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Abstract

Diffuse midline glioma (DMG) is a highly malignant childhood tumor with an exceedingly poor
prognosis and limited treatment options. The majority of these tumors harbor somatic mutations in
genes encoding histone variants. These recurrent mutations correlate with treatment response and
are forming the basis for molecularly guided clinical trials. The ability to detect these mutations,
either in circulating tumor DNA (ctDNA) or cerebrospinal fluid tumor DNA (CSF-tDNA), may
enable noninvasive molecular profiling and earlier prediction of treatment response. Here, the
authors review ctDNA and CSF-tDNA detection methods, detail recent studies that have explored
detection of ctDNA and CSF-tDNA in patients with DMG, and discuss the implications of liquid
biopsies for patients with DMG.
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DIFFUSE midline gliomas (DMGs) are highly malignant childhood tumors with poor
clinical outcomes. The anatomical location of these lesions, the majority of which are found
in the brainstem, often precludes attempts at resection (Fig. 1). Thus, treatment often
consists of fractionated radiation therapy (RT).” Several chemotherapy regimens have been
trialed with minimal benefit achieved.>? Given the paucity of treatment options for these
patients, molecularly informed targeted therapies are being actively investigated.

DMGs are characterized by recurrent somatic mutations in the genes encoding histone H3
variants. Mutations in H3F3A, encoding H3.3, and in H/ST1H3B, encoding H3.1, are found
in the majority of pediatric DMG, with the substitution of lysine 27 to methionine (K27M)
in H3.3 or H3.1 reported in up to 80% of DMG.4756 Tumors with H3 mutations are more
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aggressive and demonstrate worse responses to treatment, allowing molecular profiling to
inform treatment planning and patient counseling.3 Several recent studies of pediatric brain
tumors have demonstrated the feasibility of molecular profiling of biopsy tissue in order to
guide treatment decisions.8:2324.4244 patients with DMG were more likely to have
molecular features that changed management decisions than patients with other tumor types.
30 In light of these studies, consensus guidelines were recently released, recommending
tumor next-generation sequencing (NGS) of cancer-related genes for pediatric high-grade
glioma patients in addition to immunohistochemistry (IHC) of H3K27M for DMG.30
Increasing the availability of tumor tissue for molecular profiling is a key step forward in
enabling targeted therapies for DMG patients. Historically, offering surgical biopsies to
these patients was controversial given an uncertain risk-benefit tradeoff. However, with
possible targeted therapies and a prospective multicenter study demonstrating the safety of
neurosurgical biopsy for DMG,16 the historical paradigm has begun to shift.

Alternatives to neurosurgical biopsy for DMG patients are beginning to emerge. Specifically,
the sampling of cerebrospinal fluid (CSF) and peripheral blood to detect tumor mutations
offers diagnostic and prognostic leverage without the risks associated with a neurosurgical
procedure. We review these recent developments in “liquid biopsy” for DMG, providing an
overview of circulating tumor DNA (ctDNA) and CSF tumor DNA (CSF-tDNA) and
methods of detecting these molecules. We further detail the recent studies that have
demonstrated the feasibility of detecting ctDNA and CSF-tDNA in patients with DMG and
provide a framework for incorporating these assays into the clinical care of DMG.

We restricted the scope of this review to the detection of cell-free DNA (cfDNA) molecules
in the blood or CSF. Other liquid biopsy approaches (e.g., cell-free RNA, circulating tumor
cells, circulating proteins) are well described in a recent review by Bonner and Bornhorst et
al.2 We searched the PubMed/MEDLINE electronic database and the references of relevant
articles for English-language articles published up to August 1, 2019. To identify ctDNA
publications related to DMG, the following search phrase was employed: “(DMG OR DIPG
OR “diffuse glioma” OR “diffuse intrinsic pontine glioma” OR “diffuse midline glioma”)
AND (cfDNA OR “cell free” OR “cell-free” OR ctDNA OR “circulating DNA” OR “liquid
biopsy” OR “plasma DNA” OR *“circulating tumor DNA” OR “circulating tumour DNA”).”
To identify CSF-tDNA publications related to DMG, the above Boolean phrase was
modified to “(DMG OR DIPG OR “diffuse glioma” OR “diffuse intrinsic pontine glioma”
OR “diffuse midline glioma™) AND (“cerebrospinal fluid” OR CSF).” Articles describing
results of ctDNA or CSF-tDNA assays in the blood or CSF of DMG patients were retained

(Fig. 2).

