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a b s t r a c t 

Typically, Cyber-Physical Systems (CPS) involve various interconnected systems, which can monitor and 

manipulate real objects and processes. They are closely related to Internet of Things (IoT) systems, ex- 

cept that CPS focuses on the interaction between physical, networking and computation processes. Their 

integration with IoT led to a new CPS aspect, the Internet of Cyber-Physical Things (IoCPT). The fast and 

significant evolution of CPS affects various aspects in people’s way of life and enables a wider range of 

services and applications including e-Health, smart homes, e-Commerce, etc. However, interconnecting 

the cyber and physical worlds gives rise to new dangerous security challenges. Consequently, CPS secu- 

rity has attracted the attention of both researchers and industries. This paper surveys the main aspects of 

CPS and the corresponding applications, technologies, and standards. Moreover, CPS security vulnerabili- 

ties, threats and attacks are reviewed, while the key issues and challenges are identified. Additionally, the 

existing security measures are presented and analyzed while identifying their main limitations. Finally, 

several suggestions and recommendations are proposed benefiting from the lessons learned throughout 

this comprehensive review. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Cyber Physical Systems (CPS) are designated as essential com-

onents of the Industrial Internet of Things (IIoT), and they are

upposed to play a key role in Industry v4.0. CPS enables smart

pplications and services to operate accurately and in real-time.

hey are based on the integration of cyber and physical systems,

hich exchange various types of data and sensitive information in

 real-time manner [1] . The development of CPS is being carried

ut by researchers and manufacturers alike [2] . Given that CPS and

ndustry v4.0 offer a significant economic potential [3] , the German

ross value will be boosted by a cumulative of 267 billion Euros by

025 upon the introduction of CPS into Industry v4.0 [4] . 

A CPS is identified as a network of embedded systems that in-

eract with physical input and output. In other words, CPS con-

ists of the combination of various interconnected systems with

he ability to monitor and manipulate real IoT-related objects and

rocesses. CPS includes three main central components: sensors,

ggregators and actuators. Moreover, CPS systems can sense the

urrounding environment, with the ability to adapt and control
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he physical world [5] . This is mainly attributed to their flexibil-

ty and capability to change the run-time of system(s) process(es)

hrough the use of real-time computing [6] . In fact, CPS systems

re being used in multiple domains (see Fig. 1 ), and embedded

n different systems such as power transmission systems, com-

unication systems, agricultural/ecological systems, military sys- 

ems [7,8] , and autonomous systems (drones, robotics, autonomous

ars, etc.) [9,10] . That, in addition to medical care domains to en-

ance the medical services [11] . Moreover, CPS can be used in sup-

ly chain management to enable echo-friendly, transient, cost effi-

ient, and safe manufacturing process. 

.1. Problem formulation 

Despite their numerous advantages, CPS systems are prone to

arious cyber and/or physical security threats, attacks and chal-

enges. This is due to their heterogeneous nature, their reliance

n private and sensitive data, and their large scale deployment. As

uch, intentional or accidental exposures of these systems can re-

ult into catastrophic effects, which makes it critical to put in place

obust security measures. However, this could lead to unacceptable

etwork overhead, especially in terms of latency. Also, zero-day

ulnerabilities should be minimized with constant software, appli-

ations and operating system updates. 

https://doi.org/10.1016/j.micpro.2020.103201
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103201&domain=pdf
mailto:oms15@mail.aub.edu
https://doi.org/10.1016/j.micpro.2020.103201
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Fig. 1. CPS description & classification. 
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1.2. Related work 

Recently, several research works addressed the different secu-

rity aspects of CPS: the different CPS security goals were listed

and discussed in Chen [12] , Miller and Valasek [13] , Bou-Harb

[14] , Sklavos and Zaharakis [15] ; maintaining CPS security was pre-

sented in Humayed et al. [16] ; CPS security challenges and is-

sues were presented in Yoo and Shon [17] , Alguliyev et al. [18] ;

some of the security issues were reviewed, including big data se-

curity [19,20] , IoT storage issues [21] , and Operating System vulner-

abilities [22] ; several security and privacy solutions using crypto-

graphic algorithms and protocols were discussed in Kocabas et al.

[23] , Lai et al. [24] . However, none of the existing works presented

a comprehensive view of CPS security in terms of threats, vulnera-

bilities, and attacks based on the targeted domain (cyber, physical,

or hybrid). Hence, this paper presents a detailed overview of the

existing cyber, physical and hybrid attacks, and their security so-

lutions including cryptographic and non-cryptographic ones. More-

over, for the first time, CPS forensics are discussed as an essen-

tial requirement for the investigation of the causes of CPS-related

crimes and attacks. 

1.3. Motivation 

CPS systems have been integrated into critical infrastructures

(smart grid, industry, supply chain, healthcare, military, agriculture,

etc.), which makes them an attractive target for security attacks

for various purposes including economical, criminal, military, espi-

onage, political and terrorism as well. Thus, any CPS vulnerability
an be targeted to conduct dangerous attacks against such systems.

ifferent security aspects can be targeted including confidentiality,

ntegrity, and availability. In order to enable the wide adoption and

eployment of CPS systems and to leverage their benefits, it is es-

ential to secure these systems from any possible attack, internal

r/and external, passive or active. 

The main motivation of this work is to identify the main CPS

ecurity threats, vulnerabilities and attacks, and to discuss the ad-

antages and limitations of the existing security solutions, with the

im to identify the requirements for a secure, accurate, reliable, ef-

cient and safe CPS environment. Moreover, the security solutions

re analyzed in terms of the associated computational complexity.

ote that CPS systems require innovative security solutions that

an strike a good balance between security level and system per-

ormance. 

.4. Contributions 

In this work, we conduct a comprehensive overview and analy-

is of the different cyber-physical security aspects of CPS. The con-

ributions entail the following: 

• General Background about CPS including their main layers,

components and model types. 

• Cyber-Physical Attacks are presented in relation to the tar-

geted cyber and/or physical system/device, and the correspond-

ing vulnerabilities of each such domain. 

• Risk Assessment: a qualitative risk assessment method is pre-

sented to evaluate the risk and exposure levels for each CPS

system, while proposing suitable security countermeasures. 
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• Security Measures and their limitations are discussed and an-

alyzed, including recent cryptographic and non-cryptographic

solutions. 

• Forensics solutions are also presented and discussed about se-

curely extracting evidence and thus, to improve forensics inves-

tigations. 

• Lessons: various lessons are learnt throughout this survey in-

cluding how to protect real-time data/information communi-

cation among resource-constrained CPS devices, and how to

achieve protection of CPS security goals such as confidentiality,

integrity, availability and authentication. 

• Suggestions & Recommendations are presented about how

to mitigate and overcome various cyber, physical and hybrid

threats, vulnerabilities, attacks, challenges and issues for a safe

CPS environment. 

.5. Organization 

Aside from the introduction, this paper is divided into six main

ections as follows. Section 2 presents some background about

PS including their layers, components, and models. Section 3 dis-

usses and details the key CPS threats, attacks and vulnerabilities

n addition to listing and describing several real-case CPS attacks,

nd the main persistent challenges and issues. Section 5 assesses

nd evaluates the risks associated with CPS security attacks, espe-

ially in a qualitative risk assessment manner. Section 5 presents

nd analyzes the main CPS security solutions including crypto-

raphic, non-cryptographic, and forensics ones. Section 6 highlights

he lessons learnt throughout this study. Section 7 provides key

uggestions and recommendations for a safe and secure CPS envi-

onment. Section 8 concludes the presented work. 

. CPS - background 

In this section, we present the CPS architecture, its main layers

nd components, as well as the main CPS models. 

.1. CPS layers & components 

The architecture of CPS systems consists of different layers and

omponents, which rely on different communication protocols and

echnologies to communicate among each other across the differ-

nt layers. 

.1.1. CPS layers 

The CPS architecture consists of three main layers, the percep-

ion layer, transmission layer, and application layer, which are pre-

ented and described in Fig. 2 . The analysis of the security issues
Fig. 2. CPS l
t the various CPS layers is based on the work in Ashibani and

ahmoud [25] . 

• Perception Layer: It is also known as either the recogni-

tion or the sensing layer [26] . It includes equipment such as

sensors, actuators, aggregators, Radio-Frequency IDentification 

(RFID) tags, Global Positioning Systems (GPS) along with var-

ious other devices. These devices collect real-time data in or-

der to monitor, track and interpret the physical world [27] . Ex-

amples of such collected data include electrical consumption,

heat, location, chemistry, and biology, in addition to sound and

light signals [28] , depending on the sensors’ type [29] . These

sensors generate real-time data within wide and local network

domains, before being aggregated and analyzed by the appli-

cation layer. Moreover, securing actuators depends on autho-

rized sources to ensure that both feedback and control com-

mands are error-free and protected [30] . Generally, increasing

the security level requires an end-to-end encryption scheme at

each layer [31] . Therefore, heavyweight computations and large

memory requirements would be introduced [32] . In this con-

text, there is a need for the design of efficient and lightweight

security protocols, which take into consideration the devices ca-

pabilities and the security requirements. 

• Transmission Layer: It is also known as the transport layer

or network layer, and it is the second CPS layer [29] . This

layer interchanges and processes data between the percep-

tion and application layers. Data transmission and interaction

is achieved through the Internet using Local Area Networks

(LANs) and communication protocols including Bluetooth, 4G

and 5G, InfraRed (IR) and ZigBee, Wi-Fi, Long Term Evolution

(LTE), along with other technologies. For this purpose, various

protocols are used to address the increase in the number of

internet-connected devices, such as the Internet Protocol ver-

sion 6 (IPv6) [33] . This layer also ensures data routing and

transmission using cloud computing platforms, routing devices,

switching and internet Gateways, firewalls and Intrusion De-

tection/Prevention Systems (IDS/IPS) [34,35] . Before outsourcing

data contents, it is essential to secure their transmission to pre-

vent intrusions and malicious attacks including malware, mali-

cious code injection [36] , Denial of Service/Distributed Denial of

Service (DoS/DDoS), eavesdropping, and unauthorised access at-

tacks [37] . This introduces a challenge, especially for resource-

constrained devices due to the imposed overhead in terms of

the required processing and power resources [38] . 

• Application Layer: It is the third and most interactive layer. It

processes the received information from the data transmission

layer and issues commands, which are executed by the physical

units including sensors and actuators [39] . This is done by im-

plementing complex decision-making algorithms based on the
ayers. 
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Fig. 3. Infrastructure of CPS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  
aggregated data [40] . Moreover, this layer receives and pro-

cesses information from the perception layer before determin-

ing the rightly invoked automated actions [29] . In fact, cloud

computing, middleware, and data mining algorithms are used

to manage the data at this layer [41] . Protecting and preserv-

ing privacy requires protecting private data from being leaked.

The most known protective approaches include anonymization,

data masking (camouflage) [42,43] , privacy-preserving, and se-

cret sharing [31] . Moreover, this layer also requires a strong

multi-factor authentication process to prevent unauthorised ac-

cess and escalation of privilege [44] . Due to the increase in the

number of Internet-connected devices, the size of the gener-

ated data has become a significant issue [21] . Therefore, secur-

ing big data calls for efficient protection techniques to process

huge amounts of data in a timely and efficient manner [45] . 

2.1.2. CPS components 

CPS components are used for sensing information [5] , or for

controlling signals ( Fig. 3 ). In this regard, CPS components are clas-

sified into two main categories: Sensing Components (SC) that

collect and sense information, and Controlling Components (CC)

that monitor and control signals. 

• Sensing Components: are primarily located at the perception

layer and consist of sensors that collect data/information and

forward them to aggregators. Then, this data/information is sent

to the actuators for further analysis to ensure accurate decision

making. In the following, we list the main CPS sensing compo-

nents. 

− Sensors: collect and record real-world data following a cor-

relation process named “calibration”, to assess the correct-

ness of the collected data [46] . Sensing data is essential

since the decisions that will be made are based on the anal-

ysis of this data. 

− Aggregators: are primarily located at the transmission layer

(i.e routers, switches and gateways) to process the received

data/information from sensors, before issuing the corre-

sponding decision(s). In fact, data aggregation is based on

the collected information about a specific target, where this

information is gathered and summarized following a statis-

tical analysis. Online Analytical Processing (OLAP) is a prime

data aggregation type used as an online reporting mecha-

nism for processing information [46] . 
− Actuators: are located at the application layer to make the

information visible to the surrounding environment based

on the decisions made by the aggregators. Since actuators

highly depend on other network nodes, then each action

performed by the CPS relies on an earlier data aggregation

sequence [5] . Also in terms of operations, actuators process

electrical signals as input and generate physical actions as

output [46] . 

• Controlling Components: are used to control Signals and they

play a key role in signal control, monitoring and management

to achieve higher levels of accuracy and protection against ma-

licious attacks or accidents, mainly signal jamming, noise and

interference. As a result, the reliance on Programmable Logic

Controllers (PLCs) and Distributed Control System (DCSs) along

with their components (i.e Programmable Automation Con-

troller (PAC) [47] , Operational Technology/Information Technol-

ogy (OT/IT) [48] , Control Loop/Server [49] , and Human-Machine

Interface (HMI)/Graphical User Interface (GUI) [50] ) has become

highly essential. Next, we list the different types of control sys-

tems that are used in CPS systems: 

• Programmable Logic Controllers (PLC): were initially devel-

oped to replace hard-wired relays, and are considered as indus-

trial digital computers that control the manufacturing processes

such as robotic devices performance and/or fault diagnosis pro-

cessing; hence achieving better flexibility and resiliency. 

• Distributed Control Systems (DCS): are computerized control

systems that allow the autonomous controllers’ distribution

throughout the system using a central operator supervisory

control. As a result of the remote monitoring and supervision

process, the DCS’s reliability is increased, whilst its installation

cost is reduced. In some cases, DCS can be similar to Supervi-

sory Control and Data Acquisition (SCADA) systems. 

• Remote Terminal Units (RTU): or “Remote Telemetry Unit”

[51] , are electronic devices controlled by a microprocessor such

as the Master Terminal Unit (MTU) [52] . Unlike the PLC, they

do not support any control loop nor control algorithm(s). Thus,

making them more suitable for wireless communications over

wider geographical telemetry areas. RTU’s main task is to inter-

face SCADA to the physical object(s) using a supervisory mes-

saging system that controls these objects through the system’s

transmission of telemetry data. 

In fact, both RTUs and PLCs use a small computerized “artifi-

ial brain” (Central Processing Unit (CPU)) to process inputs and



J.A. Yaacoub, O. Salman and H.N. Noura et al. / Microprocessors and Microsystems 77 (2020) 103201 5 

Table 1 

PLC vs. RTU. 

PLC (Programmable Logic Controller) RTU (Remote Terminal/Telemetry Units) 

Sold with RTU like features Sold with PLC-like features 

Digital computers designed for output arrangements and multiple inputs Electronic device controlled by a microprocessor 

Automates electro-mechanical processes Interfaces SCADA physical objects 

Physical media with process, relays, motion control and networking Uses supervisory system messages to control objects 

Does support control loops and algorithms Does not support control loops and algorithms 

Immune to electrical noise, resistant to vibration Low to null immunity against electrical noise and vibration 

Suitable for local geographical areas Suitable for wider geographical telemetry areas 

Mainly IEC Standards Wired/Wireless Communications 
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utputs from sensing devices and pumping equipment [53] ; hence

sing IEDs (Intelligent Electronic Devices) to transmit data flow or

rigger an alarm in case of any intrusion. Table 1 a comparison

f the common points and differences between PLCs and RTUs.

oncerning the relation between components and layers, it can be

een that sensing components are mainly deployed at the percep-

ion and transmission layers, while the controlling components are

eployed at the application layer. 

