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Exosomes are a type of extracellular vesicles (EVs) secreted by
almost all cells, with a diameter range of 30–150 nm and a lipid
bilayer membrane. Exosomes are now considered as vital medi-
ators of intercellular communication and participate inmultiple
cellular processes, such as signal transduction and antigen pre-
sentation. Recently, circular RNAs (circRNAs), a novel class of
noncoding RNAs (ncRNAs), have been found to be abundant
and stable in exosomes. Increasing evidence indicates that exo-
some-derived circRNAs act as signaling molecules to regulate
cancer growth, angiogenesis, invasion, metastasis, and sensi-
tivity to chemotherapy. Moreover, circulating exosomal circR-
NAs can reflect the progression and malignant characteristics
of cancer, implying their great potential as promising, non-inva-
sive biomarkers for cancer diagnosis and prognosis. In this re-
view, we summarize the recent progress on the functional roles
of exosomal circRNAs in cancer progression, discussing their
potential as promising biomarkers and therapeutic targets in
cancer. Comprehensive elucidation of molecular mechanisms
relevant to the implications of exosomal circRNAs in cancer pro-
gression will be conducive to the development of innovative
diagnostic and therapeutic approaches in cancer.

Exosome biology has received great attention in recent years. Exosomes
are lipid bilayer-enclosed, nano-sized extracellular vesicles (EVs) that
are released by various types of cells.1,2 These nano-vesicles are intralu-
minal vesicles (ILVs) derived from the endolysosomal system and
released into the extracellular space by fusion of multivesicular bodies
(MVBs) with the cellular membrane.3,4 More importantly, exosomes
can be readily accessible inmost of bodily fluids, including blood, urine,
saliva, and breast milk.5,6 Exosomes carry a broad repertoire of constit-
uents derived from the original cells, including lipids, proteins, RNAs,
DNAs and noncoding RNAs (ncRNAs).7–9 These exosomal cargos
can be transferred from donor cells to recipient cells.10,11 Thus, exo-
somes mediate the intercellular exchange of critical information and
contents in both physiological and pathological processes. Recently,
the role of exosomes in carcinogenesis and cancer progression has
been intensively studied. Cancer-derived exosomes can transfer
cancer-specific molecules to other cells and induce malignant transfor-
mation of target cells.12 In addition, they mediate the communication
between cancer cells and their microenvironment, contributing to es-
tablishing a fertile soil that supports cancer development.13

Circular RNAs (circRNAs) have been confirmed to be enriched and
stable in exosomes and can exert their functions after exosomes reach
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neighboring or distant cells.14 circRNAs are a novel type of endoge-
nous ncRNAs that exist in all eukaryotic cells and are generated
through a specific form of alternative splicing, known as back-
splicing.15 Since circRNAs do not have 50 caps and 30 polyadenylated
tails, they are more stable than linear RNAs.16 However, circRNAs
were initially regarded as non-functional byproducts of aberrant
RNA splicing.17 With the development of high-throughput RNA
sequencing (RNA-seq) technology, circRNAs have been proven to
be widely present in eukaryotic cells.15 The discovery of numerous
circRNAs transforms them into a hotspot in the ncRNA field. The
biological functions of circRNAs have been gradually disclosed.
Although some reports have shown that certain circRNAs act as mo-
lecular sponges for microRNAs (miRNAs),18–20 several studies have
indicated that some circRNAs do not serve as miRNA sponges.21,22

It seems that miRNA inhibition is not a general feature of circRNAs.
Moreover, circRNAs are crucial regulators of alternative splicing,
transcriptional events, and post-transcriptional events. circRNAs
can work as protein sponges or decoys to indirectly modulate their
functions. Notably, circRNAs have been verified to be associated
with the occurrence and development of cancer. Guarnerio et al.23

found that the fusion-circRNAs (f-circPR and f-circM9) derived
from cancer-associated chromosomal translocations promoted the
proliferation and transformation of mouse embryonic fibroblasts
(MEFs). Both in vitro and in vivo evidence demonstrated that f-
circM9 was oncogenic and favored leukemia progression. In addition,
f-circM9 conferred resistance to arsenic trioxide in leukemic cells.
circRNAs may be promising biomarkers and therapeutic targets in
cancer owing to their high abundance, stability, and conservation.24

Cells can deliver circRNAs by encapsulating them into exosomes.
Increasing evidence has indicated that exosomal circRNAs possess
a multitude of functions resulting in cancer cell proliferation, inva-
sion, metastasis, and chemoresistance.25–27 In addition, exosomal
circRNAs can be detected in bodily fluids.28 Circulating exosomal
circRNAs can reflect the malignant features of cancer. Thus, exoso-
mal circRNAs are likely to be exploited as novel non-invasive bio-
markers and prospective targetable factors in cancer. In this review,
: Nucleic Acids Vol. 21 September 2020 ª 2020 The Author(s). 367
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.omtn.2020.06.008
mailto:wangk696@163.com
mailto:wangman@qdu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omtn.2020.06.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


www.moleculartherapy.org

Review
we summarize the research progression of exosomal circRNAs in can-
cer pathogenesis, as well as their potential as promising biomarkers
and therapeutic targets in cancer. Increasing knowledge of the effects
of exosomal circRNAs on cancer biology will be helpful for both
revealing molecular mechanisms underlying cancer pathogenesis
and further developing diagnostic and therapeutic approaches in can-
cer. Finally, we also discuss further directions for research into the
relationship between exosomal circRNAs and cancer, which require
to be addressed to favor the translation of exosomal circRNA-related
research into clinical practice.

Classification and Characteristics of EVs

EVs are a heterogeneous family of membrane-bound vesicles shed
from almost all cells.29 Cells can release distinct types of EVs that
are highly heterogeneous in size, properties, molecular content, bioge-
netic origin, and biological activity.30 Initially, EVs were considered as
cellular debris and a disposal mechanism to discard unwanted mate-
rials from cells.31 However, EVs are now understood to act as impor-
tant vehicles of intercellular communication by shuttling biological
information to neighboring or distant cells.32–34 EVs can be internal-
ized into recipient cells via diverse endocytic mechanisms, including
caveolin-mediated, clathrin-dependent, and clathrin-independent
endocytosis, as well as bymembrane fusion, phagocytosis, micropino-
cytosis, and lipid raft-mediated internalization.35–37 Lipids, proteins,
and proteoglycans that present on the surface of EVs and recipient
cells, as well as changes in environmental stressors, may determine
the manner of endocytic uptake of EVs.38–40 At present, there is no
consensus on the classification of EVs due to heterogeneity. Based
on their origin and cargo, EVs can now be divided into four broad
categories: exosomes, microvesicles (MVs), apoptotic bodies, and
oncosomes.41,42 All of these EV subpopulations are involved in
intercellular communication and have important roles in immune
regulation.43–45 Note, however, that the classification of EVs into
four categories may be oversimplified. New developments on the
identification and characterization of different EV subpopulations
may be conducive to improving the criteria for classification.

