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Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious
diseases. The different classes of antibody libraries are classified based on the source of repertoire used to gener-
ate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an
infectious agent. Antibodies derived from immune libraries are distinct from those derived fromnaïve libraries as
the host's in vivo immunemechanisms shape the antibody repertoire to yield high affinity antibodies. As the im-
mune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer
more than just infection-specific antibodies but also antibodies derived from thememory B-cellsmuch like naïve
libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and
un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage
of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks
at the diverse nature of antibody responses for immune library generation and discusses the extended potential
of a disease-specified immune library in the context of phage display.
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1. Introduction

The threat posed by emerging and re-emerging infectious diseases
has highlighted the need to develop novel prophylactic and therapeutic
strategies to overcome these infections. Moreover, emergence of
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multidrug-resistant organisms has spurred the need to develop alter-
nate strategies to the standard antibiotics therapy regime. One such
strategy is the use of human monoclonal antibodies (mAbs) that can
function both in a prophylactic and therapeuticmanner [1]. The breadth
of mAb application in this area has seen a rapid increase of mAb trials
over the past decade for awide range of pathologies including infectious
diseases [2]. The development of antibody display technologies such as
phage display [3–5], yeast display [6], mRNA display [7], ribosome dis-
play [8], bacterial display [9–11] and mammalian cell surface display
[12] have aided the rapid development of newmAbs. The basic principle
of these in vitro selection technologies stems from the physical link be-
tween phenotype (displayed antibody construct) and genotype (anti-
body genes) tethered to the carrier particle [13]. Even with the
availability of different display methods, phage display is widely
regarded as the preferred approach for antibody display.

The general requirement for a successful mAb selection process is
the existence of a diverse combinatorial repertoire of antibody genes
from which to select. This collection of antibody genes is commonly re-
ferred to as an antibody library [14]. Antibody libraries can be distin-
guished by the source of antibody genes used for display. This ranges
from naïve (healthy individuals), immune (infected or immunized indi-
viduals), synthetic (chemically synthesized) and semi-synthetic (amix-
ture of natural immune and chemically synthesized genes) libraries
[14–16]. The development of human antibody libraries requires B-cells
obtained from human donors which sometimes represents a bottleneck
due to the specific characteristics of the samples needed such as source
of the B-cells, and the strict regulation in terms of human biological
samples usage in research. Apart from humans, animals are also a valu-
able source of B-cells for antibody library generation. In the context of
infectious diseases, immune libraries are very attractive options as
they are designed tomirror the immune response of an infected individ-
ual or immunized animal, reflecting the biased repertoire of antibody
genes specific to that infection. This is only true in the case where the
B-cells can elicit an immune response to the infection. Therefore, the na-
ture of the immune response to a particular infection is the key to the
design of an immune antibody library and shapes the utility, quality,
and versatility of the library [17]. However, immune antibody library
repertoires constructed in vitro by combinatorial mixing of immuno-
globulin genesmay not entirely reflect the true nature of the natural an-
tibody repertoire as the random pairing of heavy and light chains may
result in non-functional antibody clones with incorrect folding [18].
Here we review how the immune response to different infections can
influence the identification of anti-infectives from an immune library
perspective and refines the considerations of repertoire representation
by immune antibody libraries for phage display.

2. Immune antibody library repertoires

B-cells, as a major component of the immune system safeguarding
our body from harmful antigens, are constantly at work, producing an-
tibodies prior to and following the occurrence of infection. The reper-
toire of antibodies in a healthy state is diverse enough to generate a
response against new infections as well as to remember old encounters.
This principal feature of B-cells is possible with the diverse repertoire
attained from two primary mechanisms, being V(D)J recombination of
the variable (V), diversity (D) and joining (J) gene segments and so-
matic hypermutation (SHM) [19,20]. This includes to a lesser extent un-
conventional secondary mechanisms that also increase diversity of the
antibody repertoire including non-standard recombination that
breaches the 12/23 rule of recombination, SHM-associated genetic in-
sertions and deletions, direct antigen contact by non-complementarity
determining regions (non-CDRs) of antibody, post-translationalmodifi-
cations, conformational heterogeneity and employment of non-protein
cofactors [20,21]. These mechanisms together contribute to the diverse
variations within the antibody CDRs, which form the primary antigen
binding site. The events leading up to the generation of a mature
antibody gene are also multifaceted as the recombination of multiple
variable genes furnishes a large combinatorial diversity to start with
and is further expanded with varying heavy (VH) and light (VL) chain
combinations (Fig. 1) [21]. Since SHM and related mechanisms are elic-
ited upon encountering an antigen, exposure to an infection would in-
fluence the resulting repertoire as the antibody repertoire would be
biased and shaped to combat the invading pathogen.