.2. CPS model types 

CPS models can be divided into three main types: 

• Timed Actor CPS: This model focuses on the functional as-

pects based on behaviour and correctness, along with the non-

functional aspects that are based on performance and timing.

A theory was introduced in Geilen et al. [54] with a functional

and classical refinement that restricts certain behaviour set, im-

proving efficiency while reducing complexity. The main focus

is on the refinement based on the “earlier-the-better” princi-

ple since it offers the ability to identify deterministic abstrac-

tions of non-deterministic systems [55] . In fact, these time-

deterministic models are less prone to state explosion prob-

lems, with the ability to derive analytical bounds easier [56] . 

• Event-Based CPS: In such models, an event must be sensed

and detected by the proper CPS components, before the actu-

ation decisions are made. However, individual component tim-

ing constraints vary depending on the non-deterministic system

delay, which is caused by the different CPS actions including

sensing, actuating, communication and computing [57] . In [58] ,

Hu et al. stated that time constraints can be handled through

the use of an event-based approach, which uses CPS events to

ensure the system’s communication, computation, and control

processes. This allows the CPS to be more suitable and more

useful for spatio-temporal information. 

• Lattice-Based Event Model In [59] , the CPS events are repre-

sented according to the event type, along with the internal and

external event attributes. If these events are combined, they

can be used to define a spatio-temporal property of any given

event, while also identifying all the components that were ob-

serving the event. 

• Hybrid-Based CPS Model Hybrid CPS systems are heteroge-

neous systems that are made up of two distinct interactive

system types, continuous state (physical dynamic systems) and

discrete-state (discrete computing systems) [60,61] . Both devel-

opment and evolution depend on the response of discrete tran-

sient events represented by finite state machines, and the the

dynamic behaviour represented by differential/difference equa-

tion(s) [62] . Unlike other CPS models, hybrid CPS is intercon-

nected via a network, which makes it prone to delays. More-

over, hybrid CPS systems do not support any hierarchical mod-

eling, and are not suitable for modeling concurrent systems.

Hence, hybrid systems modeling challenges caused by CPS were

discussed by Benveniste et al. [63] . In fact, CPS system network
latency issues were addressed and solved by Kumar et al. using

a real-time hybrid authentication method [64] , while a config-

urable real-time hybrid structural testing for CPS was presented

by Tidwell et al. [65] . Finally, an event driven monitoring of CPS

based on hybrid automata was presented by Jianhui [66] . 

. CPS vulnerabilities, threats, attacks & failures 

In a similar manner to most networking systems, security ser-

ices were not incorporated into CPS systems by design, leaving

he door open for various vulnerabilities and threats to be lever-

ged by attackers to launch security attacks. This is also due to

he heterogeneous nature of CPS devices since they operate in dif-

erent IoT domains and communicate using different technologies

nd protocols. 

.1. CPS security threats 

CPS security threats can be classified as cyber or physical

hreats, as explained below, and if combined, these can result into

yber-physical threats. 

.1.1. Cyber threats 

The main attention on Industrial IoT security was highly fo-

used on cyber threats rather than physical threats for many rea-

ons, as cited in Alguliyev et al. [18] . This includes the electri-

al grid evolution into an Advanced Metering Infrastructure (AMI),

hich resulted into the rise of newly unknown cyber threats aside

rom SCADA vulnerabilities [67–69] . Electronic attacks are now

asier to launch from any device, unlike physical attacks that re-

uire physical presence and physical tools. Moreover, the smart

eter interfacing and interconnection with other meters in the

ear-me Area Network (NAN) and Home Area Network (HAN) in-

rease its exposure to various remote threats. Finally, electronic at-

acks are difficult to mitigate and overcome in the absence of the

ight prevention and defensive countermeasures. For further de-

ails on cyber threat intelligence, a brief survey of CPS security ap-

roaches was presented in Bou-Harb [14] . For further information

bout cyber security threats, more details can be found in Cleve-

and [70] , Metke and Ekl [71] . 

Since cyber security is not limited to a single aspect, it can be

onsidered from different perspectives, such as: 

• Centring Information: which requires protecting the data flow

during the storage phase, transmission phase, and even the pro-

cessing phase. 

• Oriented Function: which requires integrating the cyber-

physical components in the overall CPS. 

• Oriented Threat: which impacts data confidentiality, integrity,

availability, and accountability [70] . 

The above issues make CPS systems prone to: 

• Wireless Exploitation: It requires knowledge of the system’s

structure and thus, exploiting its wireless capabilities to gain
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remote access or control over a system or possibly disrupt the

system’s operations. This causes collision and/or loss of con-

trol [72] . 

• Jamming: In this case, attackers usually aim at changing the

device’s state and the expected operations to cause damage by

launching waves of de-authentication or wireless jamming sig-

nals, which would result into denial of device and system ser-

vices [73] . 

• Reconnaissance: An example of such a threat is where intel-

ligence agencies continuously perform operations targeting a

nation’s Computational Intelligence (CI) and Industrial Control

System (ICS) mainly through a malware spread [74] . This re-

sults in violating data confidentiality due to the limitation of

traditional defenses [75,76] . 

• Remote Access: This is mainly done by trying to gain remote

access to the CPS infrastructure, for example, causing distur-

bances, financial losses, blackouts, as well as industrial data

theft and industrial espionage [77] . Moreover, Havex Trojans

are among the most dangerous malware against ICSs, as they

can be weaponized and used as part of cyber-warfare campaign

management against a nation’s CPS [78] . 

• Disclosure of Information: Hackers can disclose any pri-

vate/personal information through the interception of commu-

nication traffic using wireless hacking tools [16] , violating both

privacy and confidentiality [79] . 

• Unauthorised Access: Attackers try to gain an unauthorized ac-

cess through either a logical or physical network breach and to

retrieve important data, leading to a privacy breach [80] . 

• Interception: Hackers can intercept private conversations

through the exploitation of already existing or new vulnera-

bilities leading to another type of privacy and confidentiality

breach [72] . 

• GPS Exploitation: Hackers can track a device or even a car by

exploiting (GPS) navigation systems, resulting in a location pri-

vacy violation [72,81] . 

• Information Gathering: software manufacturers covertly

gather files and audit logs stored on any given device in order

to sell this huge amount of personal information for marketing

and commercial purposes in an illegal manner. 

3.1.2. Physical threats 

CPS systems are recently evolving into the industrial domain by

introducing an Advanced Metering Infrastructure (AMI), and Neigh-

bourhood Area Networks (NANs), along with data meter manage-

ment systems to maintain the robustness of CPS in industrial do-

mains [82] . In fact, physical threats might be classified according

to the following three factors: 

• Physical Damage: since different facility types implement dif-

ferent levels of protection, power-generating stations (E.g power

grid, power plants, base stations) are well protected. This is

due to the fact that these stations are well-manned and well-

guarded based on the implementation of access controls, au-

thorisation and authentication mechanisms such as usernames

and passwords, access cards, biometrics and video surveillance.

However, the main concern is related to the less protected

power-generating sub-stations since transmission lines are vul-

nerable to sabotage attacks and disruption. In fact, smart me-

ters are also vulnerable to a number of threats as explained

in Chen et al. [83] . To address this problem, smart meters must

be tamper-resistant by relying on outage detection or even

host-based intrusion detection. However, it is almost impossi-

ble to prevent physical tampering or theft by adversaries (such

as Advanced Persistent Threats (APTs)), except that it is possible

to mitigate the risk and reduce its impact. 
• Loss: the most worrying scenario is having more than a sin-

gle substation failure caused by a malicious attacker. In case

of a severe damage in the smart grid, a total blackout of ma-

jor metropolitan areas may occur for several hours [84] . A real-

case scenario includes the cascading blackout that managed to

hit the U.S. on August 14th, 2003 [85] , caused by the People

Liberation Army (PLA), which is a Chinese politically-motivated

group [86] . 

• Repair: it can be based on a self-healing process [87] , which is

based on the ability to either sense faults or disruptions, whilst

isolating the problem and sending alerts to the correspond-

ing control system to automatically reconfigure the back-up re-

sources in order to continuously provide the necessary service.

The aim is to ensure a fast recovery in as short of a time as

possible. However, critical components do suffer from either a

lack or a limited backup capability. Therefore, self-healing can

respond faster to a severe damage. 

Some of the threats associated with CPS systems include: 

• Spoofing: it consists of masquerading the identity of a trusted

entity by a malicious unknown source. In this case, attackers

are capable of spoofing sensors, for example, by sending mis-

leading and/or false measurements to the control center. 

• Sabotage: Sabotage consists of intercepting the legal communi-

cation traffic and redirecting it to malicious third party or dis-

rupting the communication process. For example, attackers can

sabotage physically exposed CPS components across the power

grid, to cause a service disruption or even denial of service that

leads to either total or partial blackout. 

• Service Disruption or Denial: Attackers are capable of phys-

ically tampering with any device to disrupt a service or to

change the configuration. This has serious effects, especially in

the case of medical applications. 

• Tracking: Since devices are physically exposed, an attacker can

gain access to a given device, and/or even attach a malicious

device or track the legal ones. 

In the following, we present the main CPS vulnerabilities that

an be targeted by the above-mentioned threats. 

.2. CPS vulnerabilities 

A vulnerability is identified as a security gap that can be ex-

loited for industrial espionage purposes (reconnaissance or ac-

ive attacks). Hence, a vulnerability assessment includes the iden-

ification and analysis of the available CPS weaknesses, while also

dentifying appropriate corrective and preventive actions to reduce,

itigate or even eliminate any vulnerability [88] . 

In fact, CPS vulnerabilities are divided into three main cate-

ories: 

• Network Vulnerabilities: include weaknesses of the protec-

tive security measures, in addition to compromising open

wired/wireless communication and connections, including

man-in-the-middle, eavesdropping, replay, sniffing, spoof-

ing and communication-stack (network/transport/application

layer) [89] , back-doors [90] , DoS/DDoS and packet manipulation

attacks [91] . 

• Platform Vulnerabilities: include hardware, software, configu-

ration, and database vulnerabilities [36] . 

• Management Vulnerabilities: include lack of security guide-

lines, procedures and policies. 

Vulnerabilities occur due to many reasons. However, there are

hree main causes of vulnerabilities: 

• Assumption and Isolation: It is based on the “security by ob-

scurity” trend in most CPS designs. Therefore, the focus here is
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to design a reliable and safe system, taking into consideration

the implementation of necessary security services, without as-

suming that systems are isolated from the outside world. 

• Increasing Connectivity: More connectivity increases the at-

tack surfaces. Since CPS systems are more connected nowadays,

manufacturers have improved CPS through the implementation

and usage of open networks and open wireless technologies.

Most ICS attacks were based on internal attacks up until 2001.

This was before utilizing the internet which shifted attacks to

external ones [92] . 

• Heterogeneity: CPS systems include heterogeneous third party

components which are integrated to build CPS applications.

This has resulted in CPS becoming a multi-vendor system,

where each product is prone to different security prob-

lems [93] . 

• USB Usage: this is a main cause of CPS vulnerabilities, such

as the case of the Stuxnet attack that targeted Iranian power

plants, since the malware is inside the USB. Upon plugging it,

the malware spread across several devices through exploitation

and replication. 

• Bad Practice: is primarily related to a bad coding/weak skills

that lead to the code to execute infinite loops, or to become

too easy to be modified by a given attacker. 

• Spying: CPS systems are also prone to spying/surveillance at-

tacks, mainly by using spyware (malware) types that gain a

stealthy access and remain undetected for years with the main

task to eavesdrop, steal and gather sensitive/confidential data

and information. 

• Homogeneity: similar cyber-physical system types suffer from

the same vulnerabilities, which once exploited, can affect all

the devices within their vicinity, a prime example is the Stuxnet

worm attack on Iranian nuclear power plants [94] . 

• Suspicious Employees: can intentionally or inadvertently dam-

age or harm CPS devices, by sabotaging and modifying the cod-

ing language, or granting remote access to hackers through the

opening of closed ports or plugging in an infected USB/device. 

Thus, CPS vulnerabilities can be of three types, including cy-

er, physical, and when combined, they result into a cyber-physical

hreat. 

.2.1. Cyber vulnerabilities 

Since ICS heavily relies on open standard protocols includ-

ng Inter-Control Center Communications Protocol (ICCP) [95] and

ransmission Control Protocol/Internet Protocol (TCP/IP) [96] , ICS

pplications are prone to security attacks. In fact, ICCP suffers from

 critical buffer overflow vulnerability [89] and also lacks the ba-

ic security measures [97] . In fact, the Remote Procedure Call (RPC)

rotocol [98] and ICSs are prone to various vulnerabilities includ-

ng the Stuxnet (1 & 2) [99–101] and Duqu malware (1.0, 1.5 &

.0) attack types [102–104] , Gauss malware [102,105,106] , and RED

ctober malware [107,108] , as well as Shamoon Malware (1, 2 &

) [109–111] , Mahdi malware [112–114] , and Slammer Worm [115] .

Open/Non-secure wired/wireless communications such as Eth- 

rnet are vulnerable to interception, sniffing, eavesdropping, wire-

apping and wardialing and wardriving attacks [116–118] and

eet-in-the-middle attacks [119] . Short-range wireless communi-

ations are also vulnerable, since they can be captured, analysed,

amaged, deleted or even manipulated by insiders [120] . More-

ver, employees’ connected devices to ICS wireless network, if

ot secure, are prone to botnet, remote access Trojan and rootkit

ttacks, where their devices will be remotely controlled by an

ttacker [121] . Long-range wireless communications are vulnera-

le to eavesdropping, replay attacks, and unauthorized access at-

acks. Yet, SQL injection remains the most Web-related vulnera-

ility since attackers can access any server database without au-
horization through the injection of a malicious code that keeps

n running endlessly once executed without the user’s knowl-

dge [122] . 

Since many medical devices heavily rely on wireless communi-

ations, they are prone to a large number of wireless attacks in-

luding jamming, modification and replay attacks due to the lack

f encryption. Moreover, GPS and the device’s microphone are now

ecoming a tracking tool, allowing the identification of the target’s

ocation, or intercepting the in-car conversations through eaves-

ropping [13] . 

By default, ICS relies on Modbus and DNP3 protocols to moni-

or and send control commands to sensors and actuators. In [16] ,

umayed et al. stated that the Modbus protocol lacks basic secu-

ity measures such as encryption, authentication and authorization.

his has made it prone to eavesdropping, wiretapping, and port-

can [123] , with the risk of the controller being spoofed through

alse data injection [124] . The DNP3 protocol is also prone to the

ame vulnerabilities and attacks, with one main difference which

s the integration of Cyclic Redundancy Check (CRC) as an in-

egrity measure [125] . Moreover, Windows Server Services were

ulnerable to remote code execution [99] , with more attacks being

chieved through the exploitation of buffer overflow vulnerabilities

n any running Operating System (OS). 

Moreover, power system infrastructure of smart grids is prone

o the same vulnerabilities as ICS, Modbus and DNP3, since they

re based on the same protocols. As a result, IEC 61850 protocol

as introduced in substations’ communications, which lack secu-

ity properties and are prone to eavesdropping attacks. Therefore,

eading to interference attacks [126] , or false information injection

ttacks [127] . In [128] , Santamarta et al. analysed the available doc-

mentation of smart meters, and located a “factory login” account

sed to perform basic configurations. This gives the user full con-

rol over a smart meter and leads to power disruption, wrong de-

ision making and targeting neighbouring smart meters within the

ame network. In addition, many devices are prone to battery ex-

austing attacks [73] . 