Exosomes are a type of 30- to 150-nm extracellular vehicles secreted
by most cells, including immune cells, stem cells, and cancer cells.46

Exosomes are generated by exocytosis of MVBs.47 Exosomes are en-
riched for endosomal proteins, including tetraspanins (CD9, CD63,
and CD81), apoptosis-linked gene-2 interacting protein X (ALIX),
and tumor susceptibility gene 101 (TSG101), which are used as exo-
somal markers.48 Exosomes play an important role in waste disposal
and intercellular communication.49 In contrast to exosomes, MVs are
large vesicles with a size ranging from 100 to 1,000 nm in diameter.50

They are generated by the outward budding and fission from the
plasma membrane.51 MVs carry transmembrane proteins common
for the plasma membrane such as integrins and selectins.30 The pro-
cess of MV biogenesis is not well characterized. The MV biogenesis
can be triggered by calcium influx into the parent cells as well as
release of intracellular calcium.52,53 This eventually leads to alterna-
tions in transbilayer lipid distribution and membrane budding. Reor-
ganization of the actin cytoskeleton through the Ras homolog gene
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family membrane A (RhoA)-dependent signaling pathway also trig-
gers MV generation.54 Cytoskeleton components (actin and microtu-
bules), molecular motors (kinesins and myosins), and fusion machin-
ery (soluble N-ethylmaleimide-sensitive factor attachment protein
receptors [SNAREs] and tethering factors) may be involved in the
process of MV formation.55 Similarly to exosomes, the secretion of
MVs is also partially dependent on the endosomal sorting complex
required for transport (ESCRT) family and requires the formation
of lipid-rich microdomains at the plasma membrane.56,57 ADP-ribo-
sylation factor 6 (ARF6) is identified to trigger MV release by remod-
eling the cytoskeleton.58 Adenosine 50-triphosphate (ATP)-mediated
activation of ionotropic purinergic (P2X) receptors causes the rear-
rangement of the plasma membrane and is likely to participate in
MV shedding.59 The uptake ofMVs seems to be an energy-dependent
process and can be inhibited at lower temperatures.38,39,60 The well-
studied function of MVs is procoagulation owing to their ability to
deliver tissue factor, a transembrane molecule that initiates the
extrinsic coagulation cascade and thrombus formation.61 Apoptotic
bodies are heterogeneous vesicles that are released from cells under-
going programmed cell death.62 Plasma membrane blebbing and
nuclear fragmentation during apoptosis lead to the formation of
apoptotic bodies.63 Apoptotic bodies are by-products of cell disassem-
bling, with a broad range of diameters (50–5,000 nm), which sepa-
rates them from other EVs that are mostly produced by normal viable
cells.64 Unlike exosomes and MVs, apoptotic bodies contain nuclear
fractions and intact organelles.65 Apoptotic bodies can be recognized
and engulfed by phagocytes.66 The well-characterized protein
markers of apoptotic bodies include thrombospondin, complement
component 3b (C3b), annexin V, and histone.67 Rho-associated ki-
nase I (ROCK I) regulates the formation of membrane blebs and
re-localization of fragmented DNA into blebs and apoptotic bodies.68

The release of apoptotic bodies can promote the clearance of
apoptotic cells.69

Oncosomes are a relatively novel type of EVs and have been defined as
oncogenic EVs or exosomes that mediate transport of pro-tumori-
genic factors.70 The term oncosome was initially used to describe
EVs with a diameter ranging from 100 to 400 nm shed from brain tu-
mor cells.12 These vesicles promoted malignant transformation
through the delivery of oncogenic cargos to other cancer cells. Atyp-
ically large EVs (1–10 mm in diameter) were reported to emanate
from prostate cancer cells in response to activation of oncogenic sig-
nals, and their formation correlated with cell migration.42 These
gigantic EVs are referred to as large oncosomes due to their unusual
size. The formation of large oncosomes is generally observed in
aggressive and migratory cancer cells with an amoeboid pheno-
type.71–73 Large oncosomes contain abundant bioactive molecules,
including enzymes involved in cell metabolism, cytokeratin 18
(CK18), miRNAs, long noncoding RNAs (lncRNAs), metalloprotei-
nases, and caveolin-1.71,73 Similar to MVs, oncosomes and large
oncosomes are created by outward budding of the plasma mem-
brane.42,73 The shedding of large oncosomes can be induced by the
small guanosine triphosphatase (GTPase) ARF6 or depletion of the
cytoskeletal regulator diaphanous-related formin 3 (DIAPH3).71
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Figure 1. Formation and Delivery of Exosomal circRNAs
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The release of large oncosomes is also correlated with the abnormal
expression of several oncoproteins, including caveolin-1, heparin-
binding epidermal growth factor-like growth factor (HB-EGF), and
myristoylated protein kinase B (MyrAkt1).42 The formation and
secretion of large oncosomes facilitate the migration and invasion
of cancer cells.72

EVs encapsulate a variety of molecular constitutes such as proteins,
RNAs, and lipids.74 The mechanisms responsible for cargo sorting
into EVs are yet to be systematically deciphered. Post-translational
modifications may confer specific characteristics to proteins and
thus control their sorting into EVs. For instance, ubiquitination or
SUMOylation of specific proteins may affect their packaging and
secretion.75,76 In contrast, ISGylation regulates exosome release by
promoting lysosomal degradation of MVB proteins.77 Alternatively,
protein cargos are selectively transported into EVs via specific mech-
anisms that involve the ESCRT machinery, tetraspanins, and
lipids.78–80 Specific sequences in RNA and certain proteins can dictate
RNA sorting into EVs. It has been reported that SUMOylated
hnRNPA1 recognizes the GAGAG motif in certain miRNAs and
thus selectively targets these miRNAs into EVs.81 The exact mecha-
nism by which lipids are sorted into EVs is still obscure. It is likely
that lipid sorting is associated with the yield and size of EVs.82 Collec-
tively, the incorporation of various constituents into EVs is a highly
regulated process. Further studies are required to elucidate the com-
plex mechanisms that control cargo sorting into EVs.

Exosome Biogenesis and Uptake

Exosomes are composed of a lipid bilayer membrane enclosing
various constituents of the parent cells. They are present in nearly
all bodily fluids, such as urine, blood, saliva, and cerebrospinal
fluid.83–86 Exosomes play an important role in intercellular commu-
nication. Exosomes are generated by the endocytic pathway. The
biogenesis of exosomes initiates when the cellular membrane invagi-
nates to form an early endosome (Figure 1).31 During early endosome
maturation, ILVs are formed via inward budding of the endosomal
membrane, which results in the formation of MVBs or late endo-
somes.87,88 During this process, portions of the cytosolic contents
are engulfed within the ILVs, while specific proteins are incorporated
into the invaginated membranes.65,89 MVBs can be trafficked to lyso-
somes, where their contents undergo degradation.90 Alternatively,
MVBs can fuse with the cellular membrane, releasing ILVs into the
extracellular space.3,4 The released ILVs are referred to as exosomes.

The ESCRT pathway plays a vital role in exosome biogenesis. The
ESCRT machinery consists of four multi-protein complexes, namely
ESCRT-0, -I, -II, and -III. These ESCRTs work cooperatively to favor
MVB formation, vesicle budding, and cargo assortment. ESCRT-0 is
responsible for recognizing and sequestering ubiquitinated proteins
in the late endosome membrane. ESCRT-0 then recruits ESCRT-1
to the endosomal membrane, which in turn triggers assembly of the
ESCRT-II/-III complex.91,92 Both ESCRT-I and ESCRT-II initiate
the budding of MVBs and propel the enzymatic de-ubiquitination
of cargo proteins before ILV formation. After that, ESCRT-III and
vacuolar protein sorting protein 4 (VPS4) drive the scission of the
membrane buds to form ILVs. VPS4 is also involved in the dissocia-
tion and recycling of the ESCRT machinery. The implication of syn-
decan and its cytoplasmic adaptor syntenin in ESCRT-dependent
exosome generation has been identified. The association of syndecans
with syntenin triggers its interaction with CD63 and ALIX, leading to
intraluminal budding of the endosomal membrane.93 Interestingly,
exosome formation can also occur in the absence of the ESCRT
machinery, suggesting the existence of ESCRT-independent
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 369
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mechanisms.94 It has been reported that exosome biogenesis can be
induced by the production of ceramide, rather than the ESCRT
pathway.95 Neutral sphingomyelinase 2 (nSMase2) that prompts cer-
amide synthesis is capable of regulating exosome biogenesis and
release.96 Exosomal tetraspanin proteins also play an important role
in selective sorting of biomolecules. For instance, CD63 is highly pre-
sent in exosomes and mediates the sorting of premelanosome protein
(PMEL) into ILVs.97 CD81 is involved in cargo sorting of tetraspanin
ligands, such as Rac GTPase.98 As stated above, numerous molecules
are implicated in exosome biogenesis. The detailed mechanisms await
more intensive investigation. The effects of internal and external
stimuli on exosome biogenesis and release need to be further
explored.