Overview of ctDNA and CSF-tDNA

Cell-free DNA is composed of nuclear DNA released into the peripheral blood by dying
cells and circulates as short fragments between 170 and 340 bp in length.17:51 Circulating
tumor DNA, the fraction of cfDNA that originates from the tumor, holds promise as an
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emerging cancer biomarker for both the genotyping of tumors and the detection of disease
during or after therapy.117:19:36 particularly when assessing serially collected samples, the
noninvasive nature of ctDNA acquisition offers considerable advantages over biopsies and
allows for robust monitoring of tumor response to therapy.>17:54 Furthermore, ctDNA
summarizes the entirety of the tumor, reducing bias associated with spatial heterogeneity
and metastatic disease.>* Applications of ctDNA have been explored in a number of cancers,
notably lymphoma, lung cancer, and colorectal cancer; however, there have been relatively
fewer studies exploring ctDNA in the context of central nervous system (CNS) tumors.

Detection of ctDNA from CNS malignancies remains difficult. The blood-brain barrier
remains a formidable obstacle isolating the CNS from the peripheral circulation.
Furthermore, as ctDNA quantitation relies on the accuracy of somatic variant identification
to interrogate the circulating tumor burden, the relatively low mutational burden in CNS
tumors complicates ctDNA assessment. This conundrum is even more pronounced in
pediatric brain tumors, which have been shown to carry approximately 10-fold fewer coding
mutations.1® In these patients, tumor-derived DNA fragments spanning a somatic mutation
are exceedingly rare, likening the problem of tumor detection to “finding a needle in a
haystack.”

The use of CSF-tDNA circumvents this dilemma by reducing the size of the proverbial
haystack. The CNS, while not as immune-privileged as once believed, is home to far fewer
myeloid, epithelial, and endothelial cells than the rest of the body. By reducing the mass of
cfDNA originating from myeloid, epithelial, and endothelial derivatives, which constitute
more than 95% of peripheral blood cfDNA in healthy individuals, the fraction of CSF-tDNA
that is tumor derived can be greatly enriched.#? Early CSF-tDNA studies demonstrated
improved sensitivity compared to peripheral blood ctDNA and recapitulated tumor response
to treatment using quantitation of the CSF tumor burden.10:3341.55 More recent
investigations profiling WHO grade 11-1V gliomas using CSF cfDNA obtained through
lumbar puncture comprehensively characterized somatic alterations associated with the
pretreatment sample and uncovered temporal evolution of the tumor genome during therapy
in a subset of the cohort.31

Methods of ctDNA and CSF-tDNA Detection

As with the genotyping of nuclear DNA, ctDNA and CSF-tDNA can be profiled to assess
the mutational landscape, structural alterations, and tumor burden. Multiple high-throughput
sequencing approaches have evolved to allow for accurate and scalable interrogation of
nucleotide content, including digital polymerase chain reaction (PCR),11-13.53 amplicon
sequencing,1422 hybrid capture sequencing,3¢:37 whole-exome sequencing (WES),3 and
whole-genome sequencing (WGS).18:26 An overview, including advantages and
disadvantages of these methods, is provided in Table 1.