Gollakota et al. [129] and Halperin et al. [130] exploited the

mplantable Cardioverter Defibrillator (ICD) wireless vulnerabili-

ies through injection attacks. The authors also showed that Smart

ars are vulnerable to various attack types. In [131] , Radcliffe, re-

ealed another vulnerability with Continuous Glucose Monitoring

CGM) devices being vulnerable to replay attacks. The CGM de-

ice was spoofed with the injection of incorrect values. This is due

o the fact that security considerations were not made when the

mart cars were designed [132] . In fact, the Controller Area Net-

ork (CAN) protocol suffers from many vulnerabilities, which if ex-

loited could result in attacks against smart cars. This will increase

he likelihood of a DoS attack [133] . A Tire-Pressure Monitoring

ystem (TPMS) is also vulnerable to eavesdropping and spoofing

ue to the lack of encryption [134] . In addition, Adaptive Cruise

ontrol (ACC), which forms a part of the CAN network can be di-

ectly exploited [13] . In fact, a well-equipped attacker is able to in-

errupt ACC sensors’ operations by adding noise or spoofing. Thus,

ontrolling the car by either reducing, increasing its speed or even

ausing collisions. 

.2.2. Physical vulnerabilities 

Physical tampering may result into misleading data in cyber-

hysical components. In fact, physical attacks with cyber impact

ere studied in MacDonald et al. [135] . The physical exposure of

CS components is classified as a vulnerability due to the insuffi-

ient physical security provided to these components. Thus, mak-

ng them prone to physical tampering, alteration, modification or

ven sabotage. CPS field devices (i.e smart grids, power grids, sup-

ly chains etc.) are prone to the same ICS vulnerabilities since a

arge number of physical components is exposed without physi-
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cal security, making them prone to physical destruction. Therefore,

in Mo et al. [136] , Mo et al. stressed on detection and preven-

tion solutions. In [16] , Humayed et al. stated that medical devices

are vulnerable to physical access along with the possibility of in-

stalling malware into them, or even modifying the device’s config-

urations, risking the patient’s health. Moreover, a physical access

to any medical device is also a vulnerability since an attacker can

retrieve the device’s serial number to launch targeted attacks [131] .

As listed above, CPS systems suffer from various vulnerabilities

making them prone to different types of attacks, which are dis-

cussed next. 

3.3. Cyber-physical system attacks 

In this section, we present the different types of attacks that

target the different aspects of CPS systems, including cyber and

physical ones: 

3.3.1. Physical attacks 

Physical attacks were more active in past years, especially

against industrial CPS systems [137,138] . Many of these attacks

were already presented in Al-Mhiqani et al. [139] . Nonetheless, this

paper presents a broader range of physical attack types: 

• Infected Items: this includes infected CDs, USBs, devices and

drives such as the case of the Stuxnet worm [140] , which upon

their insertion into a cyber-physical device, a covert malware is

installed containing a malicious software. 

• Abuse of Privilege: this attack occurs when rogue or unsatis-

fied employees access the server rooms and installation areas

within the CPS domain. This allows them to insert a rogue USB

for infection through the installation of malicious malware/code

or as keystroke, or to capture confidential data. 

• Wire Cuts/Taps/Dialing: since communication lines including

telephony and Wi-Fi of many cyber-physical headquarters (HQs)

are still physically visible, attackers can cut the wires or wire-

tap into them to intercept the communicated data [117] . 

• Fake Identity: this attack occurs when attackers masquerade

themselves as legitimate employees, with enough experience

to fool the others. They mainly act as cleaners to gain an

easier access and better interaction with other employees. A

prime example of that is Australia’s Maroochy Water Breach in

20 0 0 [141] . 

• Stalkers: these are usually legal employees who act curious

(with malicious intents) by being on the shoulder of CPS ad-

ministrators and engineers to acquire their credentials to black-

mail or sell them to other competing CPS organisations. 

• CCTV Camera Interception: this includes intercepting the

footage of Closed-circuit television cameras that are securing

entry and key points within CPS areas. This can be done by

distorting the signals of cameras, cutting off the communica-

tion wires, deleting the footage, gaining access to the remote

control and monitoring area, etc., before performing a physical

attack in an undetected manner. 

• Key-Card Hijacking: this includes cloning legitimate cards

that are stolen from employees, or creating look-alike genuine

copies to gain full/partial access and to compromise the CPS do-

main. 

• Physical Breach: this attack requires gaining an illegal physi-

cal access to the system, mainly through a physical breach such

as the case of the Springfield Pumping Station in 2011 [142] ,

a backdoor such as the case of US Georgia Water Treatment

Plant in 2013 [143] , or an exploited security gap such as the

case of the Canadian Telvent Company in 2012 [144] . This al-

lows an attacker to damage and shut-down network-connected

manufacturing systems and CPS devices, resulting into loss of

availability and productivity. 
• Malicious Third Party Software Provider: the main purpose

of this attack is to target the company’s CPS by compromis-

ing the legitimate “Industrial Control Systems” software, such

as the case of the Georgia Nuclear Power Plant Shutdown in

2008 [145] . This includes replacing legitimate files in their

repositories with a malware that will be installed to offer re-

mote access functionalities to control or compromise a given

system. 

• Abuse of Privilege: is mainly led by insiders or “whistle-

blowers” to perform or help perform a (cyber)-attack from

within. Such high privilege grants them the ability to conduct

these attacks by exposing valuable knowledge on CPS systems’

vulnerabilities and weaknesses. This abuse of privilege can take

many forms. 

− Physical Tampering: including gaining unauthorised or

masqueraded authorised access to restricted areas to dam-

age CPS systems, devices, modify their operational mode,

inject malicious data/information or steal confidential doc-

uments. 

− Unauthorised Activities: are based on performing suspi-

cious tasks, such as opening/closing pumping stations, in-

creasing/decreasing power voltage, opening closed ports,

communicating with an external entity, network traffic redi-

rection or information leakage. 

• Social Engineering: can take many deceptive forms [91] such

as reverse engineering (impersonating a techy-savvy), baiting

(selling malicious USBs or software), tailgating (following au-

thorised personnel) or Quid Pro Quo (impersonating technical

support teams), and is based on the art of manipulating people

(either mentally or emotionally) to reveal confidential informa-

tion by manipulating their emotions to gain their trust to reveal

sensitive information related to a CPS, PLC or ICS system. 

Recently, CPS systems became the new target of hackers for

spionage, sabotage, warfare, terrorism, and service theft [146] ,

ainly as part of cyber-warfare [147] , cyber-crimes [148,149] ,

cyber)-terrorism [150–152] , (cyber)-sabotage [153] (such as cyber-

ttacks against Estonia in 2007 [154] , and Georgia in 2008 [155] ),

r (cyber)-espionage [156,157] . The lack of (cyber)-security re-

ealed a serious issue with possibly drastic effects [12] , especially

n countries like Lebanon [158,159] . 

.3.2. Cyber attacks 

In recent years, there was a rise in the rate of cyber-attacks

argeting CPS and IoCPT with very devastating consequences. Ac-

ording to current studies carried out by [160,161] , CPS is highly

rone to malicious code injection attacks [162] and code-reuse

ttacks [163] , along with fake data injection attacks [164] , zero-

ontrol data attacks [165] , and finally Control-Flow Attestation (C-

LAT) attacks [160] . Such attacks can result into a total black-

ut targeting CPS industrial devices and systems as presented in

able 2 . 

• Eavesdropping: eavesdropping includes the interception of

non-secure CPS network traffic to obtain sensitive information

(passwords, usernames, or any other CPS information). Eaves-

dropping can take two main forms: passive by listening to CPS

network message transmission, and active by probing, scanning

or tampering the message by claiming to be a legitimate source.

• Cross-Site Scripting: or XSS occurs when third-party web re-

sources are used to run malicious scripts in the targeted vic-

tim’s web browser (mainly a targeted CPS engineer, contractor,

workers, etc.) by injecting malicious Coding Script into a web-

site’s database. XSS can achieve session hijacking, and in some

cases, can log key strokes along and remotely accesses a vic-

tim’s machine. 
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Table 2 

Real CPS attacks. 

Country Target Attack Nature Type Date Motives 

United States of 

America 

Ohio Nuke Plant Network [215] Slammer Worm Malware-DoS January 25, 2003 Criminal 

Taum Sauk Hydroelectric Power 

Station Failure [216] 

Sensors Failure Accident December 14, 2005 N/A 

Georgia Nuclear Power Plant 

Shutdown [145] 

Installed Software 

Update 

Undefined Software March 7, 2008 Unclear 

US Electricity Grid [217] Reconnaissance Undefined Software 

Programs 

April 8, 2009 Political 

Springfield Pumping Station [142] Backdoor Unauthorised Access November 8, 2011 Criminal 

Georgia Water Treatment 

Plant [143] 

Physical Breach Unauthorised Access April 26, 2013 Criminal 

Iran Iranian nuclear facilities Stuxnet [218] Worm November, 2007 Political 

power plant and other industries Stuxnet-2 worm December 25, 2012 Political 

Iranian Infrastructure (nuclear,oil) 

and communications companies 

DDoS Disruptive October 03, 2012 Political 

Iranian key oil facilities Computer Virus Malware April 23, 2012 Political 

Saudi Arabia Saudi infrastructure in the energy 

industry 

Shamoon-1 Malware August 15–17, 2012 Religio-Political 

Saudi government computers and 

targets 

Shamoon-2 Malware November 17, 2016 Religio-Political 

Tasnee and other petrochemical 

firms, National Industrialization 

Company, Sadara Chemical 

Company 

Shamoon-3 Malware January 23, 2017 Religio-Political 

Qatar Qatar’s RasGas Shamoon Malware August 30, 2012 Political 

United Arab Emirates UAE energy sector Trojan Laziok Malware January-February 2015 Political 

Australia Maroochy Water Breach [141] Remote Access Unauthorised Access March, 2000 Criminal 

Canada Telvent Company [144] Security Breach Exploited Vulnerability September 10, 2012 Criminal 

Ukraine Ukrainian Power-grids [219] BlackEnergy Malware DDoS December 23, 2015 Political 

Ukramian Electricity Firms [220] Petya [221] Ransomware June 27, 2017 Political 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• SQL Injection: or SQLi targets CPS database-driven websites to

read and/or modify sensitive data, along possibly executing ad-

ministrative operations such as database shutdown, especially

when CPS systems are still relying on SQL for data manage-

ment [166] . 

• Password Cracking: aim to target the authenticity of CPS users

[167,168] (mainly engineers and managers) by trying to crack

their passwords using brute-force [169] , dictionary [170] (miti-

gated by using key exchange [171] ), rainbow table [172] , birth-

day (mitigated by hashing) [173] or online/offline password

guessing attacks [174] to gain access to the password database,

or to the incoming/outgoing network traffic. Therefore, it is im-

portant to prevent such escalation from taking place [175,176] . 

• Phishing: has many types such as e-mail phishing, vishing,

spear phishing or whaling that target some or all CPS users

(such as engineers, specialists, businessmen, Chief Executive Of-

ficers (CEOs), Chief Operations Officers (COO), or/and Chief Fi-

nancial Officers (CFO)), through impersonation of business col-

leagues or service providers. 

• Replay: includes intercepting transmitted/received packets be-

tween ICSs, RTUs, and PLCs through impersonation to cause de-

lays that affect CPS’s real-time operations and affect their avail-

ability. In some cases, these intercepted packets can be modi-

fied, which would seriously hinder normal operations. 

• DoS/DDoS: DoS attacks target the cyber-physical system re-

sources and are launched from a large number of locally in-

fected devices. DDoS attacks are usually exploited by Bot-

nets, whereby a large number of infected devices simultane-

ously launch a DDoS attack from different geographical loca-

tions. DoS attacks can take many forms (i.e blackhole [177] ,

teardrop [178] ), while DDoS can take the following forms (i.e

ping-of-death [179] , smurf [180] and Black Energy series (BE-1,

BE-2 and BE-3 [181–183] ), all targeting CPS systems. 

− TCP SYN Flood: exploits the TCP handshake process by con-

stantly sending requests without responding back to the

server, causing the server to constantly allocate space await-
ing a reply [184] . This leads to a buffer overflow and causes

the cyber-physical system to crash. 

• Malicious Third Party: includes software that covertly exploit

data aggregation network and compromises them, mainly us-

ing botnets, Trojans or worms to infiltrate information through

a CPS encrypted channel from an internal system (i.e PLC, ICS

or RTU) through the reliance on Trusted Third Party in dis-

guise, to a botnet Command-and-Control server. Thus, targeting

CPSs [185] and AMIs [186] . 

• Watering-hole Attack: The attacker scans for any cyber-

physical security weakness. Once a weakness is identified, the

chosen CPS website will be manipulated by a “watering hole”

where a malware will delivered by exploiting the targeted

CPS system mainly through backdoor, rootkits or zero-day ex-

ploit [187] . 

• Malware: is used to compromise CPS devices in order to

steal/leak data, harm devices or bypass access control systems.

The malware can take many forms, however, the main forms

that target CPS are briefly listed and presented in the follow-

ing. 

− Botnets: this includes exploiting CPS devices vulnerabili-

ties to turn them into bots or zombies, mainly to conduct

hardly-traceable DDoS attacks (i.e Ramnit (2015) [188] , Mi-

rai (2016) [189] , Smominru botnet (2017) [188] , Mootbot

(2020) [190] , WildPressure and VictoryGate (2020).) 

− Trojan: is a disguised malware that seems legitimate

and tricks users to download it. Upon download, the

Trojan infects the device and offers a remote access

to steal data credentials and monitor users activities.

This also includes Remote Access Trojans which in

turn, can be used to turn a device into a bot (i.e

Turla (2008) [191] , MiniPanzer/MegaPanzer (2009) [192] ,

Gh0st RAT (2009) [193] , Shylock (2011) [194] , Coreflood

(2011) [195] , DarkCornet (2012) [196] , MEMZ (2016) [197] ,

TinyBanker (2016) [198] and Banking.BR Android Botnet

(2020)). 
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− Virus: it can replicate and spread to other devices through

human/non-human intervention. Viruses spread by attach-

ing themselves to other executable codes and programs to

harm CPS devices and steal information. 

− Worms: spread by exploiting operating system vulnera-

bilities to harm host networks by carrying payloads to

steal, modify and delete data, or overload to web-servers

(aside Stuxnet, Flame and Duqu, i.e aCode Red/Code Red II

(2001) [199] , Nimda (2001) [200] , Triton (2017 [201] )). 

− Rootkit: is designed to remotely and covertly access or

control a computer to execute files, access/steal informa-

tion or modify system configurations (i.e Moonlight Maze

(1999) [202] , and Blackhole exploit kit (2012) [203] ). 

− Polymorphic Malware: constantly and frequently changes

its identifiable to evade being detected to become unrecog-

nizable against any pattern-matching detection technique. 

− Spyware: is a malicious software covertly installed on a de-

vice without the user or authorization knowledge, for spying

purposes (e.g surveillance, reconnaissance, or scanning). In

fact, they can be used for future cyber-attack purposes (i.e

ProjectSauron (2011) [204] , Dark Caracal (2012) [205] , Red

October (2013) [107] , WarriorPride (2014) [206] , FinFisher

(2014) [207] , and COVID-19 spyware.) 

− Ransomware: is a malicious software that holds and en-

crypts CPS data as a ransom by exploiting CPS vulnerabil-

ities, targeting oil refineries, power grids [208] , manufac-

turing facilities, medical centers and encrypting all data-

backups until a ransom has been paid. A prime example

of that is the Siskey (2016), SamSam (2016), Locky (2016),

Jigsaw (2016) [209] , Hitler-Ransomware (2016) [210] , Wan-

naCry (2017), Petya (2017), Bad-Rabbit (2017), Maze (2019)

and Ekans (2020) ransomware [211–214] . 