The contributory factors that determine MVB fate remain to be iden-
tified. Type I interferon (IFN-I) can block exosome release by
inducing protein ISGylation of the MVB protein TSG101.77,99

Accordingly, MVB protein ISGylation contributes to the fusion of
MVBs with the lysosome. The transport of MVBs to the cellular
membrane requires molecular and cytoskeletal motors. Moreover,
the release of exosomes involves various proteins, including coat pro-
tein complex (COP) I and II, SNAREs, and GTPases.55 Moreover, the
Rab GTPase family is implicated in membrane trafficking regulation,
dominating vesicle budding, vesicle transport, and membrane
fusion.100 For example, Rab35 mediates MVB docking to the cellular
membrane in neuralgia cells.101 Rab27a and Rab27b participate in the
recruitment of MVBs to the cellular membrane.102 In addition, the tu-
mor suppressor p53 and its downstream effector, tumor suppressor-
activated pathway 6 (TSAP6), are able to increase exosome release.103

Upon release from parent cells, exosomes remain aggregated and can
be associated with the cellular membrane by tetherin.104 Exosome can
be taken up by recipient cells via three mechanisms, that is, direct
membrane fusion, receptor-ligand interaction, and endocytosis. Spe-
cific exosomal contents derived from donor cells may determine their
affinity with certain types of cells. Substantial investigations are de-
manded to figure out how exosomes are directed to target cells.

Functional Roles of Exosomes

Exosomes released from parent cells were originally proposed as a
mechanism through which cells expel unwanted or unnecessary
cellular components. Nevertheless, during the past decade, exosomes
have been proven to play an important role in the exchange of mate-
rials between cells. Exosomes can reprogram the recipient cells they
encounter though their bioactive constituents. Exosomes can exert
their functions as vehicles of both physiological and pathological mes-
sengers. The biological functions of exosomes from different cell types
vary and mainly depend on their contents.

Exosomes have been reported to promote cell proliferation and tissue
regeneration. Stem cells are characterized by secretion of exosomes
with such function.105 Mesenchymal stem cell (MSC)-derived exo-
somes could induce fibroblast proliferation.106 MSC-derived exosomes
induced cardiac tissue growth and regeneration.107 The regenerative
property of stem cell-derived exosomes will provide new therapeutic
370 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
options for tissue repair and regeneration. Normal cell-derived exo-
somes also induce tissue regeneration. For instance, exosomes released
by hepatocytes could deliver sphingosine kinase 2 (SK2) to form sphin-
gosine-1-phosphate (S1P) within target hepatocytes, thus contributing
to hepatocyte proliferation and liver regeneration.108 Currently, the
biological function of exosomes in tissue regeneration has not been
adequately disclosed. It is necessary to elucidate which components
in exosomes can promote tissue repair and regeneration.

The role of exosomes as immune regulators has been defined.
Exosomes serve an important role in orchestrating innate immune re-
sponses through different pathways. Exosomes possess pro-inflam-
matory activities in the innate immune system. Exosomes secreted
by mycobacteria-infected macrophages could transfer bacterial com-
ponents to uninfected macrophages, thereby initiating a pro-inflam-
matory response.109 Tumor cells exposed to stress released exosomes
expressing heat shock protein 70 (HSP70).110,111 These HSP70-posi-
tive exosomes could drive natural killer (NK) cell activation and pro-
inflammatory cytokine production by macrophages. Dendritic cell
(DC)-derived exosomes harbored various tumor necrosis factor
(TNF) superfamily members (Fas ligand [FasL], TNF, and TNF-
related apoptosis-inducing ligand [TRAIL]) on their surface, which
directly activated NK cells to reinforce their cytotoxic activity.112

Interestingly, exosomes secreted by immunocytes can directly exert
effector functions. NK cell-secreted exosomes were reported to cause
the lysis and elimination of tumor cells.113

Alternatively, immunocyte exosomes play a regulatory role in adap-
tive immune responses. Exosomes can present antigenic peptides in
conjunction with major histocompatibility complex (MHC) mole-
cules to T cells.114 Accordingly, exosomes serve as immunostimula-
tory factors in T cell responses. Exosomes secreted by almost all cells
harbor MHC class I molecules that are capable of activating CD8+

T cells.115 DC-derived exosomes could transport the peptide-MHC
class I complex and co-stimulatory molecule CD80 to non-specific
CD4+ T cells, which in turn activated naive/antigen-specific CD8+

cytotoxic T lymphocytes (CTLs).116 Exosomes secreted by activated
human peripheral CD3+ T cells promoted cytokine production and
proliferation of CD8+ T cells.117 Human B cell-derived exosomes
directly provided MHC class II complexes required for activation of
CD4+ T cells.118 On the contrary, exosomes exert suppressive roles
in T cell activation. CD4+CD25+FOXP3+ T cells secreted exosomes
bearing the anti-inflammatory mediator CD73, thus suppressing
the proliferation of recipient CD4+ T cells.119 Exosomes derived
from activated CD4+ T cells inhibited CD4+ T cell proliferation and
CD8+ CTL responses.120 CD4+ T cells and human B cell-derived lym-
phoblastoid cell lines (LCLs) secreted FasL-positive exosomes that
induced apoptosis in recipient T cells.121–123 In addition, CD8+

T cell-mediated antitumor responses were suppressed by exosomes
derived from CD8+CD25+ regulatory T cells (Tregs).124 It can be
concluded that exosomes play dual roles in T cell responses. The func-
tion of exosomes in immune regulation is worthy of further explora-
tion. It is of great importance in illuminating composition differences
between immunostimulatory and immunosuppressive exosomes.
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Apart from their essential roles in physiological conditions, exosomes
also play a critical role in disease progression, especially in cancer
pathogenesis.125 The Rab GTPase family members are constitutively
active or even overexpressed in cancer cells.126,127 Consequently, can-
cer cells release more exosomes into the extracellular milieu than do
normal cells.128 Owing to the identification of unique contents within
cancer-derived exosomes, the roles of exosomes in cancer progression
have come into the spotlight. Cancer-derived exosomes function as
significant mediators in the interaction and communication between
cancer cells and other cells in the tumormicroenvironment.129 Partic-
ularly, cancer-released exosomes can enter the circulation to function
at distant sites, hence propelling cancer development. Studies have
demonstrated that exosomes play a pivotal role in cancer growth,
invasion, angiogenesis, and metastasis by delivering oncogenic mole-
cules.130,131 Cancer-derived exosomes help cancer cells to evade im-
mune attack by impairing the function of effector T cells or inducing
the apoptosis of activated T cells.132,133 Cancer-secreted exosomes
induce vascular leakiness to create a pre-metastatic niche.134 They
remodel the extracellular matrix (ECM) to support tumor
growth.135,136 In addition, cancer-derived exosomes function to
discharge chemotherapeutic agents, thereby conferring chemoresist-
ance in cancer cells.137 Exosomal cargos also compete with anticancer
drugs to interact with the therapeutic targets.138 Intriguingly, cancer
cells shed exosomes to transmit their chemoresistant phenotype to
recipient cancer cells.139 Cancer cells can secrete their exosomes
into the circulation, resulting in increased concentrations of exo-
somes in cancer patients relative to healthy individuals.140 The
amount and composition of exosomal cargos vary between cancer pa-
tients and healthy controls. In a previous study, eight specific miR-
NAs (miR-21, miR-141, miR-200a, miR-200b, miR-200c, miR-203,
miR-205, and miR-214) were identified in circulating exosomes
from patients with ovarian cancer (OC), but they could not be de-
tected in circulating exosomes from normal controls.140 Another
study showed that the mean concentration of exosomal miRNAs
was significantly higher in patients with lung adenocarcinoma
(LUAD) than in healthy controls.141 Importantly, the miRNA signa-
tures of circulating exosomes paralleled those of tumor-derived exo-
somes. The miRNA profiling of exosomes might be used as a
screening tool for cancer diagnosis. Moreover, significant differences
were also observed between the protein concentration of circulating
exosomes for the LUAD group and the control group.141 Likewise,
the fraction of circulating exosomes in patients with colorectal cancer
(CRC) was significantly higher than in healthy controls.142 Notably,
high levels of circulating exosomes correlated with poor prognosis pa-
rameters and short overall survival in CRC patients. Thus, exosomes
may represent promising prognostic biomarkers in cancer. Further-
more, it has been proposed that exosomes can act as an efficient
delivery platform for targeted transfer of anticancer drugs to cancer
cells. Saari et al.143 revealed that prostate cancer cell-derived exo-
somes were capable of delivering paclitaxel into their parental cells
via an endocytic pathway, leading to release of the drug into the
cell cytosol. Remarkably, exosome-mediated delivery could enhance
the cytotoxic effects of paclitaxel. Recently, tumor exosome-sheathed
doxorubicin (DOX)-loaded nanoparticles (DOX@E-PSiNPs) were
developed as a drug carrier for targeted cancer chemotherapy.144