Digital PCR harnesses in vitro PCR to quantitate target sequences within an input mass of
DNA fragments by detecting the presence of fluorescence in individual partitions of the
original sample after amplification.#3°3 Methods that generate nanoliter-scale water-oil
emulsions called “droplets” prior to amplification can be grouped under the category of
“droplet digital PCR” (ddPCR), a process that has markedly increased the scalability of
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digital PCR.%3 In contrast, “NGS” refers to a broad range of highly scalable approaches built
off the principles of Sanger sequencing. Fundamentally, these can be broken down into
hybridization-based, amplicon-based, and whole-genome approaches. Sequencing scope can
range from a few hundred base pairs to the entirety of the genome.2” Hybridization-based
approaches utilize hybridization probes aligning to a predefined set of genomic coordinates
to isolate DNA fragments spanning regions of interest.29:38 An alternative approach,
amplicon sequencing, interrogates amplicons generated from PCR using paired probes
flanking regions of interest.46 These approaches are further summarized in Table 1.

More specifically, each of these approaches has advanced in numerous ways to create a
diverse spectrum of options for ctDNA and CSF-tDNA profiling. The development of
BEAMIing (beads, emulsion, amplification, magnetics) in the early 21st century further
enhanced emulsion-based ddPCR by capturing PCR products on superparamagnetic beads.13
In contrast to emulsion digital PCR, a downstream flow cytometry step of the fluorescently
tagged bead-DNA output allows for the precise determination of mutant DNA from wild-
type fragments.11-13 “NGS” is an umbrella term that spans a multitude of chemical
approaches, including methods based on sequencing by synthesis and sequencing by
ligation, the specifics of which are beyond the scope of this review.#8 Notably, the scope and
scale of NGS is highly flexible for both genotype discovery and recovery. Applications of
NGS include deep sequencing of select regions, which can range from hundreds of base
pairs to the entirety of the exome to shallow coverage of the full genome. This flexibility
allows for a broad range of applications ranging from the recovery of rare mutations in
samples with low tumor content to the comprehensive profiling of point mutations, structural
alterations, and copy number alterations across the genome.*8

CSF-tDNA for DMG

Our literature review returned 4 publications that reported the results of CSF-tDNA assays in
diffuse gliomas.21:29: 3949 \We describe these studies in the order in which they were
published.

Huang et al. analyzed archival CSF from 11 patients with pediatric brain tumors, including 6
patients with DMG (diffuse intrinsic pontine glioma [DIPG], n = 4; thalamic anaplastic
astrocytoma, n = 2).21 CSF was collected (volume range 0.4-2 ml) either by placement of a
CSF diversion device (ventricular shunt, external ventricular drain, or indwelling CSF
reservoir, 2/11) or by accessing an existing CSF diversion device (9/11 [82%]). cfDNA
concentrations isolated from the CSF of the DMG patients ranged from 10 to 280 ng/ml.
Two independent techniques to detect H3 mutations in the CSF were employed: Sanger
sequencing of H3F3A and H/IST1H3B, and nested PCR with primers specific to H3F3A
c.83A > T transversion (H3.3K27M). The authors reported sufficient DNA (accounting for
quality and quantity) for analysis of 5/6 DMG samples by nested PCR and 3/6 samples by
Sanger sequencing. The PCR strategy resulted in detection of the A3F3A mutation in 4/5
samples, while Sanger sequencing detected H3F3A mutations in 2/3 samples. Concordance
of CSF-tDNA mutation status was confirmed by IHC or Sanger sequencing of matched
tumor biopsy DNA in 3/3 DMG patients with available tissue.?!
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Martinez-Ricarte et al. investigated detection of CSF-tDNA in a series of 20 diffuse gliomas,
including 3 cases with DMG (pediatric, n = 2).2% Two milliliters of CSF were collected from
these patients by lumbar puncture. cfDNA concentrations isolated from the CSF of the DMG
patients ranged from 4.8 to 37.5 ng/ml. For non-DMG diffuse gliomas, the authors
performed amplicon sequencing of /DH1, IDHZ, ATRX, and 7P53. However, for DMG
patients, ddPCR assays for H3F3A K27M and HISTIH3B K27M were designed and applied
to tumor DNA, germline DNA from peripheral blood lymphocytes, and CSF-tDNA. H3F3A
K27M was detected in the CSF of all 3 DMG patients, with variant allele fractions (VAFs)
ranging from 7% to 17.3%.2° Stallard et al. also used a ddPCR approach to detect mutant
H3F3A K27M in the CSF of 4 pediatric brain tumor patients (DIPG, n = 2; glioblastoma
[GBM], n = 2).49 In the 2 DIPG patients, VAFs were markedly higher (43% and 65%) than
those in the ddPCR-based study by Martinez-Ricarte et al. Notably, while Martinez-Ricarte
et al. collected CSF via lumbar puncture, Stallard et al. collected CSF directly from the
ventricles (Rickham reservoir, n = 1; endoscopic third ventricle, n = 1). This point is further
reinforced by the finding of Stallard et al. via multifocal sampling of CSF from the autopsy
of a DIPG patient—the quantity of K27M copies was twice as high in lateral ventricle CSF
than in lumbar puncture CSF.49