• Side-Channel: is based on the information gained from the im-

plemented CPS system such as timing information, power con-

sumption and electromagnetic leaks that can be exploited. 

For this reason, some of the most infamous cyber-attacks de-

serve being mentioned ( Table 2 ). Moreover, for further details, you

can refer to [139] . In fact, Do et al. presented a much more detailed

attack description as early as 1980s in Fillatre et al. [142] . However,

this paper aims to classify the occurrence of these attacks as early

as 20 0 0 and based on, but not limited to, political, religious, and

criminal motives. 

After reviewing the main CPS attacks, it is essential to assess

their associated risks to design the convenient counter-measures.

In the next section, the risks associated with the different CPS se-

curity attacks are evaluated. 

3.4. CPS failures 

Given the different threats, attacks and vulnerabilities that the

CPS domain suffers from, it is important to highlight the main fail-

ures than CPs systems suffer from. These failures can either be mi-

nor (limited damage) or major (severe damage). In fact, further de-

tails can be found in Avizienis et al. [222] , where Avizienis et al.

presented a well-defined and detailed explanation in this regards. 

• Content Failure: means that the content of the delivered infor-

mation is inaccurate, which would result into some functional

system failure. Content failure can be either numerical or non-

numerical (i.e alphabets, graphics, sounds or colours). 

• Timing Failure: means that the timing of information de-

livery (transmission/receiving) is delayed or interrupted (re-

ceived/transmitted too early or too late). This would affect the

decision making process and may cause data management is-

sues. 
• Sensors Failure: means that the sensors are no longer function-

ing properly, and would seriously hinder the decision making

process due to misinformation, or bringing a CPS system to a

sudden halt. A similar case occurred in 2005, at Taum Sauk Hy-

droelectric Power Station [216] . 

• Silent Failure: occurs when there is no message sent or re-

ceived in a distributed system. 

• Babbling Failure: occurs when the information is delivered,

causing the system to malfunction and to operate in a babbling

manner. 

• Budget Failure: occurs when the cost of implementing a cyber-

physical system outweighs the budget set, before ever reaching

the testing level. This is mainly caused by poor planning. 

• Schedule Failure: occurs when the schedule set for planning,

testing and evaluating a given CPS is not achieved due to fur-

ther upgrades, additional testing, or inadequacy for users needs.

• Service Failure: occurs when having an error propagates

through the service interface and affects its decision making

or/and normal performance ability. This failure can either cause

a partial or full CPS system failure either temporarily or perma-

nently. 

• Consistent/Inconsistent Failures: a consistent failure occurs

when a given service is identically perceived by all CPS users.

An inconsistent failure takes place when all CPS users differ-

ently perceive an incorrect service (i.e bohrbugs, mandelbugs,

heisenbugs and Byzantine failures) [223] . 

. Evaluating risks 

Evaluating risks is essential to assess the risk’s economic impact

f an attack on any CPS system, before managing it. Such manage-

ent is based on assessing and analysing the risk before mitigat-

ng it, then deploying the right security measures according to the

evel of severity and risk impact (see Fig. 4 ). 

.1. Risk identification & management 

Risk Management is implemented in order to identify, analyse,

ank, evaluate, plan and monitor any possible risk through risk as-

essment. 

• Identifying Risks: identification is based on uncovering and

recognising risks that can negatively affect a project/project

outcome and describing it [224] . 

• Analysing Risks: risks likelihood and consequence must be de-

termined once they are identified, to understand the nature of

a risk. 

• Ranking Risks: risks rank is evaluated according to the risk

magnitude, based on the combination of both risk likelihood

and consequence in case it occurred. 

• Evaluating Risks: based on their ranks, risks are either deemed

as acceptable or require serious treatment and urgent attention.

• Planning Risks Response: highest ranked risks are assessed to

treat, modify and mitigate them to once again achieve an ac-

ceptable risk level. Therefore, risk mitigation strategies are cre-

ated, along with the deployment of preventive and contingency

plans. 

• Monitoring and Reviewing Risks: risks are constantly moni-

tored, tracked and reviewed. In case of any suspicious activity,

these risks are mitigated before any serious threat occurs. 

.2. Risk assessment 

Risk Assessment is implemented to minimize the impact of a

iven attack [225] . In fact, risks are evaluated based on calculat-

ng the average loss in each occurring event [226] . Additionally,
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Fig. 4. CPS risk evaluation. 
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everal risk assessment methods, as well as various techniques to

ecure CPS were revealed in Ashibani and Mahmoud [25] . In fact,

ince most studies are focused on securing enterprise systems in

rder to assess risks, security became an emerging issue that im-

oses a serious risk on CPS [227] . As a result in Lu et al. [228 , 229] ,

u et al. presented an adequate risk assessment method. The main

ecurity focus was based on transferring it from risk assessment,

o Computer Risk Assessment (CRA), to Network Risk Assessment

NRA) with a heavy reliance on the internet [230] . Asset Identifi-

ation: is also important, since it is a resource value that can ei-

her be tangible, or intangible that impacts daily transactions and

ervices [231] . In fact, CPS assets can be divided between cyber

ssets, physical assets, and cyber-physical assets. Finally, since as-

et quantization is estimated from both direct and indirect eco-

omic losses [232] , it is important to determine the Asset Value

AV). 

.3. Risk impact 

Risk is assessed based on its possible impact on CPS systems. It

s divided into three main types: 

• High Impact: in case the risk has occurred, this can result in

devastating and damaging effects on CPS systems. It is used to

evaluate and mitigate persistent advanced threats [233] . 
• Medium Impact: in case of its occurrence, the impact is less

severe. However, it also imposes a serious threat against CPS. It

is used to evaluate and mitigate advanced threats [234] . 

• Low Impact: in case this risk has occurred, its impact is not

severe, nor has damaging effects. As a result, its impact is very

limited and can be easily mitigated. It is used to evaluate and

mitigate basic threats [235] . 

.4. Risk mitigation 

Risk mitigation requires the adaptation and implementation of

 well-built management strategy in addition to cyber and physi-

al security in order to counter-espionage, theft, or/and terrorist at-

acks. Such a mitigation model also requires, data security and pro-

ection, as well as anti-counterfeit and supply chain risk manage-

ent [236] . These models should also be supported by both foren-

ic and recovery plans. This can help in analyzing cyber-attacks

hilst coordinating and cooperating with the responsible agencies

o identify external cyber-attack vectors [237] . Therefore, preven-

ive, detective, repressive and corrective logical security measures

an be adopted. 

As a result, a qualitative risk assessment table is presented (see

able 3 ) where the exposure is either Low (L), Moderate (M) or

igh (H), the risk level is either Major (Ma), Minor (Mi) or Critical

Cr), and the security measures are Detective (D), Repressive (R),

reventive (P) and Corrective (C), respectively. 
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Table 3 

Qualitative CPS risk assessment. 

Attack System/Data Exposure Evaluation Risk Mitigation Targeted Security Goals 

Type Impact Protected Unprotected Risk Level Security 

Measures 

Countermeasures Confident- 

iality 

Integrity Availability Authent-ication 

Malware High L/M/H H Ma/Cr D, P, C & R IDS, Firewalls, 

Anti-Malware, 

Anti-Virus 

� � X � 

Spyware Moderate M H Ma/Mi D, P & R Anti-Spyware, 

Defence in Depth 

� X X X 

Ransomware High M/H H Ma/Cr D, R & C Honeypot, Verified 

Backup/Update, 

Lesson Learnt 

� � � � 

Botnets High M/L H Ma D, C & P IDS, Anti-Malware � � � X 

DoS/DDoS High H H Ma/Mi D, P & R Backups, Secondary 

Devices, IDS, 

Leverage to Clouds 

X X � X 

Eavesdrop Low L H Mi D & P HTTPS/SSH 

Encryption, 

Personal Firewalls, 

VPNs [238] 

� X X X 

Side-Channel Moderate M/L H Ma D, P & R Ultra-Low Power 

Processors, Faraday 

Cage, Obfuscating 

Timing/Power 

Information [239] 

� X X X 

Zero-Day High H H Cr D, C & R Real-Time Threat 

Intelligence, Rapid 

Incident Response 

Teams, Constant 

Updates 

� � � � 

Malicious Data 

Injection 

Moderate L H Ma D, P & C Hybrid IDS, ML, 

BYOD Policy [240] 

� � X X 

Social 

Engineering 

Low L M/H Mi D & P Employee Training & 

Awareness 

� � X X 

Phishing Moderate L H Ma D & P IDS, Anti-Phshing 

Software/Training 

� � X X 

Password 

Cracking 

Moderate L M Ma P & C Password Policy, 

Periodic Password 

Changing 

� � X � 

Replay Low L M Mi D & P Timestamp, Filtering, 

Random Session 

Keying 

X X � X 

XSS High L H Cr D & P Validate & Sanitize 

User Input 

� � X � 

SQLi Moderate L H Ma/Mi D, C & P Least Privilege, 

Strong Code, 

Whitelisting 

� � � X 
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4.4.1. Attack cost & impact 

The cost of security attacks can take many forms, and the main

ones are highlighted as follows: 

• Delays: CPS systems may be prone to service delays, which may

affect their performance and render them inactive (blackout,

burnout) until the issue is sorted either through maintenance

or back up. 

• Affected Performance: system delays due to a malicious

(cyber-attack)/non-malicious (accident) event can gradually af-

fect the CPS performance and cause it to operate in an ab-

normal manner which can seriously affect the decision making

process. 

• Cascading Failures: such as sensor failures, software bugs or

nuclear power plant overheating, which can cause environ-

mental catastrophes such as the case of Chernobyl (1986) and

Fukushima (2011), natural gas pipeline explosion in Belgium

(2004), series of TransCanada Corporation’s natural gas leakage

and explosion in Canada (between 20 0 0 and 2018) [241] as well

as similar incidents in the US [242] , Mexico, China and other

countries, oil spilling, water pipeline incidents, flooding, black-

outs, and so on. 

• Financial Losses: malware attacks such as ransomware (i.e

Ekans snake malware) targeting Industrial Control Systems

(ICMs) can lead to huge loss of information beyond recovery if

the backup is not maintained, or if the ransom is not paid. This

leads to huge financial losses over short and long terms espe-
cially if the information is deleted beyond recovery. CPS sys-

tems might take months and even years to recover. 

• Additional Spending: may be required to tackle the advanced

persistent threat attempts and zero-day attacks, which re-

quire additional spending in terms of security protection in a

defense-in-depth manner. 

• Loss of Life: can be the result of flooding, radioactivity, fire or

electric shock due to hazardous or intentional acts. 

• Disclosure of Information: can affect CPS businesses and busi-

ness trades and put the privacy of users at risk of having their

personal information being exposed. 

Before proceeding any further, it is important to classify CPS

omponents as critical, moderate and non-critical, to identify the

isk of an event occurrence (malicious/hazard) along its impact to

efine the proper security measures (basic, standard or advanced),

s seen in Fig. 5 . 

While adopting all possible security measures might be costly

n all terms (i.e. complexity, financial cost, delay, etc.), risk man-

gement is key for selecting the convenient security solutions. In

he next section, the different security solutions proposed to de-

end the security issues are reviewed. While these security solu-

ions aim at preventing, detecting or correcting system damage,

he CPS forensics aim at knowing the system issues causes, which

elp in reducing and preventing future attacks. Thus, the main CPS

orensics solutions are also reviewed. 
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Fig. 5. CPS component classification & protection. 

Fig. 6. Targeting CPS security goals. 
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. Securing CPS 

Securing CPS is not a straightforward task. For this reason,

arious existing solutions are mentioned and discussed in this

ection. Already existing testing tools are also introduced. All

f these schemes are presented to protect CPS domains against

ttacks that target the confidentiality, integrity, availability, au-

hentication and privacy of both data and systems as seen

n Fig. 6 . 
.1. CPS security requirements 

According to National Institute of Standards and Technology

NIST) guidelines [243,244] , ensuring trust between IoT and CPS,

hould consist of various multi-factors. This is due to both IoT and

PS systems relying on safety, security, privacy, consistency, de-

endability, resiliency, reliability, interaction and coordination, all

f which are combined to form a well-designed and trustworthy

ystem. If this condition is satisfied, a perfect CPS mechanism is
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Table 4 

CPS testing tools. 

Tools Origins Nature Description 

Achilles [246] uniquely designed for embedded and industrial control 

devices 

uses Wurldtech proprietary fuzzing algorithms to generate 

tests of known and unknown vulnerabilities, provides the 

analysis of the attack impact, monitors the whole system 

BreakingPoint [247] designed as the industry’s first cyber tomography 

machine 

a 4 RU rack-mountable, modular system that accurately 

recreates a live network environment and identifies 

network devices “Breaking-Points”. It measures and 

hardens the resiliency of CI component against crippling 

attacks 

beSTORM [248] automated tool programmed to make an excessive search of all possible input 

combinations, tests any product for potential weaknesses 

Codenomicon Defensics [249] a specialized fuzzing tool which supports the security of 

industrial protocols 

sends to the system invalid or unexpected inputs that expose 

software defects and vulnerabilities, ensures a broader test 

coverage, can be used to test digital media, wireless 

infrastructures and network protocols. Easy integration. 

Proactive testing. Integrated online documentation 

Mu-8000 [250] Mu Studio Security, built on a powerful automation 

platform that provides extensive automation, monitors 

hardware/software-based restarters, and reports 

capabilities 

consists of four types of tests, Protocol Mutation Tests 

including DNP3, IEC 61850, MMS, and MODBUS/TCP 

industrial protocols, generates test cases packets containing 

protocol mutations secure targets handles them 

successfully, non-secure targets might respond abnormally 

Peach [251] Smart Fuzzing tool that performs generation and 

mutation based fuzzing 

requires the creation of PeachPit files to define the structure 

and type of information in the to be fuzzed data, allows 

the configuration of a fuzzing run including data transport 

and interface logging 

Sully [252] is a fuzzer development and fuzz testing framework It consists of multiple extensible components, it also 

supports ICCP, modbus and DNP3 fuzzing modules 

SPIKE [253] designed to focus on finding exploitable bugs It is a fuzzer creation kit, it provides an API to allow users to 

create their own fuzzer for network based protocols, allows 

the use of the C programming language 

Table 5 

CPS security certifications. 

CPS security certifications 

Certification name Levels Description 

WST Achilles Certification [246] 1 includes basic testing Layer 2–4 Industrial Protocols 

2 includes in-depth testing Layer 2–4 Industrial Protocols 

Exida Certification [254] N/A includes three main types which are functional safety, functional integrity, and cyber security 

ISASecure EDSA Certification [255] N/A consists of Functional security assessment (FSA), Software development security assessment 

(SDSA), and Communication robustness testing (CRT) 

MuDynamics MUSIC 

Certification [250] 

Foundation includes various protocols such as ARP, IPv4, TCP, UDP, and IEEE 802.lp/Q 

Advanced includes various protocols such as DNP3, FTP, HTTP, MODBUS/TCP, and Telnet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

achieved. As a result, several CPS testing tools were used to eval-

uate the security of Industrial Control devices upon their develop-

ment (see Table 4 ). For further details, these tools are explained

in Zhao et al. [245] . Moreover, several security certifications are

also discussed, reviewed, analysed and compared according to their

different aspects [245] (see Table 5 ). 

In the following, the main CPS security requirements are de-

fined and discussed. 