DOX@E-PSiNPs exhibited enhanced tumor accumulation, tumor
penetration, and cross-reactive cellular uptake by cancer cells and
cancer stem cells (CSCs). These features endowed DOX@E-PSiNPs
with augmented in vivo DOX enrichment in total tumor cells and
side population cells with characteristics of CSCs, thus resulting in
strong anticancer activity and CSC reduction in tumor-bearing
mice models. Given the great potential of exosomes as non-invasive
biomarkers and therapeutic nano-sized carriers, regulation of exo-
some biogenesis, modification of exosomal composition, and
improvement of cell-targeting specificity may represent hopeful
means for clinical cancer treatment.

Exosome-Enclosed Substances

The molecular constituents in exosomes consist of lipids, proteins,
and nucleic acids. The components of exosomes can be different
from parent cells owing to the selective incorporation of cargos into
exosomes. Exosomes released by the same cell type can contain
different constituents. The composition of exosomes may vary de-
pending on whether the donor cells are exposed to distinct stimuli
or stressors.145–147 Harmati et al.148 compared the miRNA content
of exosomes secreted by nasopharyngeal carcinoma (NPC) cells
cultured under normal conditions and in the presence of DOX.
They found that the diversity of exosomal miRNAs was increased
in DOX-treated NPC cells compared with the control. de Jong
et al.149 reported that exposure of endothelial cells to hypoxia caused
the change of both mRNA and protein compositions in their exo-
somes. The lipid compositions of exosomes are derived from those
of the plasma membrane, such as sphingomyelin, cholesterol,
phosphatidylserine, and hexosylceramide.7 The exosomes contain
cytosolic, endosomal, plasma, and nuclear proteins. Proteins enriched
in exosomes are composed of diverse HSPs, cytoskeletal proteins, en-
dosome-related proteins (annexin, flotillin, and SNARE), as well as
the components of the ESCRT machinery (ESCRT complexes,
ALIX, and TSG101). Exosomes also incorporate various cell surface
molecules that render them capable of attaching to different cell re-
ceptors.150 Molecules associated with antigen presentation, such as
CD1,MHC class I, andMHC class II, are found to be highly abundant
in exosomes.151 Exosomes also harbor adhesion molecules, tetraspa-
nin proteins (CD9, CD63, CD81, and CD82), and co-stimulatory
molecules. These compositions endow exosomes with the immuno-
regulatory capability. Multiple exosomal protein components appear
to mirror the exosome biogenesis pathway, while other protein com-
positions may be abundant in exosomes as a consequence of their
increased levels in parent cells.

Emerging studies have verified that exosomes are rich in multiple
RNA species, such as mRNAs, miRNAs, and lncRNAs.10,152 Recently,
circRNAs have been proven to be highly present in exosomes.14 These
findings open up a new avenue of research on the biological functions
of exosomes. The RNA profiles of exosomes differ from those of
donor cells. Exosomes of immune cells and cancer cells had unique
miRNA signatures that were not merely a reflection of the miRNA
contents of the parental cells.8,153 Exosomal RNAs are biologically
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 371
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functional and can influence the transcriptome of target cells. Valadi
et al.10 compared the mRNA and miRNA expression profiles between
mouse mast cells and their exosomes. A total of 270 mRNA tran-
scripts could only be detected in mast cell-derived exosomes, but
they were not detectable in the parental cells. Approximately 121
miRNAs were identified in mast cell-derived exosomes. Moreover,
there were significant differences in the expression of mRNAs and
miRNAs from exosomes versus their parental cells. Intriguingly, the
mRNA transcripts from mouse mast cell-derived exosomes were
transferable to human mast cells. The transferred exosomal mRNAs
could be translated after entering the target cells and thus affected
their biological function. Farahani et al.154 characterized miRNA
transcripts from chronic lymphocytic leukemia (CLL) and their exo-
somes. The results indicated that a variety of miRNAs, including miR-
1290, miR-202-3p, and miR-628-3p, were differentially expressed in
CLL-derived exosomes versus donor cells. CLL-derived exosomes
could be taken up by stromal cells, resulting in altered expression
of multiple genes in recipient cells. In addition, stromal cells incu-
bated with CLL-derived exosomes displayed enhanced proliferation
compared with control cells. Thus, CLL-derived exosomes could
affect the transcriptome and behavior of recipient stromal cells. Pref-
erential sorting of particular RNA species occurs within exosomes,
implying that cells possess sorting mechanisms for exosomal
RNAs.155 More studies should be conducted to reveal the sorting
mechanisms for exosomal RNA species.

Origin of Exosomal circRNAs

Li et al.14 first revealed the presence and enrichment of circRNAs
within cancer-derived exosomes by RNA-seq analysis. Remarkably,
cancer-derived exosomal circRNAs were able to enter the circulation.
The circulating exosomal circRNAs could differentiate patients with
colon cancer from healthy individuals. CDR1as circRNA is known
to serve as a miR-7 sponge.19 The sorting of CDR1as to exosomes
seemed to be affected, at least in part, by changes of miR-7 levels in
parental cells.14 Nevertheless, it is unclear whether the sorting of other
exosomal circRNAs is controlled by altered levels of their associated
miRNAs. Further studies are needed to confirm and expand these
emerging findings. Exosomal circRNAs can be transported to recip-
ient cells to exert their biological functions. For instance, CDR1as-
overexpressing exosomes could abrogate the suppressive effect of
miR-7 on recipient cell proliferation.14 circNFIX was transferred by
incorporation into exosomes, and exosomal circNFIX from temozo-
lomide-resistant glioma cells conferred drug resistance to recipient-
sensitive cells through the enhancement of cell migration and
invasion and the suppression of cell apoptosis.27 Another study also
showed that colon cancer cell-derived circRNAs could be packaged
into exosomes.156 Moreover, circRNAs might be enriched in colon
cancer cell-secreted exosomes. It was reported that 1,147 and 1,385
exosomal circRNAs were deregulated in patients with metastatic
and localized breast cancer (BCa) in comparison with healthy con-
trols (Table 1).157 Meanwhile, 480 exosomal circRNAs were found
to be differentially expressed in metastatic BCa patients compared
with patients with localized disease. The expression profile of exoso-
mal circRNAs in patients with endometrial cancer was also
372 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
explored.158 As a result, 209 upregulated and 66 downregulated circR-
NAs were found in serum exosomes from patients with endometrial
cancer compared with those from normal controls. These deregulated
circRNAs might be involved in signaling pathways that were associ-
ated with cancer migration and invasion. A total of 453 differentially
expressed circRNAs, consisting of 274 upregulated and 179 downre-
gulated circRNAs, were discovered in exosomes from the plasma of
patients with pancreatic ductal adenocarcinoma (PDAC) relative to
healthy volunteers.159 It was proposed that these exosomal circRNAs
might regulate PDAC pathogenesis by targeting miRNAs in recipient
cells. Recently, 182 exosomal circRNAs were reported to be differen-
tially expressed in the plasma from LUAD patients compared with
healthy controls.160 These circulating exosomal circRNAs held great
promise as non-invasive biomarkers in lung cancer. The levels of
22 circRNAs were altered in serum exosomes from patients with
papillary thyroid carcinoma relative to healthy controls by high-
throughput sequencing analysis.161 These circRNAs might be associ-
ated with various signaling pathways, such as the thyroid hormone
signaling cascade and the phosphoinositide 3-kinase (PI3K)/Akt
pathway. Further study on the expression profile of exosomal circR-
NAs in cancer would contribute to elucidating the detailed mecha-
nisms underlying carcinogenesis and cancer progression.