Despite that the repertoire of an immune antibody library offers bet-
ter prospects in isolating disease-specific binders, the majority of the
current phage-displayed antibody approaches focus primarily on the
use of naïve repertoires to generate mAbs against infectious diseases,
as evident in the majority of the US Food and Drug Administration
(FDA) and European Medicines Agency (EMA)-approved phage
display-derived mAbs [22]. The reason is mainly attributed to technical
and cost implications rather than immunological characteristics. A naïve
library, due to theunbiased nature of its repertoire,makes it ideal for the
generation of antibodies against virtually any target molecule
[15,23,24]. From a utility point of view, naïve library is a preferred
single-pot library type for antibody development as it can be ‘recycled’
for multiple diseases as opposed to a disease-specific immune library
which would have to be generated for each new disease. Further, the
construction of multiple disease-specific libraries would face the addi-
tional challenge of obtaining proper clinical samples for each disease
in addition to the constraints on the number of new libraries that can
be reasonably generated. The affinity of antibodies obtained from
naïve libraries has been reported to be weaker compared to immune li-
braries due to the lack of in vivo affinity maturation [25]. This would
mean further downstream in vitro affinity maturation processes would
have to be carried out. Considering the cost implication, time and effort
to generate sub-libraries for a particular clone, having a lower affinity
antibody from the naïve library is seen as a small compromise for the
broader specificity contained therein.
2.1. Isotype-specific repertoire

The major challenge for library construction is the actual design
strategy used for antibody generation. Since the majority of libraries
are generated using a primer combination targeting the variable gene
segment and the junction gene segment [26,27], no actual discrimina-
tion in terms of isotype responses is made unless isotype-specific re-
verse primers are used for repertoire generation. However, there is a
clear benefit to the use of isotype-specific repertoires for immune li-
brary generation [28,29]. Analyzing this concept froman immunological
standpoint: as B-cells are activated, class-switch recombination (CSR)
occurs to allow switching of antibody production in an immature B-
cell from IgM or IgD to isotypes IgG, IgA or IgE. IgG is further classified
into four subclasses (IgG1, IgG2, IgG3 and IgG4)while IgA is further clas-
sified into two subclasses (IgA1 and IgA2) [30]. The CSR event is depen-
dent on the T helper (Th) cell response, which is dependent on the
nature of antigen aswell as the primary invasion path [31]. To efficiently
combat invading antigens, each of the isotypes possess a distinct role
and distribution site in the body [32]. IgG is the most abundant isotype
in plasmawhich is responsible for protection against extracellular infec-
tion [32]. IgA, the second most abundant immunoglobulin in plasma,
also predominant in mucous secretions, may reflect the primary infec-
tion atmucosal surfaces [33–35]. IgE is the least abundant immunoglob-
ulin in plasma which bound strongly to mast cells predominate under
skin andmucosa layer [32]. Increase in IgE level is associated to parasitic
infections such as helminth and protozoan infections [36,37]. The
isotypes and subclasses can also reflect the progression and stage of in-
fection, as demonstrated in the changes of the antibody population in
early and late infection of measles [38,39] and human herpes virus 6
(HHV-6) [40,41]. Therefore, the choice of immunoglobulin isotype for
repertoire generation based on the infection pathway and the infection
stage are important aspects for immune library design as isotype-