• Privacy: In CPS, a huge data collection process is constantly

taking place, and this is what most people are not aware

of [256,257] . Therefore, a person has the right to access his own

data, along with being given the right to know what type of

data is being collected about them by data collectors, and to

whom these data is being given or sold to. However, this also

requires preventing the illegal/unauthorised access to the user’s

personal data and their information disclosure [258,259] . 

• Dependability: Intelligent Physical World (IPW) ensures that

the CPS adaptive behaviour is achieved to bring a higher

dependability and ensure the right Quality of Service (QoS)

through the adoption of fault-tolerance mechanisms in a timely

manner. Dependability includes two other qualities, safety and

reliability. Safety is often an objective defined in terms of the

organisation’s goals [243] . This is due to the negative impact

of cyber-security risks, where vulnerabilities can be compro-
mised and exploited by a hacker, or due to CPS failure. Hence,

safety is of a high concern for IoT, CPS and (Internet of Cyber-

Physical Things) IoCPT users alike. While reliability is based on

the ability to adapt to changing conditions to overcome and re-

cover from any possible disruption either based on cyber or/and

physical attacks led by adversaries, in addition to natural disas-

ters [243] . 

Physical systems rely on timing and proper functionality. How-

ever, in case of any possible mismatch, unreliability and un-

certainty can cause problems and disruptions for CPS services.

Therefore, maintaining a high reliability requires reducing the

uncertainty levels. In fact, it is also recommended to implement

error-correction algorithms to sort electronic components im-

perfect reliability [260] . As a result, Rajamäki et al. [260] stated

that CPS behaviour can be predictable through the implemen-

tation and use of artificial intelligence or/and even Machine

Learning (ML) schemes. This allows the prediction of the so

called “next-time system state”. 

• Resiliency: CPS must be resilient to overcome accidents and

malicious attacks. Therefore, CPS logical and physical systems

are prone to cyber security vulnerabilities from a security as-

pect. This included the demonstration of Carshark software

tools that control a car in Koscher et al. [133] , along with the

successful design of a virus in 2010 which attacked Siemens

plant-control systems [261] , along with how hackers broke into
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the United States Federal Aviation Administration (US FAA) air

traffic control system in 2009 [262] . Resiliency is achieved by

each CPS component in a Base Architecture (BA) presented

in Rajhans et al. [263] , where each communication and phys-

ical connection path between elements is granted access by the

BA’s connectors. This requires the BA system to know and iden-

tify every possible path, while overcoming any connection dis-

ruption. Moreover, in case the elements were inconsistent, a

multi-view editor will be deployed to make corrections. 

• Interaction and Coordination: are essential to maintain an all-

time operational CPS security. In [58] , Hu et al. stated that CPS

interaction and coordination between cyber and physical sys-

tem elements are a key aspect. In fact, the main physical world

characteristics are based on the constant system change over

time. However, the cyber world characteristics are based on se-

quence series with no temporal semantics. Moreover, two basic

approaches are presented to study and analyse this problem.

These approaches are based on the “cyberizing” the physical

(CtP) aspect through the introduction of cyber-properties and

interfaces into physical systems, and “physicalizing” the cyber

(PtC) where cyber-software components are to be represented

in real-time [264] . 

• Operational Security (OpSec): Operational Security (OpSec)

was introduced in 1988 to ensure physical security, information

security, and personnel security [265] through careful planning,

risk assessment and risk management [266] . Its primary task

is to ensure operational effectiveness by denying any adversary

access to public/private information; hence controlling informa-

tion and observable actions about a given cyber-physical sys-

tem, especially in hostile environments/areas [265] . One of its

key benefits is providing means to develop cost-effective secu-

rity measures to overcome a given threat. To achieve this task,

OPSEC involves five main steps: 

− Critical Information Identification: includes identifying 

which information, if targeted, can effectively degrade a

CPS’s operational effectiveness or place its potential organi-

zational success at risk, and develop an initial plan to pro-

tect it. 

− Threat Analysis: includes determining an adversary’s poten-

tial and capabilities to gather, process, analyze, and use the

needed information. 

− Vulnerability Analysis: includes studying the weaknesses of

a given cyber-physical system and the strengths of an ad-

versary. Thus, building a possible view over how a potential

adversary might exploit this security gap to perform a secu-

rity breach. 

− Risk Assessment: risks are assessed based on the threat

and vulnerability levels combined, depending on how high

or how low these levels are. Risk assessment levels include

evaluating the cost of implementing the right security mea-

sures by ensuring a trade-off between the effective cost and

benefit balance. 

− Appropriate Application Countermeasures: once the trade-

off is achieved in the earlier phase, the appropriate coun-

termeasures are then developed to offer the best protection

of CPS against these ongoing threats in terms of feasibility,

cost, and effectiveness. 

• System Hardening: System hardening can be used to defend a

wider range of threats. Therefore, it is highly recommended to

isolate critical applications that lack the proper security mea-

sures, from any OS that is not trusted in order to boost the

IoCPT and CPT security. In [267] , Shepherd et al. analysed differ-

ent trust-computing technologies along with their applications

in the CPS domain. According to [268] , such analysis included

a Trusted Platform Module (TPM), Trusted Execution Environ-

ments (TEE), Secure Elements (SE), and Encrypted Execution
Environment (E3), to increase the OS’s integrity. Moreover, the

authors’ work in Almohri et al. [269] has successfully achieved

a higher security level in the presence of untrustworthy compo-

nents. This allowed the improvement of CPS by enhancing sys-

tem’s integrity. However, if the Graph-based optimization was

combined with parameters, it can provide a reasoning basis

to ensure an overall system integrity [270] . Therefore, it is es-

sential to set the right privileges (task-based, role-based, rule-

based, etc..) and strong password complexity policies in order

to enhance the security level. Moreover, this also includes get-

ting rid of old unused accounts and open yet unused ports to

reduce the exposure to remote wireless attacks. As a result,

CPS nature must be considered before achieving any design.

In [136] , Mo et al. presented a Cyber-Physical security by com-

bining systems-theoretic with Cyber-Physical security controls. 

.2. CPS security challenges 

The adoption of security measures has many benefits when it

omes to protecting CPS components, layers and domains. How-

ver, despite these advantages, CPS systems are impacted by the

pplication of these security measures, which can be summarized

s follows: 

• Reduced Performance: security measures can partially or fully

affect the performance of a given CPS, in the absence of care-

ful consideration for a balanced security-performance trade-off.

This can affect normal operations and requires more human in-

terventions to manually assign services and domains. 

• Higher Power Consumption: is a serious issue, especially for

resource-constrained and battery-limited CPS end devices. A

higher power consumption means a shorter lifespan and a

higher cost to maintain their availability. 

• Transmission Delays: transmitted/received data is prone to de-

lays due to the additional encryption process that is being

added to thwart passive/active eavesdropping and sniffing at-

tacks. Despite the protective advantage that is offers, this is un-

acceptable in a real-time CPS systems. 

• Higher Cost: higher security levels are associated with higher

computational costs, which are not limited to the initial capital

spending phase, but also include training, update, and opera-

tional phases. 

• Compatibility Issues: some CPS systems are not compatible

with the employed security measures and vice versa. This can

be due to the software in-use, firmware, Operating System, etc.

• Operational Security Delays: upon the deployment of any se-

curity service, there is a training phase that precedes the full

operational security mode, and during which the service is

temporarily ineffective or basic and thus, prone to attacks. 

.3. CPS security solutions 

Maintaining a secure CPS environment is not an easy task due

o the constant increase of challenges, integration issues and lim-

tation of the existing solutions including the lack of security, pri-

acy and accuracy. Nonetheless, this can be mitigated through dif-

erent means including cryptographic and non-cryptographic solu-

ions as seen in Fig. 7 . 

.3.1. CPS criticality 

CPS systems can be divided into four main types based on the

spect of their criticality: 

• Safety Critical: in such a CPS type, an attack can lead to loss

of life or to chronic deadly diseases, with significant damage

to the environment such as fire, floods, radioactivity (e.g. Cher-

nobyl in 1986 and Fukushima in 2011) incidents [271,272] . 



16 J.A. Yaacoub, O. Salman and H.N. Noura et al. / Microprocessors and Microsystems 77 (2020) 103201 

Fig. 7. Protecting CPS layers, components & personnel. 
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• Mission Critical: for this type of CPS, an attack can result into

a fatal/non-fatal, total/partial failure of a CPS to achieve its ob-

jectives [273] . 

• Business Critical: in such a CPS type, an attack can result into

huge financial and economic losses, damaged reputation and

loss of CPS contractors and clients. 

• Security Critical: for this type of CPS, an attack can result into

a security breach of the cyber-physical system (security gap, ex-

ploitable vulnerability, rootkits, backdoors, etc.). 

5.3.2. Cryptographic-based solutions 

Cryptographic measures are mainly employed to secure the

communication channel from active/passive attacks, along any

unauthorized access and interception, especially in SCADA sys-

tems [274] . In fact, traditional cryptography approaches based on

utilizing ciphers and hash function are not easily applied to CPS

including IoCPT due to power and size constraints. As a result,

the main focus should be limited to data security alone, instead

it should maintain and ensure the efficiency of the overall sys-

tem process along. Therefore, various solutions were presented.

In [23] Kocabas et al. conducted their own survey which was ded-

icated to conventional and emerging encryption schemes which

could be employed to offer secure data storage and sharing. In [24] ,

Lai et al. reviewed and discussed prominent cryptographic au-

thentication and encryption methods [275] to secure Distributed

Energy Resources (DER) systems, while providing recommenda-

tions on applying cryptography to DER systems. In [276] , Ding

et al. presented an overview of recent advances on security control

and attack detection of industrial CPS, especially against denial-of-

service, replay, and deception attacks. In [15] , Sklavos et al. pre-

sented a tutorial that discusses the implementation efficiency of
ommunications confidentiality, user authentication, data integrity

nd services availability, along attacks and modern threats with

heir countermeasures. 

Many solutions were presented to maintain a secure CPS en-

ironment by fulfilling its main security goals. In [277] , Adam et.

l. presented a novel framework to understand cyber-attacks and

PS risks. Their framework offers a novel approach to ensure a

omprehensive study of CPS attack elements, including the attacker

nd his objectives, cyber exploitation, control-theoretic and phys-

cal system properties. In [232] , Stouffer et al. provided a com-

rehensive ICS security guideline that is related to technical con-

rols including Intrusion Detection Systems (IDS), Access Controls

AC), firewalls, and operational controls including training, aware-

ess and personnel security. In [97] , security experts were able

o gain the employees’ credentials due to their lack of aware-

ess and training, using phishing and social engineering techniques

hrough a simulated attack. In [34] , Sommestad et al. conducted

 keyword mining comparison, and concluded that the main fo-

us was either on operational controls, or technical controls only.

n [278] , Sharma et al. presented a novel multi-level Network Se-

urity Evaluation Scheme (NSES) that represent five different lev-

ls of security. Therefore, providing a holistic view over whether

SES is suitable for Wireless Sensor Networks (WSN) security for

oT/CPS/IoCPT applications. NSES offers recommendation for net-

ork administrators on early design phases to achieve the right

ecurity needs. As a result, this paper classifies these solutions in

erms of them fulfilling one of the following security goals: 

• Confidentiality: securing CPS communication lines is essen-

tial. As a result, various cryptographic solutions were presented.

In [279] , the authors presented a solution based on the use
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of compression techniques before being encrypted. Their solu-

tion reduces the overhead and mitigates the problem. Since,

lightweight cryptography became the centre of attention with

various lightweight block ciphers being presented by different

authors, including an ultra-lightweight block cipher by Bog-

danov et al. [280] and a low-latency block cipher for perva-

sive computing applications [281] . This was due to their low-

cost and low-latency with the ability to provide cryptographic

blocks for any resource constrained, normal, industrial, or even

medical devices. In [282] , Shahzad, et al. suggested the instal-

lation of encryption-decryption modules at both ends of non-

secure Modbus communication to protect its connection from

confidentiality attacks. Thus, requiring an additional overhead

to convert plaintexts into ciphertexts and vice versa. In [283] ,

The American Gas Association (AGA) presented its AGA-12 stan-

dard to provide “bump-in-the-wire” encryption services for CPS,

but at the expense of large latency overheard [284] . In [285] ,

Vegh et al. described a hierarchical cryptosystem method ob-

tained through the ElGamal algorithm that protects CPS com-

munications. To fix decryption issues, WSO2 Complex Event

Processor (WSO2-CEP) was presented in Jayasekara et al. [286] ,

Perera et al. [287] and used in to sort different challenges. Re-

sults ensure the ability to ensure confidentiality, privacy and

availability in a secure and reliable CPS environment. 

In [288] , Zhou et al. presented a novel lightweight encryption

scheme for real-time requirement in CPS including Vehicular

ad hoc networks (VANETs) [289,290] . Results revealed that this

scheme is secure, reliable and efficient. In [291] , He et al. pre-

sented a Lightweight Attribute Based Encryption Scheme (LABE)

for mobile cloud-assisted CPS. Security analysis revealed that

LABE is secure with fine grained access control and users re-

vocation capability, with low overhead. In [292] , Zhao et al.

presented a new architecture called Secure Pub-Sub (SPS) that

is based on blockchain. Hybrid encryption was used to en-

sure data confidentiality. Therefore, ensuring data confidential-

ity and reliability, while achieving anonymity of subscribers and

payment fairness between subscribers and publishers. In [293] ,

Sepulveda et al. presented a feasible post-quantum enhanced

Datagram Transport Layer security (DTLS) by using Public Key

Cryptography (PKC) based on traditional Elliptic-Curves (ECC) to

secure communication channels between different parties. 

• Integrity: maintaining the integrity of CPS devices require

preventing any physical or logical modification of incom-

ing/outgoing real-time data. Hence, different solutions are pre-

sented. In [294] , Omkar et. al. addressed the problems of soft-

ware reconfiguration and network attacks on ICS through the

description of their presented approach called Trustworthy Au-

tonomic Interface Guardian Architecture (TAIGA). TAIGA offers

protection against the attacks that originate from both super-

visory and plant control nodes, whilst integrating a trusted

safety-preserving backup controller. In [295] , Tiago et al. in-

troduced the Shadow Security Unit “SSU” as a low-cost device

used in parallel with a PLC or Remote Terminal Unit (RTU) to

secure SCADA systems [296] . 

SSU is complementary to the existing SIEM architectures, and it

can transparently intercept its communication control channels

along with its physical process Input/Output lines to constantly

assess both security and operational status of PLC or RTU. An-

other approach was also presented in Ghaleb et al. [297] , by

Asem et. al to overcome MITM, replay and command modifi-

cation attacks by providing an encryption level for the trans-

ferred packets, along with the use of hardware cipher mod-

els. In [298] , Cao et al. presented a layered approach with the

aim of protecting sensitive data. Their techniques relied on hash

chains that provide a layered protection for both high and low

security levels zones along with a lightweight key management
mechanism. Thus, preventing attackers from intercepting data

from a higher security level zone. Therefore, ICS applications

vendors should work on releasing compatible versions of their

applications to ensure that the ICS operators will not resort to

older versions of vulnerable OS [22] . 

• Availability: maintaining the availability of CPS devices is a

must. Hence, different solutions are presented to mitigate and

overcome availability issues. For this reason, the Tennessee-

Eastman Process Control System (TE-PCS) model is used to test

integrity and DoS attacks [299] . Upon testing, this model re-

veals how DoS attacks are ineffective against sensor networks.