Pan et al. took a different approach, using a 68-gene NGS panel covering specific brain
tumor—related genes.3? They applied this panel to profile tumor DNA, germline DNA, and
CSF-tDNA from 57 patients with brainstem tumors. Their cohort included 12 pediatric
patients with grade 1V tumors (DMG, n = 3; pontine GBM, n = 9). CSF was obtained by
ventriculoperitoneal shunt, during resection, or by lumbar puncture. These authors reported
detection of H3F3A mutations in the CSF-tDNA of 3/3 DMG and 8/9 pontine GBM cases.
In the pontine GBM case without H#3F3A mutations detected, a A/ST1H3B mutation was
detected in the CSF-tDNA. The median H3F3A CSF-tDNA VAF was 35.6% (IQR 19.2%—
45.4%). The authors also attempted to detect mutations in the peripheral blood of a subset of
their entire cohort (n = 8; DMG, n = 1). No ctDNA was detected in the DMG patient, and
overall the sensitivity of their assay was markedly lower in peripheral blood than in CSF.3?

ctDNA for DMG

We identified one recent publication reporting the results of plasma ctDNA assays in DMG.
40 panditharatna et al. applied an H3K27M ddPCR assay to CSF and plasma samples from
48 DMG patients (79% with H3.3K27M, 15% with H3.1K27M) through an ongoing clinical
trial (NCT02274987). The authors detected CSF-tDNA in 3/4 patients at the initial
collection time and in 19/21 patients postmortem. Histone mutations were detected in the
upfront/diagnostic plasma sample of 16/20 patients with known H3K27M mutations.
H3K27M ctDNA was detected in 2 additional patients at a post-RT point. As anticipated,
VAF in the CSF was significantly higher than in matched plasma samples. The
comparatively lower ctDNA levels in plasma, compared to CSF, underscore a key limitation
to the use of peripheral blood instead of CSF to monitor the disease status of patients with
CNS tumors.

Beyond demonstrating the feasibility of detecting H3K27M mutations in plasma,
Panditharatna et al. provided initial data describing how serial ctDNA sampling can be used
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to monitor treatment response.? They showed that ctDNA levels in DMG appear to
decrease following RT and may correlate with decreased post-RT tumor volume on MRI.
These authors present an additional compelling vignette of a different DMG patient with
progression on panobinostat and mebendazole, suggested by an increasing H3K27M VAF.
They then observed a decreasing H3K27M VAF after enrollment in a different clinical trial,
potentially suggesting response to therapy.