In addition to cancer cells, exosomal circRNAs also originate from
activated human platelets.162 circRNAs could be selectively packaged
and released within platelet-derived exosomes. The association be-
tween exosomal circRNAs and the nervous system was previously
verified. circRNAs were shown to be differentially expressed in exo-
somes from mice brain extracellular space following traumatic brain
injury.163 Intriguingly, these circRNAsmight be involved in the devel-
opment of the nervous system and the transmission of nerve signals.
Exosomal circRNAs were present in cerebrospinal fluid from patients
with immune-mediated demyelinating disease.164 The deregulation
of circRNAs might be linked with the onset and progression of this
disease. Additionally, adipocytes are able to secret exosomal circR-
NAs. A single-exon circRNA, hsa_circ_0075932, was highly
expressed in human normal adipose tissue.165 hsa_circ_0075932 ex-
hibited a markedly promoting effect on inflammation and apoptosis
in dermal keratinocytes. circ-DB released by adipocytes was found to
prompt cell growth and reduce DNA damage in hepatocellular carci-
noma (HCC) by targeting miR-34a and activating the ubiquitin-spe-
cific protease 7 (USP7)/cyclin A2 signaling pathway.25 Many gaps in
our current understanding of the relationship between circRNAs and
exosome remain. The molecular mechanisms that control the sorting
process of exosomal circRNAs remain elusive. In-depth investiga-
tions on circRNAs and their associated miRNAs are required to verify
the impact of miRNA abundance on circRNA sorting into exosomes.
Intriguingly, numerous RNA-binding proteins (RBPs), including ri-
bosomal proteins and elongation factors, were identified to be present
in exosomes.166 Several RBPs are responsible for sorting RNAs with
specific binding motifs into exosomes.155,167 It is proposed that
RBPs may direct RNA sorting by interacting with MVB and/or mem-
brane microdomains where the exosomes form.168,169 Given that
circRNAs can interact with RBPs,170,171 it can be hypothesized that
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Table 1. Deregulated Expression of Exosomal circRNAs in Cancer Patients

Cancer Type Source of Exosomes Scope

No. of Deregulated circRNAs

ReferencesUpregulated Downregulated

Breast cancer serum

metastatic cancer versus normal 1,061 86

157localized cancer versus normal 1,084 301

metastatic versus localized 369 111

Endometrial cancer serum cancer versus normal 209 66 158

Pancreatic ductal adenocarcinoma plasma cancer versus normal 274 179 159

Lung adenocarcinoma plasma cancer versus normal 105 77 160

Papillary thyroid carcinoma serum cancer versus normal 3 19 161
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RBPs may regulate the process of circRNA sorting. However, more
efforts should be made to identify RBPs that are involved in exosomal
assortment of circRNAs. The intricate mechanisms by which circR-
NAs are selectively sorted into exosomes warrant further elucidation.
Furthermore, it is essential to reveal the biological functions of exoso-
mal circRNAs under both physiological and pathological conditions.
Additional work is required to figure out whether the selective pack-
age of exosomal circRNAs is a consequence of preservation of cellular
homeostasis or disease progression.

Emerging Roles of Exosomal circRNAs in Cancer

The aberrant expression of exosomal circRNAs has been identified in
various types of cancer, including gastric cancer (GC), CRC, pancre-
atic cancer (PC), HCC, cholangiocarcinoma (CCA), small-cell lung
cancer (SCLC), and urogenital system tumor. Emerging studies
through gain- and loss-of-function strategies suggest that exosomal
circRNAs are involved in the progression of these cancers (Table
2). Exosomal circRNAs may also represent promising biomarkers
and therapeutic targets in cancer. Nonetheless, the study of the role
of exosomal circRNAs in cancer is still on the way. The mechanisms
by which exosomal circRNAs function in cancer warrant further
investigation.

GC

circRNAs that play a regulatory role in GC progression have been
found to be present in GC-derived exosomes. circRNA sponge for
miR-133 (ciRS-133) was upregulated in exosomes isolated from the
plasma of GC patients.172 GC cells could deliver ciRS-133 into prea-
dipocytes via exosomes. Exosomal ciRS-133 facilitated the differenti-
ation of preadipocytes into brown-like cells by inhibiting miR-133
and activating PR domain containing protein 16 (PRDM16). Deple-
tion of ciRS-133 decreased cancer cachexia in tumor-implanted
mice, reducing oxygen consumption and heat production. Exosomal
ciRS-133 might be involved in cancer-associated cachexia. circNRIP1
was abundantly expressed in GC cells, and it prompted the prolifer-
ation, migration, and invasion of GC cells via activating the Akt1/
mammalian target of rapamycin (mTOR) axis by sponging miR-
149-5p.173 circNRIP1 could be transmitted between GC cells via
exosomes, and exosomal circNRIP1 fostered epithelial-mesenchymal
transition (EMT) and tumor metastasis in vivo. The impact of exoso-
mal circNRIP1 on the Akt1/mTOR signaling cascade in recipient cells
should be explored. The molecular mechanism associated with the
role of exosomal circNRIP1 in GC remains to be further elucidated.
Similarly, circ-RanGAP1 was remarkably upregulated in GC tissues
and plasma exosomes of GC patients.174 The level of exosomal circ-
RanGAP1 was higher in preoperative GC patients than in postoper-
ative patients or healthy controls. Exosomal circ-RanGAP1 might be
used as a prognostic biomarker for GC (Figure 2). circ-RanGAP1 pro-
moted GC cell invasion and metastasis by sponging miR-877-3p to
upregulate vascular endothelial growth factor A (VEGFA). The
plasma exosomes from GC patients could promote the migration
and invasion of GC cells. Nevertheless, it is uncertain whether circ-
RanGAP1 within GC-derived exosomes contributed to their effect
on the biological behaviors of recipient GC cells. Further experi-
mental studies should be carried out to validate the functional role
of exosomal circ-RanGAP1 in GC progression.