Fig. 1. Schematic diagram of monoclonal antibody generation from sampling to isolation of antibodies. (A) The antibody from mature B-cells of a healthy donor is referred for a naïve
repertoire. Upon infection or immunization, the mature B-cells is activated to produce plasma B-cells and memory B-cells. This antibody pool is referred to as immune repertoire.
(B) The natural antibody repertoire in a healthy individual is diversified via V(D)J recombination, and this represents a naïve antibody library repertoire. Upon infection or
immunization, the natural antibody repertoire undergoes somatic hypermutation (SHM), class switch recombination (CSR) and a series of secondary mechanisms to form an immune
antibody repertoire. (C) While the recombination of immunoglobulin genes in the variable region are primarily responsible for the diversity of the antibody repertoire, random
combination of the heavy (VH) and light (VL) chain during library construction further enlarges the diversity of a library repertoire. (D) The diverse VH/VL gene pairs are then displayed
on phages to form an antibody library. The phages are exposed to antigen immobilized on various surfaces for selection, usually subjected to 3–5 rounds of selection process. The final
pool of antibodies is analyzed through monoclonal ELISA to isolate out monoclonal antibodies with high specificity.
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specific gene sampling enables the collection of the most effective anti-
body repertoire.

2.2. Combinatorial repertoire

An immune antibody library can be constructed either in a non-
combinatorial or combinatorial manner. A non-combinatorial library
uses the original VH/VL pairing in a single B-cell whereas a combinatorial
library relies heavily on random combinatorial mixing of the heavy and
light chain repertoire [18]. The antibody gene repertoire available in an
immune setting would provide a cocktail of sequences present during
pre- and post-infection with a higher degree of gene complexity post-
infection due to affinity maturation [42]. The repertoire from a post-
infection environmentwould result in a repertoire that is biased against
the infection. However, the combinatorial strategy will add complexity
to the actual enriched gene representation by random pairing of heavy
and light chain proteins to yield a final immune library repertoire [43].
Such an approach would lead to the generation of natural as well as un-
natural VH/VL combinations which could result in functional or non-
functional folding of cloneswithin the library. In the context of antibody
discovery, having both VH/VL gene pairings that are natural and unnat-
ural in combination may expand the functional diversity of the library.
Alternately, unnatural VH/VL pairing and CDR packing can also result
in misfolding that can lead to aggregation of the antibody, rendering
them ineffective [15].

2.3. Single variable domain antibody repertoire

As antibodies from mice and humans consist of two variable do-
mains, the same combinatorial diversity is not represented in immune
libraries generated from camelid and sharks as the antibodies are in sin-
gle variable domain antibody (sdAb) format, i.e. VHH for camelid [44]
and VNAR for shark [45]. These sdAbs also termed as nanobodies, con-
tains only the VH domain and exhibits some advantages in terms of sol-
ubility, stability, and target accessibility due mainly to their small size
[46–48]. However, the absence of the VL domain has limited repertoire
diversification in comparison to humans as combinatorial pairing of
VH and VL is not achievable. Instead, single variable domain immune li-
brary repertoire is depended solely on the inherent germline diversifi-
cation mechanism upon immunization [49]. Even so, the available
repertoire would generally consist of a hyperimmune repertoire with
a combination of existing natural repertoires of the immunized host an-
imal. Therefore, the diversity available although seen smaller in com-
parison to mammals is still adequate to yield high affinity antibodies.
The single domain nature of sdAbwould alsomean that only a relatively
smaller sized library is sufficient to adequately represent the immune
repertoire making it less cumbersome to generate [50]. Nonetheless,
to compensate for the shortcoming of the limited domain repertoire, ef-
ficient methods to construct high quality immune libraries are impor-
tant as the host animal would also yield a mixed repertoire specific to
a target as well as other exposed antigens. A classical restriction in anti-
body library generation processes is the cloning procedure. The quality
of a sdAb immune library can be improved through alternative cloning
strategies such as Golden Gate Cloning and negative selection using le-
thal ccdB gene [51]. In fact, these strategies could also be applicable to
other libraries construction to maximize the library repertoire.

As the immune system is constantly surveilling and producing anti-
bodies, this would mean that an infection-biased repertoire of an indi-
vidual or host animal would also harbor remnants of antibodies
against previously encountered antigens through memory B-cells [52].
Thus, immune repertoires arising from the memory of previous infec-
tions co-exist with repertoires from newly encountered infections. The
extracted antibody repertoire would then reflect, at any given time,
multiple infections derived from both plasma and memory B-cells col-
lectively. In mammals, the bigger diversity caused by the random com-
bination of antibody geneswill lead to the generation of newVH/VL gene
combinations. This could stretch the value of the constructed repertoire
in an immune antibody library for lead candidate discovery. However,
the breadth of the antibody repertoire generated by a combinatorial ap-
proach can be further augmented by sampling immunoglobulin genes
frommultiple individuals or host animals to yield a repertoire of higher
diversity. Thiswill result in a diverse repertoire that could rival thenaïve
repertoire, allowing immune libraries to extend its application beyond a
specific disease.