Clinical Utility of ctDNA and CSF-tDNA for DMG

The utility of detecting tumor-associated cfDNA in the blood or CSF of DMG patients falls
into two general categories: minimally invasive molecular profiling and longitudinal
monitoring. In light of recent guidelines3? recommending tumor NGS of cancer-related
genes for pediatric high-grade glioma patients, less invasive means of genotyping are
warranted. While tumor tissue is likely to remain the gold standard, neurosurgical biopsy is
never without risk and may not be available to all DMG patients. For DMG patients, there is
clear benefit in ascertaining H3K27M status and, in the future, potentially additional genetic
information that could be used to drive therapeutic choices. The ability to reliably determine
these data through venipuncture or lumbar puncture would likely expedite the care of these
patients. Moreover, it would facilitate enrollment in future clinical trials for DMG patients,
as many recent or upcoming trials require knowledge of H3K27M status (NCT02960230,
NCT02274987, NCT01182350). The feasibility of obtaining this information was
demonstrated in a recent DIPG pilot trial, in which detection of H3F3A or HISTIH3B
K27M mutations in peripheral blood using ddPCR was successful in 92% of H3K27M-
mutant cases.3* A key limitation of using mutation-specific ctDNA assays such as ddPCR is
that molecular information about the remainder of the exome or genome, which could
potentially influence treatment decisions, is unavailable. Approaches to ctDNA that survey
greater swathes of the genome, such as targeted sequencing panels,3” WES,28 low-pass
WGS,32 or hybrid approaches,59 offer avenues to overcome this limitation.

In addition to minimally invasive molecular profiling, monitoring the response to therapy is
a key application of ctDNA and CSF-tDNA for patients with DMG. Panditharatna et al.
began to explore this in their study of CSF-tDNA and ctDNA,*0 but further studies are
required. The use of serial ctDNA measurements in diffuse large B-cell lymphoma
(DLBCL)? has recently been shown to enable superior prediction of patient outcome and
could be used to guide treatment decisions longitudinally. While the treatment lines for
DMG are markedly more limited than in DLBCL, a parallel paradigm does exist.
Specifically, disease status could be monitored sequentially using CSF sampling or
venipuncture. Serial CSF sampling has been a long-standing part of care for some pediatric
malignancies, such as medulloblastoma, where cytology is utilized to assess disease status
and response to therapy. In addition, CSF-tDNA or ctDNA levels may be able to
demonstrate early disease progression that may not be radiographically detectable and would
enable modifications of the treatment regimen or enrollment into a clinical trial. We
illustrate this paradigm using a hypothetical DMG patient vignette in Fig. 3. The utility of
ctDNA for this purpose has been demonstrated in other malignancies such as colon and lung
cancer, where ctDNA changes precede clinical and radiographic progression by 5 or more
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months.#> In lung, breast, and other advanced cancers, ctDNA-guided trials are beginning
to emerge (NCT02284633, NCT02743910).4°

Conclusions

The treatment options for patients with DMG, unfortunately, remain limited. However, the
advent of targeted and cell-based therapies provides reason for cautious optimism. The
ability to less invasively obtain molecular information via ctDNA or CSF-tDNA to aid in
prognostication and treatment decision-making may afford a significant step forward for
patients and families. Improved monitoring of therapy response and early allocation to
molecularly informed clinical trials represent important potential benefits of regularly using
CtDNA or CSF-tDNA in the care of patients with DMG.
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FIG. 1.
Axial MR images obtained in a patient with a newly diagnosed brainstem glioma: T1-

weighted postcontrast (A), T2-weighted (B), and FLAIR (C).
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Records identified through
PubMed search until
8/1/2019 (N=33)

Records after duplicates
removed and screening
(N=29)

Full-text articles assessed

for eligibility
(N=29)
Full-text articles excluded
> - Casereport (N=5)
- Review (N=4)
A4 - Non-ctDNA, CSF-tDNA (N=15)

Studies included in
qualitative synthesis
(N=5)

[ Included ][ Eligibility ][ Screening ][Identification]

FIG. 2.
PRISMA flowchart illustrating literature review strategy, including included and excluded

articles. Excluded full-length papers were review articles (n = 4) or case reports (n = 5) or
did not describe results of ctDNA or CSF-tDNA assays in DMG (n = 15).
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FIG. 3.

Hypothetical vignette illustrating the use of ctDNA in a DMG patient to guide therapeutic
decision-making. Dx = diagnosis; ND = not detected; XRT = radiation therapy.
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