The diagnostic and prognostic values of exosomal circRNAs in GC
were explored in previous reports. For instance, the expression of
hsa_circ_0000419 was dramatically decreased in GC cells, cancer tis-
sues, and plasma from GC patients compared with normal con-
trols.175 Plasma hsa_circ_0000419 was closely associated with tumor
stage, invasion, and metastasis. Plasma hsa_circ_0000419 also
showed a good diagnostic performance for GC. There was no signif-
icant difference between the expression level of hsa_circ_0000419 in
plasma and corresponding plasma exosomes. To summarize, hsa_
circ_0000419 might act as a new biomarker for GC diagnosis and
prognosis. The clinical values of exosomal hsa_circ_0000419 are
worthy of further validation. The expression of hsa_circ_0065149
was significantly downregulated in plasma exosomes of early GC pa-
tients compared with healthy controls.176 Exosomal hsa_
circ_0065149 showed higher sensitivity and specificity in early GC
screening than did traditional clinical biomarkers. Therefore, hsa_
circ_0065149 in plasma exosomes might serve as a useful indicator
for early diagnosis of GC. The level of circ-KIAA1244 was decreased
in GC tissues, plasma, and cells relative to controls.177 The downregu-
lation of circ-KIAA1244 in plasma was negatively associated with tu-
mor-node-metastasis (TNM) stage, lymphatic metastasis, and overall
survival of GC patients. Plasma circ-KIAA1244 might release in the
form of exosomes and thus stably existed in plasma protected by
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Table 2. Expression and Function of Exosomal circRNAs in Different Cancers

Exosomal circRNAs Cancer Type Expression Functions References

ciRS-133 gastric cancer upregulated promotes cancer-associated cachexia 172

circNRIP1 gastric cancer upregulated prompts EMT and metastasis 173

circ-RanGAP1 gastric cancer upregulated potential prognostic biomarker 174

hsa_circ_0000419 gastric cancer downregulated diagnostic/prognostic biomarker 175

hsa_circ_0065149 gastric cancer downregulated diagnostic biomarker 176

circ-KIAA1244 gastric cancer downregulated potential prognostic biomarker 177

ciRS-122 colorectal cancer upregulated confers chemoresistance 178

hsa_circ_0000338 colorectal cancer upregulated potential indicator of chemotherapy response 179

hsa_circ_0004771 colorectal cancer upregulated diagnostic biomarker 180

circ-IARS pancreatic cancer upregulated facilitates cell invasion and metastasis 181

circ-PDE8A pancreatic ductal adenocarcinoma upregulated potential diagnostic/prognostic biomarker 182

circRNA_100284 hepatocellular carcinoma upregulated
accelerates cell cycle and facilitates cell
proliferation

183

hsa_circ_0051443 hepatocellular carcinoma downregulated
induces cell cycle arrest and promotes cell
apoptosis

184

circPTGR1 hepatocellular carcinoma upregulated fosters cell metastasis 185

circRNA-100338 hepatocellular carcinoma upregulated promotes cell angiogenesis and metastasis 26

circ-0000284 cholangiocarcinoma upregulated boosts cell proliferation and migration 187

FECR1 small-cell lung cancer upregulated potential prognostic biomarker 188

circWHSC1 ovarian cancer upregulated enhances cell metastasis 189

circ_0044516 prostate cancer upregulated potential diagnostic/prognostic biomarker 190

circPRMT5 urothelial carcinoma of the bladder upregulated potential prognostic biomarker 191
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exosomes. GC-secreted circ-KIAA1244 might represent an exploit-
able circulating marker for GC screening. Although these reports
have suggested that exosomal circRNAs have great potential as diag-
nostic and prognostic biomarkers for cancer, more clinical studies are
required to confirm these experimental results. Compared with other
ncRNAs that exhibit the potential to function as cancer biomarkers,
circRNAs have more superior characteristics, including high stability
and conservation. Therefore, exosomal circRNAs may be more suit-
able for use as prospective cancer biomarkers. Furthermore, the diag-
nostic efficacy of the combination of exosomal circRNAs and tradi-
tional biomarkers should be investigated.

CRC

Exosomal circRNAs may serve as intercellular signaling molecules to
transmit chemoresistance from drug-resistant CRC cells to sensitive
ones. Recently, Wang et al.178 revealed that exosomes from oxalipla-
tin-resistant CRC cells delivered ciRS-122 to sensitive cells. In vitro
and in vivo studies showed that the transferred ciRS-122 accelerated
glycolysis and enhanced resistance to oxaliplatin in sensitive CRC
cells by sponging miR-122 to upregulate pyruvate kinase M2
(PKM2). ciRS-122 might be a potential target for the treatment of
drug-resistant CRC. Exosomal circRNAsmay represent potential bio-
markers for predicting chemotherapy resistance in CRC patients.
hsa_circ_0000338 was upregulated in exosomes derived from oxali-
platin/fluorouracil/leucovorin (FOLFOX)-resistant CRC cells as
374 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
compared to sensitive cell-derived exosomes.179 Likewise, the expres-
sion level of hsa_circ_0000338 was higher in serum exosomes of FOL-
FOX-resistant patients than in FOLFOX-sensitive patients. Addi-
tional work is essential to validate the potential of exosomal
hsa_circ_0000338 as a biomarker for early diagnosis of chemoresist-
ance among CRC patients. The expression level of hsa_circ_0000338
was increased in sensitive CRC cells co-cultured with resistant cells
compared with control sensitive cells. However, there is still a lack
of experimental evidence for the occurrence of exosome-mediated
hsa_circ_0000338 shuttle between drug-resistant CRC cells and sen-
sitive cells. Further studies are warranted to support this assumption.
The loss-of-function study showed that knockdown of hsa_
circ_0000338 increased the viability of FOLFOX-resistant CRC cells
under 5-fluorouracil (5-FU) exposure. However, the role of exosomal
hsa_circ_0000338 in CRC is still unknown. Thus, it is necessary to
explore the possibility of the involvement of exosomal hsa_
circ_0000338 in CRC chemoresistance. Exosomal hsa_circ_0004771
was significantly upregulated in the serum of CRC patients compared
to healthy individuals and patients with benign intestinal diseases.180

Moreover, circulating exosomal hsa_circ_0004771 could efficiently
distinguish CRC patients from healthy controls. It was closely corre-
lated with TNM stage and cancer metastasis in CRC patients. Thus,
circulating exosomal hsa_circ_0004771 might be a new biomarker
for early diagnosis of CRC. More clinical studies in large cohorts
are needed to confirm its diagnostic significance.
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Figure 2. The Clinical Value of Exosomal circRNAs in Gastric Cancer

Several circRNAs (circ-RanGAP1, hsa_circ_0000419, hsa_circ_0065149, and circ-

KIAA1244) have been found to be deregulated in plasma exosomes of GC patients.

These exosomal circRNAs may be used as non-invasive biomarkers for GC diag-

nosis and prognosis. GC, gastric cancer.
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PC

circ-IARS was highly expressed in cancer tissues and plasma
exosomes of patients with metastatic PC.181 Overexpression of circ-
IARS in human umbilical vein endothelial cells (HUVECs) could in-
crease the permeability of endothelial monolayer cells by sponging
miR-122 to elevate RhoA activity. Remarkably, PC cell-secreted
circ-IARS could be delivered into HUVECs by exosome transporta-
tion, which led to the increase of vascular endothelial permeability
and enhancement of PC cell metastasis. Further progress in eluci-
dating the biological functions and underlying mechanisms of
exosomal circRNAs in PC development will provide evidence and
potential utility for innovative therapeutic strategies for PC. The
potential of exosomal circRNAs as PC biomarkers has also been
investigated. circ-PDE8A could favor the invasive growth of
PDAC cells by regulating the miR-338/metastasis-associated in colon
cancer 1 (MACC1)/mesenchymal-epithelial transition factor (MET)
pathway.182 circ-PDE8A could be transmitted between PDAC cells
via exosomes. Exosomal circ-PDE8A derived from PDAC cells even
entered into blood circulation. Plasma exosomal circ-PDE8A was
correlated with PDAC progression and prognosis. Collectively, exo-
somal circ-PDE8A might serve as a prospective biomarker of
PDAC diagnosis or progression.