Thus, requesting to prioritize security defences against integrity

attacks due to their effectiveness to overcome DoS attacks

only [300] . In [39] , Gao et al. designed and presented the net-

work ICS testbed based on Emulation, Physical, and Simulation

(EPS-ICS testbed) as a control process for corporate and SCADA

network emulations through the use of PLCs, RTUs, and DCS

controllers to interact with the process. In [301] , Thiago et. al.

combined an open source PLC with a machine learning-based

IPS design to secure the OpenPLC version and render it im-

mune against a wide range of attacks. Their presented approach

revealed the ineffectiveness of interception, injection and de-

nial of service attacks, along with the ability of their OpenPLC

project to overcome man-in-the-middle attacks through data

encryption, without interfering with its own real-time charac-

teristics. 

• Authentication: authentication is the first line of defense that

should be well-built, designed and maintained [259,302–304] .

As a result, in Halperin et al. [130] , Halperin et al. presented

a public key-exchange authentication mechanism to prevent

unauthorized parties from gaining access. Their mechanism re-

lies on external radio frequency rather than batteries as an en-

ergy source. In fact, out-of-band authentication were deployed

in certain wearable devices, where the authentication mecha-

nism uses additional channels including audio and visual chan-

nels [73] . On the other hand, Medical CPS (MCPS) biometrics,

including mainly heart rates and blood pressure [305] , can pos-

sibly be used to generate a key to encrypt and secure the body

sensor network communication [73] . In [306] , Ankarali et al.

presented a physical layer authentication technique which re-

lies on pre-equalization. In [307] , Ibrokhimov et al. presented a

five high-level features categories of user authentication in the

gadget-free world, including security, privacy, and usability as-

pects. 

In [308] , Chen et al. presented an authentication scheme

that applies Authenticated Identity-Based Cryptography With- 

out Key-Escrow (AIBCwKE) mechanism to protect user’s pri-

vacy and property from illegal attacks on Machine-to-Machine

(M2M) communications. Making it secure and suitable for safe

sessions between mobile devices with an acceptable overhead.

In [309] , Haroon et. al. detailed how recent versions of PLCs

(2016) are prone to various vulnerabilities, especially password-

based mechanisms. The authors revealed that passwords stored

in a PLC memory can be intercepted and cracked. Thus, allow-

ing them to carry out advanced attacks including replay attacks

and memory corruption attacks. In [310] , Choi et al. presented

an ICS-specific key management solution with no delays. 

• Privacy Preserving Preserving the privacy of users’ big data is

not an easy task. As a result, various privacy preserving tech-

niques were presented to solve this issue including differential

privacy and homomorphic encryption. 

− Differential Privacy: limits the disclosure of private real-

time big-data and information during its transmission.

in [311] , Keshk et al. studied the feature reduction role along

privacy protection levels using Independent Component

Analysis (ICA) as a technique on big power CPS data. Results
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Fig. 8. IDS structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

revealed that ICA is more secure without breaching con-

fidential data and offers a better privacy preservation and

data utility. In [312] , J. Feng et al. presented a lightweight

privacy-preserving high-order Bi-Lanczos scheme in inte-

grated edge-fog-cloud architectural paradigm for big data

processing. User’s privacy is achieved using an homomor-

phic cryptosystem, while computation overheads are of-

floaded using privacy-preserving tensor protocols. In [313] ,

Ye et al. presented a secure and efficient outsourcing Differ-

ential Privacy (DP) scheme to solve data providers issues re-

lated to being vulnerable to privacy attacks. In [314] , Zhang

et al. presented a practical lightweight identity-based proxy-

oriented outsourcing with public auditing scheme in cloud-

based MCPS, by using elliptic curve cryptography to achieve

storage correctness guarantee and proxy-oriented privacy-

preserving property. 

− Homomorphic Encryption: for a better data confidentiality

and privacy protection, homomorphic encryption techniques

were adopted. In [315] , Zhang et al. presented a Secure Esti-

mation based on Kalman Filtering (SEKF) using a multiplica-

tive homomorphic encryption scheme with a modified de-

cryption algorithm to reduce network overhead and enhance

the confidentiality of the communicated data. In [316] , Kim

et al. a fully homomorphic encryption (FHE) as an advanced

cryptographic scheme to directly enable arithmetic opera-

tions on the encrypted variables without decryption. More-

over, a tree-based computation of sequential matrix multi-

plication is introduced to slow down the decrease of the

lifespan. In [317] , Min et al. presented a parallel fully homo-

morphic encryption algorithm that supports floating-point

numbers to achieve an efficient ciphertext operation with-

out decryption. Results revealed that the ability to limited

application problems while meeting the efficient homomor-

phic encryption requirements in cloud computing environ-

ment. 

5.3.3. Non-cryptographic-based solutions 

Many non-cryptographic solutions were also presented to mit-

igate and eliminate any possible cyber-attack or malicious event.

This was done by implementing Intrusion Detection Systems (IDS),

firewalls and honeypots. As a result, various solutions presented by

various authors are mentioned and discussed. 

• Intrusion Detection Systems Various IDS methodology types

are available due to the availability of different network con-

figurations [318] . Each IDS methodology is characterised by

its own advantages and drawbacks when it comes to detec-

tion, configuration, cost, and their placement in the network.

In [268] , Almohri et al. stated that various research activities

were implemented to detect attacks against the CPS. These at-

tacks are split into two main models. Physics-Based model,

which defines normal CPS operations in CPS through anomaly

detection. Cyber-Based model which is used in order to rec-

ognize potential attacks as listed in Shu et al. [319] , Xu et al.

[320] . In fact, existing approaches were mainly designed to

detect specific attacks against specific applications, including

Unmanned Aerial Vehicles (UAV) [321] , Industrial Control Pro-

cesses [322] , and smart grids [323] . In [324] , Zimmer et al. ex-

ploited the possibility of a worst case execution time, through

obtaining information using a static application analysis in or-

der to detect malicious code injection attacks in CPS. In [325] ,

Mitchell et al. analysed a behaviour-rule specification-based

technique to employ IDS mainly in Medical CPS. The authors

also presented the transformation of behaviour rules in a state

machine, which can detect any suspicious deviation initiated

from any medical device behaviour specification. 
• Intrusion Detection System Placement: IDS can be placed

at the border router of any given IoT network, in one or

many given hosts, or in every physical object to ensure the

required detection of attacks. Simultaneously, IDS may be

able to generate a communication overhead between the

LLN (Low Power Lossy Networks) nodes and the border

router due to the IDS ability to frequently query the network

state. In fact in Zarpelão et al. [326] , Zarpel at al. described

three main IDS placement strategies (see Fig. 8 ): 

− Distributed IDS: D-IDSs are being employed in every

physical LLN object, whilst being optimized in each

resource-constrained node. Therefore, a lightweight dis-

tributed IDS was presented. In [327] , Oh et al. identi-

fied a lightweight algorithm matching the attack signa-

tures, and the packet payloads, while suggesting other

techniques that require less matching numbers to detect

any possible attack. In [328] , Lee et al. suggested their

own lightweight method that allows them to monitor a

node’s energy consumption by assigning nodes to moni-

tor their neighbours in the distributed placement. These

nodes are defined as “watchdogs”. In [329] , Cervantes

et al., presented a solution called “Intrusion detection of

Sinkhole attacks on IPv6 over Low -Power Wireless Per-

sonal Area Networks (6LoWPAN) for IoT” (INTI), which

combines their concepts of trust and reputation with the

watchdogs nodes to mainly detect and mitigate sinkhole

attacks. This included the node’s role possibly changing

every time a network is reconfigured or an attack event

has occurred. 

− Centralized IDS: C-IDS is mainly deployed in central-

ized components. This allows all data to be gathered

and transmitted by the LLN to the Internet across the

border. Therefore, Centralised IDS can analyse all of the

exchanged traffic between the LLN and the Internet. In

fact, it is not enough to only detect attacks involving

nodes within the LLN, since it is difficult to monitor

each node during an occurring attack [330] . In [331] ,

Cho et al. presented their solution which is based on

analysing all the packets that pass through the border

router between physical and network domains. However,

the main task is based on how to overcome a botnet at-

tack. In [332,333] , Kasinathan et al. deployed a central-

ized placement that allows them to take into considera-

tion the possibility of overcoming DoS attacks, where in

case of a DoS attack, the IDS data transmission would not

be affected. In [334] , Wallgren et al. employed their cen-
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tralized approach which is placed in the border router to

detect the attacks that target the physical domain. 

− Hybrid IDS: H-IDS utilizes both concepts of centralized

and distributed placements, by combining their advan-

tages and overcoming their drawbacks. The initial ap-

proach allows the network to be organised into clusters

with the main node of each cluster being able to host

an IDS instance before taking the responsibility for mon-

itoring other neighbouring nodes. Therefore, Hybrid IDS

placements can be designed in order to consume more

resources than a distributed IDS placement. 

In [335] , Le et al. followed the same approach, through

the use of a hybrid placement using a relatively small

number of “watchdogs” nodes covering the network. This

offered them the ability to sniff the communication of its

surrounding neighbours in order to indicate whether a

node was compromised or not. Therefore, reducing the

communication overhead. In [336] , Le et al. also man-

aged to organize the network into smaller clusters with

a cluster head for each, using the same number of nodes.

This allowed an IDS instance to be placed in each clus-

ter head, with each cluster member reporting its own

related information and other neighbours related infor-

mation to the cluster head. In the second approach, IDS

modules were placed in, both the border router and

other network nodes with the presence of a central

component. In [337] , Raza et al. presented their own

IDS named as SVELTE, where the border router hosts

are given the task of processing intensive IDS modules

that are responsible for detecting any intrusion attempt

by analysing the Routing Protocol Low-power and Lossy

device’s (RPL) network data. Based on Pongle et al.’s

work [338] , network nodes were responsible for any de-

tectable changes in their neighbourhood. Moreover, net-

work nodes were also responsible for sending informa-

tion about their surrounding neighbours to their cen-

tralized module which is deployed in the border router

having the main assigned responsibility of storing and

analysing data. Thus, making it easier to detect and in-

trusion while identifying attacks in their early stages. 

In [339] , Thanigaivelan et al. presented an IDS, which

allocates different responsibilities to the network nodes

and also to the router’s border. Thus, ensuring a coopera-

tive combined work amongst them, with the IDS module

monitoring neighbouring nodes, detecting any intrusion

attempt, and sending notifications to the IDS modules. 

• Intrusion Detection Methods: The four main IDS methods

are signature-based, anomaly-based, behaviour-based and 

hybrid based. In fact in Zarpelão et al. [326] , these meth-

ods were presented, while testing methods and techniques

were classified into five main categories, depending on their

detection mechanism. 

− Signature Based: Such a detection technique is very fast

and easy to configure. However, it is only effective for

detecting known threats. Thus, showing a high weak-

ness against unknown threats mainly polymorphic mal-

wares and crypting services. Despite its limited capabil-

ity, Signature Based IDS is very accurate, and also very

effective at detecting known threats, with an easy way

to understand mechanism. However, this approach is in-

effective against the detection of both new and vari-

ants of known attacks, due to their matching signature

remaining unknown, and constantly updating its signa-

ture patches [340,341] . In [327] , Oh et al.’s aimed to re-

duce the computational cost by comparing attack sig-

natures and packet payloads. In [342] , Liu et al. pre-
sented a signature-based IDS that employs an “Artificial

Immune System” (AIS) mechanism with detectors being

modelled as immune cells with an ability to classify any

datagram as malicious or non-malicious according to the

matching signature. Such approach can evolve into the

adaptation ability new conditions in new environments

that are being monitored. In [332] , Kasinathan et al. in-

tegrated a signature-based IDS into the network frame-

work, with the objective of being able to detect DoS

Attacks against 6LoWPAN-based networks. This IDS was

implemented through the adaptation of “Suricata4” used 

for 6LoWPAN networks, with the main objective of re-

ducing the false alarm rate. In [333] , Kasinathan et al.

presented a signature-based approach as an extension of

their presented approach in Kasinathan et al. [332] . 

− Behaviour Based: Behaviour Based can be classified as

a set of rules and thresholds implemented to define the

expected behaviour of the network’s components includ-

ing both nodes and protocols. This approach is capable

of detecting any intrusion as soon as the network be-

haviour deviates from its original behaviour. Behaviour-

based acts in the same way as the Anomaly-based de-

tection with a slight difference from specification-based

systems where a human expert is needed to manu-

ally define each specification rule. Thus, providing a

lower false-positive rate than the anomaly based detec-

tion [343,344] . Therefore, there will be no need for any

training phase, since they are implemented to operate

instantly. However, such an approach is not fit for all

scenarios, and may become time consuming and error

prone. In [345] , Misra et al. presented their new ap-

proach to protect the IoT middleware from DDoS attacks,

by triggering an alert whenever the request number ex-

ceeds the threshold line. In [335] , Le et al. presented a

different specification-based approach, aimed at detect- 

ing RPL attacks [346] , by specifying the RPL behaviour

through network monitoring operation and malicious ac-

tion detection. 

In [336] , Le et al.’s work was extended. Their experimen-

tation resulted in a high true-positive rate, where false

positive rates were low throughout their experimenta-

tion, whilst also causing an energy overhead compared

to a typical RPL network as stated in Zarpelão et al.

[326] . In [347] , Amaral et al. presented a specification-

based IDS that grants the network administrator the abil-

ity to create and maintain rules in order to detect any

potential attack. Whenever the rule is violated, the IDS

would right away send an alert to the Event Manage-

ment System (EMS) that correlates these alerts for dif-

ferent available nodes in a given network. The success

of Misra et al. [345] and Amaral et al. [347] approaches

highly relied on the expertise of the network admin-

istrator, as well as his experience and skills combined.

Therefore, in case of any wrong specifications, it will

cause an excessively high false-positive rate and/or a

high false-negative rate, leading to a possibly serious risk

that threatens the network’s security. 

− Anomaly Based: This type compares system’s activities

instantly with the ability to generate an alert whenever

a deviation from normal behaviour is detected. How-

ever, such a detection method suffers from a high false

positive rate [343,348,349] . In [331] , Cho et al. pre-

sented a botnet detection scheme using the anomaly-

based method, by computing an average for each three

metrics composing the normal behaviour profile. This

was achieved before the system monitors the network’s
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traffic and raises the alert whenever a metric violates the

already defined computed averages. In [350] , Gupta et al.

presented their own architecture for a wireless IDS, by

applying the necessary Computational Intelligence algo-

rithms which are used in order to a construct normal

profile behaviour. Moreover, a distinct normal behaviour

profile will be implemented for each different IP address

being assigned. In [328] , Lee et al. suggested that en-

ergy consumption should be classified as parameter in

order to be used in analyzing each node’s behaviour.

Thus, defining a regular energy consumption model for

each mesh-under routing scheme and route-over routing

scheme, where each node will monitor its own energy

consumption. In case the node deviates, the IDS classi-

fies the node as malicious and removes it. 

In [351] , Summerville et al. successfully managed to de-

velop a deep-packet anomaly detection approach aimed

at reducing the run on resource constrained IoT devices,

by using a bit-pattern matching technique which per-

forms a feature selection. In their experimental evalu-

ation, they used internet enabled devices against four

main attack types (including SQLi, worms, etc..), and

results have shown low false-positive rates. In [339] ,

Thanigaivelan et al. successfully introduced an IoT dis-

tributed internal anomaly detection system, that mon-

itors the node’s data rate and packet size. Moreover,

in Pongle and Chavan [338] Pongle and Chavan presented

an IDS that is designed specifically in order to detect

wormhole attacks in IoT devices, in addition to present-

ing three main algorithms to detect network anomalies.

