore baseline-firing 

rate. The continued presence of feedback inhibition is perhaps not a complete surprise as it 
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is long been known that 5-HT1A autoreceptor desensitization is only partial and reflects a 

shift in the dose-response curve that can be overcome with increasing agonist concentration.
6 Indeed, ultrastructural studies have found that 5-HT1A autoreceptors continue to have 

presence on the plasma membrane of neurons within the raphe nucleus after sustained 

antidepressant treatment although their trafficking in response to agonist treatment is altered.
30

Since the desensitization hypothesis was proposed there’s been a considerable increase in 

the understanding of mechanisms that can take part in homeostatic plasticity that may 

underlie the return of baseline firing rate, and there are many.31 That is, 5-HT1A receptors do 

not change within a static background, rather there are a host of cellular changes, both 

within individual serotonin neurons and their networks, that could contribute to the 

restoration of baseline firing rate. Chronic exposure to SSRIs can induce changes in 

expression of trophic factors, intracellular signal pathways, excitability, microcircuitry and 

neurogenesis.32–36 The observation that the most promising fast-acting antidepressant 

candidates interact with glutamate neurotransmission37 raises the possibility that slowly 

induced plasticity in glutamatergic synapses produced by SSRIs could contribute to 

therapeutic efficacy. Serotonin neurons in the dorsal raphe nucleus innervate, and receive 

return glutamatergic innervation from cortical areas implicated in depression.38 In addition, 

extended but not acute exposure to citalopram leads to an increase in strength of 

glutamatergic synapses onto serotonin neurons, an adaptation that could hypothetically 

override continuing feedback inhibition.36 Thus, a tenable hypothesis is that restoration of 

baseline firing rate is caused by increased glutamatergic excitation of serotonin neurons, 

which could superseed ongoing feedback inhibition.

It is important not to discount the potential importance of 5-HT1A receptor-dependent 

feedback inhibition and 5-HT1A receptors as a therapeutic target. For example, it remains 

possible that feedback inhibition of serotonin neurons contributes to poor treatment 

response. This would be consistent with the results of one of the most careful genetic studies 

on the topic. Richardson-Jones and colleagues tested the effect of selective knockdown of 5-

HT1A autoreceptors on behavior in mice.39 They found that mice with initially low levels of 

5-HT1A autoreceptors responded well to fluoxetine. However, the eventual desensitization of 

5-HT1A receptors did not predict treatment response. Thus, mice with higher levels of initial 

expression remained refractive to treatment even after desensitization occurred. Only the 

state of 5-HT1A receptors before treatment with fluoxetine started was important, not the 

extent of desensitization.

The insight that receptor sensitization state and feedback inhibition do not have a linear 

relationship may be relevant to understanding additional observations in the literature. In 

particular, desensitization of 5-HT1A receptors has been also reported as a consequence of 

depression alone, both in humans and in animal models, an observation hard to reconcile 

with the desensitization hypothesis. For example depressed patients have been reported to 

have blunted hormonal response to administration of the 5-HT1A receptor agonist 

ipsapirone, suggesting reduced hypothalamic receptor sensitivity.40–42 In addition, some 

studies have reported reduced 5-HT1A receptor binding potential in the dorsal raphe for 

individuals with unipolar and bipolar depressive disorder.42,43 Likewise, in several rodent 
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models, including rat inescapable shock model,44 chronic mild stress model,45–48 chronic 

sleep restriction,49 and maternal separation,50 evidence for desensitization of 5-HT1A 

receptors has been reported. In addition, chronic fluoxetine treatment caused a greater level 

of desensitization in a chronic-corticosterone treatment model of depression than in control 

mice.51 This desensitization provides a unique insight into the adaptive changes of serotonin 

neurons and may be functionally important, but it might not intuitively predict the state of 

feedback inhibition or serotonin neuron function.

We investigated how feedback inhibition functions in a model relevant to depression and as a 

consequence of chronic fluoxetine treatment, independently and in combination. Using a rat 

maternal separation model, we found that the WAY-100635 effect was slightly attenuated 

compared to control-reared rats, which might be consistent with loss of 5-HT1A receptor 

function.28 However, when maternally separated rats were treated with fluoxetine for 2 

weeks, the effect of WAY-100635 was considerably more pronounced then in control-reared 

rats receiving fluoxetine. That is, it seemed feedback inhibition was greatest in fluoxetine-

treated maternally separated rats.28 These studies indicate the need for a deeper 

understanding of changes that occur in serotonin neurons in models of depression and as a 

consequence of antidepressant treatment.

Considerable evidence suggests 5-HT1A receptors are important for mood disorders 

including depression and anxiety. They provide feedback regulation of serotonin neurons as 

well as direct influence of forebrain circuits to play an important role in mood disorders and 

treatment response.39,52–57 Moreover, their function both during development and in 

adulthood has proven crucial to normal behavior.39 Thus, 5-HT1A receptors are important 

therapeutic targets. However, there is direct evidence for continuing 5-HT1A receptor-

dependent feedback inhibition of serotonin neurons after sustained exposure to high levels of 

extracellular serotonin indicating this is unlikely to explain the eventual efficacy of 

antidepressants. A better understanding of feedback inhibition would improve insight into 

the neurobiological basis of depression and the mechanism of action of common 

antidepressants.
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