3. Application of immune antibody libraries for infectious diseases

The antibodies derived from immune antibody libraries have the po-
tential to be applied as diagnostic reagents or therapeutic agents. Al-
though immune libraries created from recovered patients are ideal for
therapeutic mAbs, immune libraries can also be created from immu-
nized animals such as mice, chicken, llama, alpaca, camel, sheep, shark
and non-human primates (detailed in Table 1) for other applications.
In Table 1 we listed some of the immune libraries developed for infec-
tious diseases, with the details of the format and donor of the library.

3.1. Bacterial infections

Historically, bacterial infections were treated with anti-serum from
animals and later with antibiotics. The evolution of bacteria has led to
the surge of drug-resistant strains that are dampening the efficacy of
antibiotic-based therapeutic strategies. As such, mAbs are touted as po-
tential alternatives for antibiotic resistant bacterial infections. In gen-
eral, bacterial toxins play a major role in enhancing infection. The
tetanus toxoid immunized library is one of the first combinatorial im-
mune antibody libraries constructed from the peripheral B-cell reper-
toire of an immunized human, from which multiple mAbs were
successfully isolated but not evaluated for their neutralizing potential
[53]. Since then, several immune libraries have been generated for stud-
ies against bacterial infections. An immune library for Clostridium botu-
linum reported antibodies that identified two key epitopes that were
shown to prolong the time to neuroparalysis [54]. Another set of im-
mune library-derived antibodies against the botulinum toxins pos-
sessed neutralizing activity in a phrenic nerve-hemidiaphragm assay
[55]. An immune antibody library for Pseudomonas aeruginosa was re-
ported to generate neutralizing antibodies targeting the Psl
exopolysaccharide [56]. A recent report highlighted the development
of neutralizing diphtheria antibodies from an immune library [57].
Raxibacumab, obiltoxaximab and bezlotixumabare exotoxinsneutraliz-
ing antibodies approved by FDA for treatment of bacterial infections.
However,mAbs currently under clinical trials apply a different approach
by targeting cell surface proteins or polysaccharides. The antibody-
bacteria complex formed will promote antibody-mediated
opsonophagocytosis and antibody-dependent complement activation
for bactericidal effect [58,59]. Of the three FDA-approved mAbs only
raxibacumab is isolated by phage display platformwhile obiltoxaximab
and bezlotixumab are chimeric- and hybridoma-derived mAbs,
respectively.

3.2. Viral infections

Immuneantibody libraries have also beenutilized extensively to dis-
cover neutralizing mAbs against viral infections such as dengue fever
[60], Ebola virus disease [61,62], hepatitis B [63–65], human immunode-
ficiency virus (HIV) infection [66–70], influenza [71], measles [72], ra-
bies [73] and respiratory syncytial virus (RSV) [74]. The common and
effective strategy for majority of commercial anti-viral mAb develop-
ment is focused on inactivating the virus via binding of antibodies to
the virus surface receptor such as envelope glycoprotein (gp), spike pro-
tein and the receptor binding domain (RBD) at the initial stage of infec-
tion so that internalization of the virus into host cells can be inhibited
[75]. The diversity of the antibody repertoire of an immune antibody



Table 1
Summary of some infectious disease-specific immune libraries from different hosts, constructed in different formats and displayed on phage display platform.

Type of infection Species Targeting site Antibody format Donor Reference

Bacterial Bacillus anthracis Live spore scFv Mouse [89]
S-layer protein EA1 VHH Llama [90]
Lethal factor (LF) scFv Macaque [91]
Edema toxin (EF) Fab Chimpanzee [92]

Brucella melitensis Whole cell scFv Mouse [93]
Clostridium botulinum Botulinum neurotoxin serotype A (BoNT/A) scFv Human [54]