As a result, their experiment revealed that the system

has achieved a true positive rate of 94% when tested

against wormhole detection, whilst scoring an 87% when

it came to detecting both, the attack, and the attacker

launching it. In [352] , K. Demertzis et al. presented an

advanced Spiking One-Class Anomaly Detection Frame-

work (SOCCADF) based on the evolving Spiking Neural

Network algorithm. This algorithm implements a One-

class classification methodology in an innovative appli-

cable way, due to it being exclusively trained with data

to characterise normal ICS operations. Moreover, this al-

gorithm can detect any divergence in behaviours and ab-

normalities that are associated with APT attacks. The au-

thors stated that SOCCADF is highly suitable for difficult

problems, and applications with a huge amount of data.

According to their results, the authors stated that SOC-

CADF has a better performance at a very fast learning

speed, with higher accuracy, reliability, and efficiency,

and it outperforms the other approaches. 

− Radio-Frequency Based: In [353] , Stone et al. presented

a Radio-frequency based anomaly detection method for

programmable logic controllers in the critical infrastruc-

ture [354] . Their experimental results have demonstrated

that the use of a single collected waveform response pro-

vides sufficient separability to enable the differentiation

between anomalous and normal operational conditions.

However, in case of using multi-time domain waveform

response, their performance significantly degrades. To

solve this problem, the authors presented anomaly de-

tection method based on RF fingerprint feature retrieved

from the waveform amplitude, phase, and frequency re-

sponse to ensure a qualitative differentiation between an

anomalous and normal operating conditions. 

In [355] , Stone et al. also presented an RF-based method-

ology to detect anomalous programmable logic controller

behaviours with a superior time-domain RF emissions
performance. The Cincinnati Bell Any Distance (CBAD)

approach reached a Threat Agent Detection and Response

(TADR) detection rate higher than 90% benchmark re-

alised at an Signal Power Ratio (SNR) higher or equal

to 0 dB. Despite these results, this approach is prone to

RF noise, signal degradation and coding loops. In [356] ,

Stephen et al. presented a timing-based side channel

analysis technique to help control system operators in

detecting any firmware and ladder logic programs modi-

fication to the programmable logic controllers. This ap-

proach allows a field device to be fingerprinted upon

deployment to create an supplicate baseline fingerprint.

Various fingerprints of the device are taken and com-

pared to the baseline in order to detect and alert opera-

tors of both intentional and unintentional modifications

in programmable logic controllers. 

− Hybrid Based: It is based on using a specification-based

techniques of signature-based, and anomaly-based detec-

tion in order to maximize their advantage whilst mini-

mizing their drawbacks. In [337] , Raza et al. presented

a hybrid IDS known as SVELTE which offers the right

trade-off between storage cost of signature-based meth-

ods, and computational cost of anomaly-based meth-

ods. In [357] , Krimmling et al. tested their anomaly and

signature-based IDS using the IDS evaluation framework

that they presented. Their results revealed the failure of

each approach in detecting certain attacks alone. As a

result, the authors combined these approaches to cover

and detect a wider attack range. In [329] , Cervantes et al.

presented the Intrusion Detection of SiNkhole attacks on

6LoWPAN for Internet of Things (INTI), to detect and iso-

late sinkhole attacks by combining the anomaly-based

approach which ensures a packet exchange between

these nodes. This was done by using the specification-

based method in order to extract the evaluation node

based on both trust and reputation. However, when com-

paring SVELTE [337] to INTI IDS, Cervantes et al. simu-

lated a scenario where INTI IDS achieved a sinkhole de-

tection with a rate up to 92%. In case of a fixed sce-

nario, the rate has only reached 75%. Either ways, it has

shown a low rate of false-positives and false-negatives

compared to SVELTE. 

• Firewalls Firewalls saw rare use of employment in CPS domain

due to the advancement of IDS and Artificial Intelligence tech-

nologies. Therefore, a handful number of firewall-based solu-

tions were presented. In [358] , Jiang et al. mentioned the use of

paired Firewalls between enterprise and manufacturing zones

to enhance the cyber security of servers. Their choice of paired

firewalls is due to the stringent security and clear management

separation. In [359] , Nivethan et al. presented a novel method-

ology that uses iptables as an effective powerful open-source

network-level firewall for SCADA systems that inspects and fil-

ters SCADA protocol messages. In [360] , Adepu et al. presented

Argus as a framework for defending a public utility against

cyber-physical attacks. Its implementation tests revealed its ef-

fectiveness in detecting single and complex multi-component

deception attacks. In [361] , Ghosh et al. presented their ap-

proach towards predicting real-time failures of network devices

including load balancers and firewalls using event data. Their

focus was on raw device event data. Results revealed that a low

failure rate of devices, while achieving a precision rate of 77%

and recall network device failure prediction of 67%. In [362] ,

Javed et al. presented a novel security architecture that localizes

the cyber-attack in a timely manner, and simultaneously recov-

ers the affected cyber-physical system functionality. Results re-

vealed its effectiveness against system availability attacks only. 
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• Honeypots & Deception Techniques Deception is a key defen-

sive security measure that CPS rely on as a decoy to hide and

protect their system. This can be mainly done using honeypots.

However, other deceptive solutions also exist. In [363] , Cohen

presented how honeypot deception can be made more effective

upon employment, while discussing different ranges of decep-

tion tactics. In [364] , Antonioli et al. presented the design of

a virtual, high-interaction, server-based ICS honeypot to ensure

a realistic, cost-effective, and maintainable ICS honeypot that

captures the attackers activities. Such implementation aims to

target Ethernet/IP based ICS honeypots. In [365] , Litchfield et al.

presented HoneyPhy, a physics-aware framework for complex

CPS honeypots that monitor the originating behaviour from the

CPS process and the device that controls the CPS itself. Results

reveal that HoneyPhy can be employed to simulate these be-

haviours in a real-time manner. In [366] , Irvene et al. leverage

HoneyPhy framework to create the HoneyBot. HoneyBot is the

first software hybrid interaction honeypot specifically designed

for networked robotic systems. Simulations reveal that Honey-

Bot can fool attackers into believing that their exploits are suc-

cessful. 

In [367] , Fraunholz et al. set up a medium interaction hon-

eypot offering telnet and Secure Shell (SSH) services to cap-

ture data from attack sessions. This data was analysed to al-

low the classification of attacker types and sessions, respec-

tively. In [368] , Tian et al. presented a honeypot game model

with both low/high-interaction modes to mainly improve CPS

security. Simulation results revealed that optimal human analy-

sis cost allocation and defensive strategy are obtained. Making

their method suitable for CPS data protection. In [369] , Duan

et al. presented a framework called “CONCEAL” as a new de-

ception as a service paradigm that is effective and scalable. This

was done by combining m-mutation for address anonymization,

k-anonymity for fingerprint anonymization, and l-diversity for

configuration diversification. CONCEAL’s proxies save can reach

as high as 90%. In [370] , Bernieri et al. presented a modular

framework called Deep Detection Architecture (DDA) to provide

cyber-physical security for industrial control systems. A cyber-

physical simulation methodology was also presented and ex-

ploited to analyse the security modules under several differ-

ent attack scenarios. Moreover, DDA will be extensively used

for the next ICS generation and implemented into the Industry

v4.0 paradigm. In [371] , Sayin et al. introduced a deceptive sig-

nalling framework as a new defence measure against advanced

adversaries in CPS. This framework relies on information that is

strategically accessible to adversaries to indirectly control their

actions. 

.4. CPS forensics 

It is not enough to encrypt, detect and protect against pas-

ive and active attacks. In fact, aside from identifying the source

f the attack, it is also important to know how the attack was

erformed despite of the challenges [372] . Hence, there an urgent

eed for the forensics domain to enhance the forensics tools and

echniques to retrieve and analyze logs of events that took place

efore, during and after the incident. In fact, CPS forensic analysis

s still in its early stages of development, due to the ICS specialized

ature along with its proprietary and poorly documented proto-

ols [373] . In [374] , Awad et al. surveyed the digital forensics ap-

lied to SCADA systems and covered the challenges that surround

hem. Therefore, presenting the current state-of-the-art device and

etwork-specific tools. In [375] , Grispos et al. presented a forensic-

y-design framework that ensure the integration of forensics prin-

iples and concepts in MCPS. In [376] , H. Al-Khateeb et al. shed

 light on a new approach where a Blockchain-based Chain-of-
ustody may be simultaneously established to the generated prei-

entified data (data of interest) by an IoT device. In [377] , Chan

t al. described a novel security block method for detecting mem-

ry variable changes that may affect the integrity of programmable

ogic controllers and efficiently and effectively enhancing secu-

ity and forensics. This is done by by adding monitoring and

ogging mechanisms to PLCs. Therefore, ensuring faster anomaly

etection with higher accuracy, less overhead and adjustable

mpact. 

In [378] , Ahmadi et al. presented a federated Blockchain (BC)

odel that achieves forensic-readiness by establishing a digital

hain-of-Custody (CoC) and a CPS collaborative environment to

ualify as Digital Witnesses (DW) to support post-incident inves-

igations. In [379] , Parry et al. presented a high speed hardware-

oftware network forensics tool that was specifically designed for

apturing and replaying data traffic in SCADA systems. Experimen-

al results guaranteed preserving the original packet ordering with

mprovement in data capture and replay capabilities. In [380] , Cebe

t al. presented a blockchain infrastructure by integrating a Vehic-

lar Public Key Infrastructure (VPKI) to achieve membership es-

ablishment and privacy along a fragmented ledger related to de-

ailed vehicular data. Moreover, identities pseudonyms were used

o preserve users’ privacy. In [381] , P. Taveras presented a high

evel software application that detects critical situations like ab-

ormal changes of sensor reads and traffic over the communication

hannel, mainly. Therefore, helping by improving critical infrastruc-

ure protection and providing appropriate SCADA forensics tools

or incident response and forensics analysis. In [382] , Ahmed et.

l. presented a testbed of three IPPs (Industrial Physical Processes)

sing real-world industrial equipment including PLC. The authors

tated that their presented testbed is useful in cyber-security, edu-

ation (SCADA systems) and forensics research including PLC anal-

sis and programming. Moreover, their testbed includes fully func-

ional physical processes which are deemed very essential for both

esearch and pedagogical effort s. 

In [383] , Yau and Chow presented a novel methodology which

ogs relevant memory address values, that are being used by pro-

rammable logic controller programs, in addition to their times-

amps. This methodology can be extremely valuable in a forensic

nvestigation in case of an ICS incident. This is realized by apply-

ng machine learning techniques to the logged data in order to

dentify any anomalous programmable logic controller operation.

n [384] Saman et. al. combined symbolic execution with model

hecking to analyse any malicious PLC code bound injection. Their

ombined approach can also be used for forensic purposes includ-

ng the identification of the areas where the code injection took

lace, along with which part of the code caused its execution.

n [385] , McMinn et al. presented a firmware verification tool used

or the forensics analysis of trials of the altered firmware codes

o gain unauthorised access over ICS networks. Such verification

s achieved either though the analysis of the PLC’s captured data

o check whether the PLC’s firmware is modified or not. In [386] ,

leinmann et al. presented an accurate IDS that utilizes a deter-

inistic finite automaton that models the network traffic with a

9.26% accuracy, after analysing and observing the highly periodic

etwork traffic of Siemens S7 PLC. In [387] , Saranyan et al. pro-

ided a comprehensive forensic analysis of network traffic gener-

ted by the PCCC (Programmable Controller Communication Com-

ands) protocol, and also presented prototype tool that extracts

pdates of the programmable logic and crucial configuration infor-

ation. Authors also stated that their proof-of-concept tool, “Cut-

er”, which is capable of parsing the content of PCCC messages, ex-

racts and presents digital artifacts in a human-readable form such

s Simple Mail Transfer Protocol (SMTP) configuration. Moreover,

he SMTP configuration can be retrieved from the network log and

an be parsed, too. 
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In [377] , Chan et. al. presented a novel security block method

that enhances ICS security and forensics by adding monitoring

and logging mechanisms to PLCs, and ICS’s key components. Their

results demonstrated that their approach increased the anomaly

detection range, speed and accuracy with a slight performance

impact and a reduced network overhead. Thus, ensuring a more

enhanced, efficient and effective forensic investigation procedure.

In [388] , Yua et al. described the design and implementation of a

novel PLC logging system. To overcome the inadequacy of infor-

mation in forensics investigations, their logging system is used to

extract data from Siemens S7 communications protocol traffic. This

logging system also helps in recording the evidence based on the

exchanged data between the PLC and other network devices. Thus,

providing key information about the attack source, actions and

timelines. The choice of Simatic S7 PLC is due to their widespread

use [389] and successful exploitation by insidious Stuxnet mal-

ware. In [390] , Chan et al. focused on the logging mechanism of

a Siemens PLC, including the Siemens Total Integrated Automation

Portal V13 program (Siemens TIA Portal, known as Siemens Step-

7). The author’s methodology performs an effective and practical

forensics analysis of the PLC. Moreover, it focuses on Siemens PLC

along with an installed computer workstation with the Siemens

TIA Portal (previously targeted by Stuxnet). 

5.5. Limitations 

During the evaluation and analysis of the existing presented se-

curity solutions, several limitations can be deduced, presented and

discussed as follows: 

• Asymmetric Cryptography: introduces overhead in terms of la-

tency and resources. The asymmetric nature of certain crypto-

graphic work [285,292] leaves CPS’s real-time communication

prone to network latency and overhead due to delays in the

encryption/decryption process. 

• Weak Device/User Authentication Scheme: many of the pre-

sented authentication techniques [73,130,306,308] are not very

suitable for a secure appliance, due to the lack of multi-factor

authentication schemes to protect CPS systems from unautho-

rised users and access. 

• CPS Forensics Field: are still prone to many challenges includ-

ing the lack of tools, skills and responses against any potential

anti-forensics activity [372,373] . 

• Inefficient Honeypot & Deception System: despite of the re-

cently proposed techniques in Irvene et al. [366] , Tian et al.

[368] , Bernieri et al. [370] , Sayin and Basar [371] , there are

no appropriate honeypot techniques that can be specifically

adopted to protect CPS systems, especially in the wake of In-

dustry v4.0. 

• Lack of Firewall Protection: firewall solutions includ-

ing [358,359] are not very applicable and suitable for em-

ployment into the CPS domain, nor they offer an effective

protection. The best solution requires dynamic firewalls, as

well as application and next generation firewall types. 

• Inefficient Intrusion Detection Systems: despite the avail-

ability of various IDS types such as anomaly-based [352] ,

behaviour-based [345] and signature-based [333] , these are

generally applied within IoT-based domains and not specifically

designed to protect CPS systems. 

6. Learnt lessons 

To secure CPS, many lessons were learnt as how to maintain

and achieve their required security goals. Among such lessons: 

1. Maintaining Security Services: new lightweight cryptographic

solutions are required to secure CPS and IoCPT in real-time op-
erations but with minimum computational complexity. These

cryptographic solutions can help ensure the following security

services: 

• Confidentiality: there is a need for a new class of

lightweight block or stream cipher algorithms to secure CPS

resource-constrained real-time communications. Recently, a

new approach was presented, and it is based on the dy-

namic key-dependent cipher structure and it requires two or

one iteration with few operations [391–394] . A set of these

solutions can be applied at the physical layer [393–395] . 

• Message/Device Integrity: this includes the protection of

CPS data and devices’ integrity from any physical/logical al-

teration(s). This can be done by ensuring that the Oper-

ating System, applications, and software are securely de-

signed and without any flaws to prevent tampering, with

strong cryptographic hash functions (SHA256, SHA384 and

SHA512). In this end, a new lightweight hash function was

presented in Noura et al. [396] and it requires a single round

compared to the existing ones. 