HCC

Several exosomal circRNAs have been reported to participate in the
occurrence and development of HCC (Figure 3). circRNA_100284
was upregulated in arsenite-transformed normal liver cells.183

circRNA_100284 could be shuttled from transformed liver cells
to normal cells via exosomes. In recipient cells, exosomal
circRNA_100284 accelerated the cell cycle and promoted cell prolif-
eration by sponging miR-217 to upregulate enhancer of zeste homo-
log 2 (EZH2) and cyclin D1. These findings suggested that exosomal
circRNA_100284 served as intercellular signaling molecules during
arsenite-induced hepatocarcinogenesis. hsa_circ_0051443 was ex-
pressed at low levels in the plasma exosomes and tissues from HCC
patients compared to healthy controls.184 Exosomal hsa_
circ_0051443 served as a useful marker for differentiating HCC pa-
tients from healthy controls. hsa_circ_0051443 was transported
from normal cells to HCC cells via exosomes and inhibited the malig-
nant characteristics of HCC cells by regulating the cell cycle and
apoptosis. Exosomal hsa_circ_0051443 might function as a mediator
of intercellular communication during HCC carcinogenesis. In HCC
cell models, hsa_circ_0051443 was shown to increase the expression
of pro-apoptotic Bcl-2 antagonist killer 1 (BAK1) by sponging miR-
331-3p. Exosomal hsa_circ_0051443 stimulated BAK1 expression
and suppressed the growth of HCC xenograft tumors in nude mice.
However, an important question remains as to whether exosomal
hsa_circ_0051443 functions in recipient cells by acting as a miR-
331-3p sponge. Additional work is needed to elucidate the molecular
mechanism by which exosomal hsa_circ_0051443 regulates HCC cell
apoptosis. circPTGR1 could promote the migration and metastasis of
HCC cells through the miR-449a/MET axis.185 circPTGR1 was highly
expressed in serum exosomes from HCC patients and correlated with
the clinical stage and prognosis in HCC patients. High metastatic
HCC cells conferred this potential on non-metastatic and low-meta-
static cells via circPTGR1-enriched exosomes. Exosomal circPTGR1
could promote HCC progression in vivo. It is not clear whether the
transferred circPTGR1 exerts its effect on recipient HCC cells via
the same mechanism as cellular circPTGR1. Further research should
be carried out to investigate the molecular mechanism underlying the
contribution of exosomal circPTGR1 to HCC progression. A recent
report indicated that exosomal circRNA-100338 was more abundant
in highly metastatic HCC cells than that in lowly metastatic cells.26

Exosomal circRNA-100338 significantly increased the invasive ability
of HCC cells. circRNA-100338 could be transferred from HCC cells
to HUVECs via exosomes, thus affecting the proliferation, angiogen-
esis, and permeability of recipient HUVECs. In HUVECs transfected
with biotin-labeled circRNA-100338, the internalized circRNA was
found to interact with NOVA2, an RBP regulating vascular develop-
ment.186 In vivo evidence indicated that exosomal circRNA-100338
promoted HCC metastasis by regulating angiogenesis. Exosomal
circRNA-100338 might be involved in the crosstalk between HCC
cells and HUVECs. Additionally, high expression of exosomal
circRNA-100338 in serum might be correlated with cancer progres-
sion and poor prognosis in HCC patients. These findings demon-
strated that exosomal circRNAs might offer considerable promise
for therapeutic intervention in HCC. However, there are a very
limited number of studies exploring the roles of exosomal circRNAs
in HCC progression. The exact functions of exosomal circRNAs in
HCC are worthy of deep exploration.

CCA

A previous study has suggested the potential role of exosomal circ-
0000284 in CCA development.187 circ-0000284 was upregulated in
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Figure 3. The Role of Exosomal circRNAs in Hepatocellular Carcinoma

Liver cell-secreted exosomal circRNAs (circRNA_100284 and hsa_circ_0051443)

are capable of regulating the proliferation and apoptosis of HCC cells. HCC cell-

released exosomal circRNAs (circPTGR1 and circRNA-100338) facilitate HCC

angiogenesis and metastasis. HCC, hepatocellular carcinoma.

www.moleculartherapy.org

Review
cancer tissues and plasma exosomes from CCA patients compared
with healthy controls. circ-0000284 could increase the proliferation,
migration, and invasion of CCA cells through interaction with
miR-637 that targeted lymphocyte antigen 6 complex locus E
(LY6E). Moreover, CCA cells transported circ-0000284 to surround-
ing cells by secreting exosomes. CCA-derived exosomal circ-0000284
facilitated the proliferation and migration of recipient cells and
inhibited their apoptosis. Although the expression and potential func-
tion of exosomal circ-0000284 were preliminarily revealed in recip-
ient cells, no further information was provided with regard to the un-
derlying mechanism by which it regulated the biological functions of
recipient normal cells. The mechanism involving miR-637 sponging
needs to be more clearly elucidated. At present, most of the studies
reported in CCA focus on the deregulation and clinical significance
of circRNAs rather than performing an in-depth analysis of their
functions. Further mechanistic investigation is warranted to increase
our knowledge about the biological implications of exosomal circR-
NAs in the initiation and development of CCA.

SCLC

The high expression of FLI1 exonic circRNAs (FECRs) in SCLC tis-
sues was positively associated with the metastatic features of
SCLC.188 Exosomal FECR1 was expressed at high levels in the serum
of SCLC patients as compared with normal controls. Importantly, the
level of serum exosomal FECR1 was closely correlated with poor sur-
vival and clinical response to chemotherapy in SCLC patients. Serum
exosomal FECR1might be clinically useful as a biomarker to track the
376 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
progression of SCLC. Although the oncogenic role of FECRs has been
verified in SCLC cells, further efforts are required to clarify whether
exosomal FECRs are implicated in intercellular communication dur-
ing SCLC progression.

Urogenital System Tumor

circWHSC1 was highly expressed in OC tissues compared to normal
tissues.189 circWHSC1 favored the proliferation and invasion of OC
cells by acting as a molecular sponge of miR-145 and miR-1182. Peri-
toneal mesothelial cells acted as recipient cells and took up
circWHSC1-enriched exosomes released by OC cells. Exosomal
circWHSC1 increased the expression of mucin 1 (MUC1) in recipient
cells and facilitated peritoneal dissemination, which might promote
OC progression. Targeting circWHSC1 may represent an innovative
therapeutic option for OC treatment. circ_0044516 was significantly
upregulated in exosomes from prostate cancer cells and patients
compared with the controls.190 The diagnostic or prognostic value
of exosomal circ_0044516 needs to be validated. In prostate cancer
cells, circ_0044516 acted as a miR-29a-3p sponge. circ_0044516 sup-
pressed the proliferation and metastasis of prostate cancer cells. The
biological function of exosomal circ_0044516 in prostate cancer
should be verified in future studies. The expression of circPRMT5
was higher in urothelial carcinoma of the bladder (UCB) tissues
than in matched nontumor tissues.191 Its upregulation was positively
correlated with advanced clinical stage and worse survival in UCB pa-
tients. Moreover, circPRMT5 fostered the EMT process in UCB cells
via the miR-30c/SNAIL1/E-cadherin pathway. circPRMT5 was also
highly expressed in serum and urine exosomes from UCB patients
as compared with normal controls. The level of circPRMT5 in serum
and urine exosomes positively correlated with cancer metastasis and
progression in UCB patients. Exosomal circPRMT5 might serve as a
prognostic biomarker for UCB patients. Our knowledge of the char-
acteristics and function of exosomal circRNAs in urogenital system
tumor is very limited. Hence, more efforts should be made to gain
a better understanding of their potential as valuable biomarkers and
therapeutic targets in this disease.