BoNT/A, BoNT/B scFv Macaque [55]
Clostridium difficile Toxin A (TcdA) VHH Llama [94]
Clostridium tetani Tetanus neurotoxin (TeNT) scFv Human [95]
Corynebacterium diphtheriae Diptheria toxin (DT) scFv Human [57]
Escherichia coli Shiga toxin (Stx) VHH Alpaca [96]
Haemophilus influenzae Capsular polysaccharides Fab Human [97]
Helicobacter pylori Cell lysate, urease scFv Human [98]
Mycobacterium avium Cell lysate scFv Sheep [99]
Mycobacterium tuberculosis α-Crystalline scFv Human [100]
Staphylococcus aureus Staphylococcal enterotoxin B (SEB) scFv Mouse [101]

Viral Dengue virus – Fab Chimpanzee [60]
Ebola virus Envelope glycoprotein Fab Human [61]

VP40 scFv Mouse [62]
Nucleoprotein VNAR Shark

Foot-and-mouth disease virus 3ABC scFv Chicken [102]
Hantavirus Nucleoprotein VHH Llama [103]

Envelope G2 protein Fab Human [104]
Hepatitis A virus Capsid Fab Chimpanzee [105]
Hepatitis B virus Surface antigen Fab Human [63,64]

Surface antigen IgG Human [65]
Hepatitis C virus Core protein, envelope E2 protein scFv Human [106]

core protein Fab Human [107]
Hepatitis E virus ORF2 Fab Chimpanzee [108]
Herpes simplex virus Glycoprotein, virus lysate Fab Human [109,110]
Human immunodeficiency virus Type 1 (HIV-1) gp120 Fab Human [66]

gp120 scFv Human [68]
gp140 Fab Human [69]
gp140 scFv Human [111]
gp140 VHH Llama [70]

Human immunodeficiency virus Type 2 (HIV-2) gp125 Fab Human [67]
Influenza A Hemagglutinin (HA) glycoprotein scFv Human [71]

HA Fab Human [112]
Japanese encephalitis Envelope protein Fab Human [113]
Marburg virus Glycoprotein scFv Macaque [114]
Measles virus Measles virus protein Fab Human [72]
Polio virus Capsid protein Fab Chimpanzee [115]
aRabies virus Glycoprotein scFv Human [73]
Respiratory syncytial virus F glycoprotein Fab Human [74]
SARS-CoV Spike protein scFv Chicken [116]

S1 protein scFv Human [117]
S and M protein Fab Human [118]

VEEV TC83 scFv Mouse [119]
West Nile virus Envelope protein scFv Human [120]

Envelope protein Fab Human [121]
Parasitic Brugia malayi BmR1 scFv Human [83]

Brugia malayi BmSXP scFv Human [84]
Plasmodium falciparum Pfs48/45 scFv Human [79]

MSP-1 scFv Human [80]
Plasmodium vivax DBP scFv Human [122]
Taenia solium TS14 VHH Camel [81]
Toxoplasma gondii TgMIC2 scFv Mouse [82]

a mAb against rabies virus isolated from immune library is named as foravirumab (CR4098) and it is currently under clinical review together with rafivirumab (CR57) in the form of a
cocktail (CL184) [73,86].
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library can also be leveraged for the isolation of broadly neutralizing
mAbs. Studies on mAbs from immune antibody repertoires demon-
strate cross-reactivity against conserved epitopes on multiple viruses
from the same family or subtype, as evident in a study of H5N1 influ-
enza,wheremore than 300monoclonal antibodies isolated from a com-
binatorial immune library created from H5N1 influenza survivors are
able to neutralizeH1 andH5 subtype of influenza viruses [76]. This illus-
trates the application of a combinatorial immune library for the selec-
tion of antibodies against closely related antigens that carry similar
epitopes. Immune libraries are also used extensively in HIV studies,
mainly to isolate neutralizing antibodies against the glycoprotein
gp120 and gp41 [66,69,77]. The panel of antibodies generated from
these HIV-1 immune libraries demonstrated broadly neutralizing char-
acteristics against different subtypes [70,77]. The use of an immune li-
brary for other disease has also been demonstrated. HIV-1 positive
patients are often associated with opportunistic infections. Therefore,
an immune library constructed from HIV-1 patients was successfully
used to isolate neutralizing antibodies against RSV FG glycoprotein
[74]. Collectively, these studies illustrate the utility of combinatorial im-
mune antibody library repertoires towards isolating functional antibod-
ies with inter-species and inter-strain specificity beyond the original
infection. This is especially true in the case of viral infections as viruses
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undergoes rapid mutation, often resulting in multiple subtypes that
share a certain degree of conserved regions or mechanism of infection.
The identification of broadly neutralizing mAbs from combinatorial im-
mune libraries demonstrates diversity of the antibody repertoire used in
the library that is able to provide coverage for closely related antigenic
motifs.