• Device/Data Availability: requires the need for computa-

tional resources along with verified backups, and a self-

healing ability of CPS in such a way to recover immediately

from availability attack types. Also, maintaining data avail-

ability is as necessary [397] , and this can be done by defin-

ing a multi-secure connection [398–403] . 

2. Strong Device/user Authentication: An efficient device/user

mutual multi-factor authentication scheme is necessary, along

with enhancing verification and identification phases based

on attribute access-control privileges (least-privilege) to ensure

non-repudiation and stronger accountability. 

3. Protecting Digital Evidences: this is highly important since

most of the advanced attacks focus on eliminating any source

of evidence that traces back to the attack source, such as

the case of Shamoon, Duqu, Flame and Stuxnet malware

types [75,109,404] . Furthermore, modern digital forensics so-

lutions should define new countermeasures to preserve digital

forensics logs. 

4. Enhancing Security Policy: in many cases, CPS attacks oc-

curred by insiders (by accident or on purpose). Accordingly,

all employees must undergo a screening process before re-

cruitment, and have their privileges suspended outside work-

ing hours and monitored their actions in the case of advanced

tasks. This means that CPS security policy should be contain

new rules to limit access and to reduce the potential damage. 

5. Smart Cooperation with non-cryptographic solutions: Intru-

sion detection systems should be hybrid in all terms and should

be coordinated in an efficient manner with firewalls and dy-

namic honeypot systems. 

6. Enforcing Compliance: by respecting users’ privacy through

ensuring data access regulatory compliance that processes

CPS’s big data via clouds, especially when stored by utility

providers (Trusted Third Party (TTP)) to prevent any data leak-

age and users privacy violations. Therefore, maintaining a suit-

able trade-off between users privacy and systems’ security and

performance, while also ensuring firmer accountability mea-

sures [405,406] . 

7. Achieving Trade-Off: is essential for maintaining systems’

availability, safety and security [407,408] . Therefore, such a

trade-off must be achieved based on the combination of these

three key requirements while taking into consideration avail-

able budget and cost requirements in terms of risk assessment:

• Availability & Safety: both features are linked together since

issues related to the safety of a CPS system also affect its op-

erational availability. To ensure this trade-off, verified back-

ups of computational devices must always be considered in

the planning phase, as a second line of defense to handle
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any sudden service/system disruption (power cuts, black-

outs, pumping stoppage), or maintenance (updates, renova-

tion, installation, etc.). 

• Availability & Security: since availability is very crucial for

all real-time CPS operations, securing them is a top pri-

ority. For this reason, a trade-off is to be established be-

tween availability and security (Frequency Hopping/Shifting,

Signal-to-Noise Ration, Backup devices, Firewalls, IDS, Traf-

fic Monitoring, etc.) especially against wireless jamming at-

tacks. 

• Safety & Security: having a secure CPS does not always

mean that it is protected. In fact, a trade-off must be

achieved to maintain both safety and security features in

any CPS domain, where a safety feature is meant to protect

the CPS from any accidental failure/hazard (system failure,

miscalculations, abnormal activities, etc.), while a security

feature (IDS, Firewalls, Artificial Intelligence (AI), etc.) en-

sures protection against intentional cyber-physical attacks. 

. Suggestions & recommendations 

Different security measures could be adopted and enhanced to

nhance the protection against various threats and attacks. These

nclude: 

• Prioritization & Classification: of critical CPS components and

assets before assessing, managing and analysing risks to en-

sure the proper budget spending on the right choice of security

measures (basic, standard or advanced) in accordance to their

costs compared to the likelihood of the occurrence of a given

incident and its impact. 

• Careful Financial Planning & Management: must be con-

ducted in terms of available budget and needed costs/resources

to protect critical/non-critical CPS assets and components. 

• Lightweight Dynamic Key Dependent Cryptographic Algo-

rithms: These solutions can be used to to ensure several se-

curity services such as message confidentiality, integrity and

authentication, which are mandatory during any secure CPS

communications. This can be done by using new generation

of cryptographic algorithms, which were presented in Noura

et al. [392 , 409 , 410] . The advantage of these solutions that it

can reach a good balance between security and performance

level. The robustness against attacks were proved since a dy-

namic key is used per message (or a set of messages; depend

of application constraints and requirements). Moreover, this dy-

namic key is used to produce a set of cryptographic primitives

and update cryptographic primitives. This means different ci-

phertext can be obtained for the same plaintext since differ-

ent cryptographic primitives are used. While, the effectiveness

is validates since these algorithms require only one round it-

eration and uses simple operations in addition to avoid diffu-

sion operation. The new generation of these cryptographic algo-

rithms reduce the required latency, resources and computation

overhead, which help CPS devices to preserve better their main

functionalities. 

• Defining Privileges: This should be considered as the most

suitable access control policy, which assigns permissions and

rights depending on the users’ roles/tasks/attributes when it

comes to accessing CPS, and removing these access rights upon

completing the task or upon the employee’s leave. This also in-

cludes the use of the least privilege policy. Therefore, the defi-

nition of privilege should be done based on Attribute Based Ac-

cess Control (ABAC), where policies combined with attributes

specify access authorizations. Note that ABAC makes access

control decisions based on Boolean conditions of attribute val-
ues. It provides a high level of granularity, which is necessary

to make CPS control access scheme more secure. 

• Strong Entity Multi-Factor Authentication: Unfortunately, en- 

tity authentication schemes that are based on a single factor of

authentication (you have, you know, you do or you are) are not

resistant enough against authentication attacks, which are in-

creasingly becoming more dangerous. The first line of defense

in any system is the entity authentication scheme since any en-

tity authentication attack can lead to confidentiality, integrity

and/or availability attack. Recently, the concept of multi-factor

authentication was applied by combining two or more factors:

(1) “you are” which includes device fingerprint, user finger-

print, hand geometry, iris scan, retina scan, etc., and (2) “you

have” which includes cryptographic keys to increase its robust-

ness against authentication attacks such as the ones described

in Melki et al. [411] , Noura et al. [412] . 

This mechanism should be an essential requirement in CPS sys-

tems, in addition to the use of the geographical location. The

advantage of these solutions is their ability to reduce false pos-

itives, and to complicate the authentication attacks since sev-

eral factors should be broken instead of one. Consequently, this

limits the access only to authorised entities and personnel (de-

vices/users). 

• Strong Password & dynamic Hashing Process: Passwords are

considered as the “you know” authentication factor. However,

several attacks such as rainbow and hash table attacks can be

applied. In order to prevent them from occurring, after a pe-

riodic interval, passwords must be re-hashed with a new dy-

namic Nonce for each user. Moreover, a secure cryptographic

hash function should be used such as SHA-3 and SHA-2 (vari-

ant 512). This avoids birthday attacks and reduces rainbow/hash

table attacks. 

• Secure and Protected Audit: can be done by using an Audit

manager system that collects and stores logs in a distributed

system. A possible solution that can be applied in this context

was presented recently in Noura et al. [413] . This limits any in-

sider attempt against a cyber-physical system and it preserves

the digital evidence of internal and external attacks to trace

them back. 

• Enhanced Non-Cryptographic Solutions: require the need for

hybrid IDS/IPS systems or AI-based IDS/IPS (using Machine

Learning algorithms), along with advanced firewalls (i.e Ap-

plication and Next Generation Firewalls) [414] , and dynamic

honeypots [415] to prevent any future security breach based

on a vulnerability exploit. This can be done by employing

lightweight IDS/IPS and especially the anomaly-based ones. In

fact, one should select the anomaly detection algorithm accord-

ing to the CPS device constraints, which can be statistical for

limited ones or based on machine algorithm, such as random

forest, for powerful CPS devices. On the other hand, signature-

based techniques can be applied at the Gateway (GW) where

all network traffic can be analyzed. 

• Secure & Verified Backups: this is essential to maintain the

CPS data availability and to avoid data destruction or alteration

by ensuring robustness against DoS/DDoS and Ransowmare at-

tacks, especially that such attacks may result in total blackouts

as in the case of the US. This can be done by using lightweight

data protection solutions such as the ones presented in Noura

et al. [399] . 

• Forensic Effort s: are essential to retrieve the traces of any oc-

curring attack. Also, new solutions against anti-forensic tech-

niques should be introduced to preserve any digital evi-

dence [413] . This is realized by recovering logs and moni-

toring network and system behaviour, which can successfully

limit various reconnaissance attempts. However, the newly in-

troduced forensics tools must be compatible with different



24 J.A. Yaacoub, O. Salman and H.N. Noura et al. / Microprocessors and Microsystems 77 (2020) 103201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPS devices’ software/hardware, especially resource constrained

devices, and must also be resistant against anti-forensics at-

tempts. 

• Enhanced Incident Response: includes the ability to iden-

tify, alert and respond to a given incident. Moreover, in-

cident recovery and incident investigation plans should be

put in place to mitigate attacks. This provides protec-

tion against non-intentional technical and operational failures

(power shortage, blackout) through back-up plans, and from

intentional failures (cyber-attacks), through CERT (Computer

Emergency Response) [416] , CSIRT (Computer Security Incident

Response) [417] , and IRCF (Incident Response And Computer

Forensics) teams [418,419] . As such, CPS scientists and engi-

neers must undergo further education and training to ensure an

enhanced and efficient cyber, physical and computational envi-

ronment with secure computing and communications. 

• Real time Monitoring: running real-time systems using spe-

cialised forensics or non-forensics tools and methods is essen-

tial to prevent any cyber-physical system accidental or non-

accidental failure. This enables constant checking and monitor-

ing of CPS devices’ behaviour and hence, the detection of any

cyber-attack attempt in its early stages. 

• Security Check: and employee screening must be done for each

employee before and during the job to eliminate and contain

any possible insider/whistle-blower attempt. Therefore, sign-

ing agreements [420] such as Non-Disclosure Agreement (NDA),

Confidentiality Agreement (CA), Confidential Disclosure Agree-

ment (CDA), Proprietary Information Agreement (PIA) or Se-

crecy Agreement (SA) is highly recommended. Such security

checks are essential especially in critical areas such as nuclear

power plants [421] . 

• Periodic Employee Training: includes periodic awareness

training of ICS and PLC employees on the best cyber-security

practices based on their level and knowledge, with the abil-

ity to detect any suspicious behaviour or activity. Moreover,

employees must be trained over various security threats and

wrong practices such as avoiding the installation of any soft-

ware update, how to counter social-engineering and phish-

ing attempts, while also maintaining accountability in case of

wrong doings. 

• Periodic Pen Testing & Vulnerability Assessment: must be

maintained in a periodic manner to enforce system auditing,

detecting threats, and mitigating them in a real-time manner

before they are discovered and exploited by an attacker under

the zero-day exploit conditions. 

• Periodic Risk Assessment: must also be enforced to study the

likelihood and impact of a given risk against a critical/non-

critical cyber-physical system based on a qualitative or/and

quantitative risk assessment and a Cost” Benefit Analysis (CBA),

to classify the risk based on acceptable/non-acceptable level

and to mitigate it as early as possible. 

• Up-to-Date Systems: cyber-physical systems must be kept up-

to-date in terms of software, firmware and hardware through

constant verified patches and updates [422] . Moreover, such

systems must be secured at different levels of their implemen-

tations (layered protection), with the ability to mitigate and

tackle a given attack to reduce its impact and prevent further

escalation and damage. Furthermore, USB ports must be phys-

ically and logically removed to prevent any payload injection,

and PLC systems behaviour and activities must be constantly

monitored for any suspicious/abnormal behaviour [422] . 

• AI Security Solutions: Artificial Intelligence is used in IDS/IPS

anomaly detection schemes or in “you are” or “you do” en-

tity authentication schemes. In fact, AI is now being consid-
ered as a game-changing solution against a variety of cyber-

physical attacks targeting CPS systems, devices and communica-

tion points. Despite the time consuming process of training an

AI system, the accuracy of detection and prevention are much

higher than any human intervention. Recent advancements in

machine learning, and especially in deep learning, can make

CPS systems more secure, robust and resistant against cyber-

physical attacks. 

• Defense In-Depth: most of the existing solutions offer protec-

tion against a single attack aspect or a security requirement.

Instead, there is need for a multi-purpose security solution that

ensures the best protection at each operational layer (percep-

tion, transmission and application) of CPS. For example, the two

most known international standards for functional safety in the

automotive industry, the ISO 26262 [423] and IEC 61508/Edi-

tion2 [424,425] should be respected and applied. This ensures a

safe CPS implementation based on the Functional safety, which

includes the Safety Integrity Level (SIL) basics [426] which in

turn, rely on the Probability of Failure on Demand (PoFoD) and

the Risk Reduction Factor (RRF) to ensure a much more ac-

curate and efficient Hazard and Risk Analysis (HRA) [424,426] ,

mainly in the Electronic Control Units (ECU) [427,428] ). 

• CPS Security & Privacy Life-cycle: finally, to sum up this

work, our paper presents a combined Operational and Func-

tional Safety/Security (OFSS) life-cycle that ensures a success-

ful and safe CPS employment as seen in Fig. 9 ). This frame-

work is derived from ISO 26262 and IEC 61508/Edition2 pro-

tocols and their approach towards ensuring the CPS Functional

safety/security. The framework consists of six main phases: 

− Phase 1: Devising a plan to design a CPS system by follow-

ing a well-defined time-table and schedule in accordance to

the needed budget and corresponding costs. This also re-

quires the assistance of humans (businessmen, engineers,

workers, etc.) and non-human assets (vehicles, machines,

etc.). 

− Phase 2: requires a careful risk and hazard analysis, which

consists of a proper risk management and asset classifica-

tion, as well as the mutual connection between the two to

ensure an accurate decision-making over the adoption of the

right security measures/counter-measures. 

− Phase 3: defines the right functional safety, security

and dependability requirements along their key com-

ponents/mechanisms that are essential to mitigate a

risk/hazard and to reduce their likelihood and impact in

case of their occurrence. 

− Phase 4: consists of evaluating the performance of CPS

in terms of the recently introduced functional safety, se-

curity and dependability measures in an operational man-

ner where a performance management and analysis will be

conducted to ensure a proper/mutual security-performance,

safety-performance and dependability-performance trade-

offs. 

− Phase 5: once the performance is evaluated, the cyber-

physical system is tested and validated to detect any re-

maining software/hardware bug, security gap, or perfor-

mance issue to apply the required modifications before be-

ing commissioned. If the testing is unsuccessful, the process

restarts again to find where the issue took place. If success-

ful, the CPS will head towards further commissioning before

being officially deployed. 

− Phase 6: upon successful testing, the deployed CPS system

will undergo a trial phase to evaluate its operational status,

while monitoring its behaviour and performance before be-

coming fully operational. 
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Fig. 9. CPS-OFSS life-cycle framework. 
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. Conclusion 

CPS systems are key components of Industry v4.0, and they are

lready transforming how humans interact with the physical envi-

onment by integrating it with the cyber world. The aim of im-

lementing CPS systems, either within or outside IoT (IoCPT), is

o enhance the products’ quality and systems’ availability and re-

iability. However, CPS systems suffer from various security and

rivacy issues that can degrade their reliability, safety, efficiency,

nd possibly hindering their wide deployment. In this paper, we

rst overview all components within CPS systems and their in-

erconnections including IoT systems, and we focus on the main

PS security threats, vulnerabilities and attacks, as related to the

omponents and communication protocols being used. Then, we

iscuss and analyze the recently available CPS security solutions,

hich can be categorized as cryptographic and non-cryptographic

olutions. Next, we highlight the important lessons learnt through-

ut, and accordingly, we present suggestions and recommenda-

ions with respect to the various security aspects, services, and

est practices that must be put in place to ensure resilient and

ecure CPS systems, while maintaining the required performance

nd quality of service. 
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