Conclusions and Future Perspectives

Although there are many studies on exosomal circRNAs, their forma-
tion and sorting mechanisms remain largely unknown. At present,
two assumptions of exosomal circRNAs have been proposed. One
is that exosomes can deliver circRNAs to target cells and protect
them from clearance. Oppositely, the other is that exosomes help to
reduce the accumulation of circRNAs within cells. Further studies
are essential to fully discover key regulators of circRNA fate decisions.
Additionally, the mechanisms relevant to the enrichment and degra-
dation of exosomal circRNAs need comprehensive elucidation. It is
possible that circRNAs are enriched in the cytoplasm and passively
incorporated into exosomes. Alternatively, cells may adopt certain
mechanisms to actively deliver intracellular circRNAs into exosomes.
Despite their resistance to exonucleolytic degradation, circRNAs may
harbor specific endonuclease sites and could be degraded in a coordi-
nated manner. The balance between circRNA biogenesis and degra-
dation may be influenced by dynamic cellular states or external
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stimuli. The biogenesis/degradation pathways of exosomal circRNAs
under different conditions should be illuminated in further studies. In
addition, improved knowledge on the nature of exosomes will facili-
tate the disclosure of detailed mechanisms involved in the sorting,
trafficking, and loading of circRNAs in exosomes.

Notably, the selective sorting of circRNAs into exosomes may form a
significant mechanism underlying the regulation of cancer progres-
sion. Cancer cells exploit exosomes into transferring their circRNAs
as a way to control the behaviors of target cells. Accordingly, the sort-
ing process of exosomal circRNAs in cancer cells is another unan-
swered question that needs to be addressed. Compared with exosomal
miRNAs and lncRNAs, many gaps in our current understanding of
the relationship between exosomal circRNAs and cancer science exist.
A wide variety of exosomal circRNAs have been identified to be aber-
rantly expressed in different cancers, including gastric, colorectal,
pancreatic, liver, bile duct, lung, and urogenital system cancer. Exoso-
mal circRNAs are involved in the proliferation, migration, invasion,
metastasis, and chemoresistance of cancer cells. However, several
challenges regarding circRNAs in exosomes need to be addressed.
First, it is controversial whether the function of exosomes is only asso-
ciated with their circRNA cargos. Isolated exosomes are commonly
contaminated with other molecules, including lipoproteins and ribo-
nucleoprotein complexes, which may result in inaccurate analysis of
exosomal circRNAs.192 Current separation methods include centrifu-
gation, filtration, polymeric precipitation, and immunoaffinity
isolation.193 Distinct isolation techniques lead to discrepancies in
the results of downstream analysis. The separation method can be
chosen based on the question being addressed. The use of an appro-
priate method may improve the accuracy of results to a certain extent.
Nevertheless, more advanced techniques that produce high yields of
pure exosomes should be developed. Second, efficient methods for
examining circRNA transmission between cells are in urgent need.
The transportation of exosomal circRNAs between cells has been
indirectly validated by measuring the expression levels of circRNAs
in both donor and recipient cells. Fluorescence signal amplification
by a confocal imaging systemmay be an efficient approach for directly
studying exosome-mediated circRNA delivery. Third, due to their cir-
cular structure and sequence overlap with linear RNA counterparts, it
is difficult to precisely define the expression and function of exosomal
circRNAs. Advances in our understanding of circRNA biology will
facilitate the identification of the biological function of exosomal
circRNAs. Finally, the lack of appropriate models has been a major
obstacle to studying the role of exosomal circRNAs in cancer. Over-
expression or knockdown of a specific circRNA in parent cells can
lead to corresponding expression changes of this circRNA in their
exosomes.26 Alterations in recipient cell behavior may be partially
attributed to artificial regulation of exosomal circRNA expression.
Gain- and loss-of-function experiments have been conducted to
determine the role of exosomal circRNAs in cancer biology. However,
further studies are needed to explore whether upregulation or down-
regulation of a specific circRNA in cells can have an influence on the
composition, content, and characteristics of their exosomes.
Additionally, in vitro cell model systems cannot adequately simulate
exosomal circRNA-mediated intercellular communication in vivo. A
large quantity of exosomes incorporated into cultured cells in vitro
may amplify the genuine impact of their circRNA cargos in recipient
cells. It remains to verify whether exosomal circRNAs actually func-
tion in vivo. Therefore, convenient in vivo model systems should be
developed to accurately uncover the function of exosomal circRNAs
in intercellular communication.

The mechanisms underlying the regulatory roles of exosomal circR-
NAs in cancer remain to be further elucidated. It has been reported
that exosomal ncRNAs function to reprogram cells within the tumor
microenvironment.194,195 The regulatory function of exosomal circR-
NAs in remodeling the tumor microenvironment deserves thorough
research. Also, the impact of exosomal circRNAs on tumor immune
evasion is a crucial area that needs exhaustive exploration. A single
circRNA may interact with different miRNAs and thus regulate the
expression of multiple target genes that take part in cancer-associated
signaling cascades. Accordingly, the genuine function of exosomal
circRNAs in cancer must be ascertained. Alternatively, different
circRNAs can interact with the same miRNA. It is essential to inves-
tigate whether diverse circRNAs in exosomes competitively bind to
specific miRNAs. The accurate mechanisms that coordinate the inter-
action between circRNAs and their target miRNAs in exosomes
should be expounded. It is known that cellular circRNAs are involved
in multiple key processes during cancer pathogenesis. Given that
there is no evidence to indicate the functional discrepancy between
intracellular and exosomal circRNAs, it is essential to figure out
whether these circRNAs act synergistically in the process of cancer
progression. In addition, cancer-derived exosomes also contain other
types of ncRNAs, such as miRNAs and lncRNAs.196 These types of
ncRNAs also play a role in cancer development.197,198 Both circRNAs
and lncRNAs can act as molecular sponges for miRNAs. Exosomal
circRNAs may interfere with the action of exosomal miRNAs in can-
cer development. It is possible that circRNAs and lncRNAs compete
with each other for interacting with miRNAs. Thus, in-depth investi-
gations should be conducted to delineate the complicated interplays
among these exosomal ncRNAs during cancer progression.

Exosomal circRNAs can be released by various cancer cells and can be
found in bodily fluids. Importantly, the expression profiles of exoso-
mal circRNAs differ between cancer patients and healthy controls.
Aberrant expression of cancer-derived exosomal circRNAs has been
linked with the development of various cancers. Therefore, exosomal
circRNAs may be used as molecular diagnostic and prognostic bio-
markers in cancer for their stability, conservation, and specificity.
However, developing exosomal circRNAs as cancer biomarkers
would encounter considerable difficulties and obstacles that impede
their clinical application. It is intriguing whether the expression sig-
natures of exosomal circRNAs can reflect those of original cancer
cells. Much work is needed to compare circRNA expression profiles
between cancer cells and their exosomes. Current procedures for exo-
some extraction and purification are time-consuming and expensive,
which are not suitable for high-throughput detection in the clinical
setting. Moreover, it is not clear whether current approaches for
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exosome extraction and purification have an impact on the expres-
sion profile of exosomal circRNAs. More efforts are required to
develop simple and efficient methods for isolation and purification
of exosomes. The low abundance of circRNAs in exosomes has
made their detection challenging. Thus, superior quantitative ap-
proaches should be created to accurately detect the expression level
of circRNAs in exosomes. Furthermore, both cancer cells and normal
cells can shed exosomes. The commonly utilized biomarkers
including TGS101, CD9, CD63, and CD81 are not cancer-specific.
It is essential to identify additional biomarkers for cancer-derived
exosomes. This will contribute to differentiating circRNAs derived
from tumor cells from those originated from the tumor microenvi-
ronment. The clinical significance of exosomal circRNAs in cancer
diagnosis, therapy, and prognosis needs to be adequately examined.
Further studies in big cohorts and in distinct kinds of cancer are indis-
pensable to confirm the specificity and accuracy of exosomal circRNA
analysis. Cancer type-specific or stage-specific exosomal circRNAs
must be identified to ensure the precision of detection and the effec-
tiveness of therapy. Since some circRNAs can act as molecular
sponges for miRNAs and proteins, exosomal circRNAs are likely to
be applied as promising carriers for targeted drug delivery. Loading
exosomes with therapeutic circRNAs may represent a feasible
approach for treating cancer. Despite their promising prospects, there
is still a long way to go to reach the goal of developing exosomal
circRNA-based cancer diagnostic and therapeutic strategies.
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