3.3. Parasitic infections

Parasitic diseases caused by protozoa, helminths and ectoparasites
are also a major healthcare burden. One of themost common examples
is the mosquito-borne protozoa, Plasmodium, that causes malaria [78].
Immune libraries have been generated to isolate mAbs against Plasmo-
dium falciparum Pfs48/45 gamete surface protein [79] and Block 2 re-
gion of P. falciparum merozoite surface protein-1 [80] as well as other
parasites such as Taenia solium Ts14 glycoprotein [81] and Toxoplasma
gondii MIC2 protein [82]. Only the mAbs targeting gametocyte surface
protein of P. falciparum blocked development of the parasite in mos-
quito upon bloodmeal ingestion [79]. This showed the potential use of
immune library-derived antibodies to block transmission of parasitic
disease. The other mAbs developed were only evaluated based on the
binding capacity to the target antigen. Another immune antibody li-
brary derived from lymphatic filariasis (LF)-infected donors was devel-
oped to isolate mAbs against LF-related antigens, BmR1 and BmSXP
[83,84]. A parallel experiment using immune and naïve libraries re-
sulted in more unique clones with better binding from the immune li-
brary, suggesting the ability of immune libraries to better generate
mAbs against targets of a specific infection [83].

Currently, raxibacumab, a naïve antibody library-derived mAb
against Bacillus anthracis is the only anti-infective approved by the
FDA for market [85]. Raxibacumab functions as a neutralizing antibody
that prevents binding of the protective antigen (PA) of anthrax toxin
to host receptors, curbing the subsequent release of lethal factor (LF)
and edema factor (EF) into the cell, thereby halting disease progression
[85]. A human immune single-chain variable fragment (scFv) library
isolated antibody against rabies virus glycoprotein antigenic site III,
named foravirumab (CR4098), is currently under phase II clinical trial
in the form of a cocktail with rafivirumab (CR57), a mAb derived from
somatic cell hybridization targeting rabies virus glycoprotein antigenic
site I [73,86]. Despite that the only anti-infective approved clinically to
date was derived from a naïve phage display library, the growing num-
ber of neutralizing antibodies described from immune libraries in re-
search laboratories and the clinical trial of foravirumab suggests that
immune library derived mAbs will soon be making an impact in the
pharmaceutical industry. Nonetheless, the cost of mAbs as passive im-
munotherapy, mainly incurred by the perishable characteristic and
complicated administration, is remained as the chief obstacle for wide-
spread usage of mAbs especially in low income families and countries.
With the maturity of mAbs discovery technologies and availability of
more mAbs, it would hopefully provide a more cost-effective solution
for infectious diseases with no effective drug treatment [87,88].

4. Conclusion

Antibody gene repertoire is the vital parameter for the success of any
antibody library generated. The ability to extract the antibody gene rep-
ertoire of an individual post recovery and display it for functional bind-
ing permits the discovery of target-specific antibodies for therapeutic
and diagnostic applications. This disease-constrained repertoire can be
an important source of high affinity antibodies for disease-specific anti-
gens. Immune libraries have the added potential of generating cross-
reactive antibodies with homologs of protein from the same family
and closely related diseases like viral disease that are caused by different
strains of the same virus. Therefore, in the context of immune antibody
library repertoires, one should understand that it is a collection of pref-
erentially expressed, disease preferring antibodies resulting from gene
segment rearrangements or random combination of heavy and light
chain sequences in mammals. Several considerations should be put in
place when designing an immune antibody library. This includes the
isotype source as a reflection of infection route, agent or stage, and re-
combination as a potential source of novel reactivity. In conclusion,
the potential of immune antibody libraries transcends its ability to just
generate high affinity disease specific mAbs but also has the diversity
to produce mAbs against other target proteins making it an indispens-
able alternative to naïve libraries in antibody phage display develop-
ment laboratories.
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