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Stroke research has traditionally focused on the cerebral processes following ischemic brain 
injury, where oxygen and glucose deprivation incite prolonged activation of excitatory 
neurotransmitter receptors, intracellular calcium accumulation, inflammation, reactive oxygen 
species proliferation, and ultimately neuronal death. A recent growing body of evidence, 
however, points to far-reaching pathophysiological consequences of acute ischemic stroke. 
Shortly after stroke onset, peripheral immunodepression in conjunction with hyperstimulation of 
autonomic and neuroendocrine pathways and motor pathway impairment result in dysfunction 
of the respiratory, urinary, cardiovascular, gastrointestinal, musculoskeletal, and endocrine 
systems. These end organ abnormalities play a major role in the morbidity and mortality of acute 
ischemic stroke. Using a pathophysiology-based approach, this current review discusses the 
pathophysiological mechanisms following ischemic brain insult that result in end organ 
dysfunction. By characterizing stroke as a systemic disease, future research must consider 
bidirectional interactions between the brain and peripheral organs to inform treatment 
paradigms and develop effective, comprehensive therapeutics for acute ischemic stroke.
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Introduction

Acute ischemic stroke (AIS) is a major cause of mortality and 
long-term disability world-wide that lacks curative therapies.1,2 
Recent key advancements in pharmacological thrombolysis and 
mechanical endovascular thrombectomy remain limited by a 
narrow therapeutic window and restrictive eligibility.3,4 Addi-
tionally, the spectrum of rehabilitation paradigms implores evi-
dence base,5 while efforts targeting neuroprotection largely fail 
to translate to human therapies.6 AIS research has historically 
focused on these central nervous system (CNS) interventions to 
reduce infarct volume and address neuronal viability. More re-

cently, however, detrimental effects of AIS on the heart7 and 
immune system8 have gained popularity. Indeed, medical com-
plications following AIS such as pneumonia are strong predic-
tors of mortality and functional outcome.9,10 To that end, we 
queried the National Center for Biotechnology Information and 
National Library of Medicine database through PubMed using a 
combination of keywords including “ischemic stroke” and the 
system of interest to identify relevant literature addressing sys-
temic effects of AIS. We found a small but growing body of evi-
dence pointing to far-reaching pathophysiological consequenc-
es in peripheral tissues including immune, respiratory, urinary, 
cardiovascular, gastrointestinal, musculoskeletal, and endocrine 
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systems (Supplementary Figure 1). Following AIS, the majority 
of these organ systems suffer disturbances ranging in severity 
from subclinical laboratory abnormalities to life-threatening ar-
rhythmias or infections (Figure 1). In this current review, we dis-
cuss the mechanisms by which AIS induces these systemic 
pathophysiological responses and summarize their subsequent 
clinical manifestations. 

The crosstalk between the stroke-
affected brain and end organ systems

It is now widely accepted that AIS has dramatic consequences 
on the fine balance between the brain and the rest of the hu-
man body (Table 1, Supplementary Table 1).9,11 Following AIS, 
many systems demonstrate time-dependent progression of 
acute stroke-induced alterations preceding chronic deficits 

Figure 1. The multi-systems effect of ischemic stroke. Ischemic stroke deprives the brain of sufficient blood flow, prompting a cascade of neurotoxic events 
that result in inflammation, neurotoxicity, and cell death (gray box). In addition to the resultant cerebrovascular injury, the pathophysiological consequences 
of ischemic stroke reach outside of the central nervous system and orchestrate organism-wide dysfunction. In this figure, the complexity of stroke pathophys-
iology is viewed through the lens of human body systems. The unconstrained influence of detrimental consequences reaches cardiac, endocrine, gastrointesti-
nal, lymphoid, and musculoskeletal tissues, highlighting the bidirectional crosstalk between the brain and each affected organ system, and supporting the la-
beling of stroke as a systemic disease.

Ischemic stroke injury
∙ Oxygen and glucose deprivation
∙ Glutamate excitotoxicity
∙ Neuroin�ammation
∙ Oxidative stress
∙ Necrotic and apoptoitc cell death
∙ Blood-brain barrier compromise
∙ Reperfusion injury
∙ Maladaptive neuroplasticity

Autonomic nervous system and HPA axis
● Hyperactivation
● ↑Catecholamines, glucocorticoids
● Enteric nervous system impairment
● Facilitation of organ system dysfunction

Urinary system
● Urinary tract infection
● Urinary incontinence
● Residual post-void volume
● Renal dysfunction
● Acute kidney injury
● Chronic kidney disease

Digestive system
● Gut dysbiosis
● Barrier permeability
● Bacterial translocation
● In�ammation and edema
● Mucosal damage
● Gastrointestinal ulcers
● Reduced bowel function
● Decreased intestinal motility
● Fecal incontinence
● Hepatic dysfunction

○↓Unconjugated bilirubin/hemoglobin
○↑Injury-associated glutamate-metabolizing enzymes
○ In�ammation and apoptotic signaling

Skeletal system
● Altered bone metabolism
● Decreased bone mineral density
● Increased fracture risk

Muscular system
● Functional disability
● Myo�ber typeⅠ-to-Ⅱphenotype shift
● Atrophy, ↓protein synthesis
● ↓Brain-derived neurotrophic factor
● ↑Myostatin, pro-in�ammatory chemokines
● ↑E3 ubiquitin ligases, autophagy-related genes

Immune system
● Splenic contraction/atrophy
● Lymphocyte traf�cking to brain
● Th1-to-Th2 cell shift
● Lymphopenia
● Immune cell apoptosis
● Altered hepatic invariant 

natural killer T cell behavior
● Endotoxin tolerance
● Immunosuppression

Cardiovascular system
● Abnormal electrocardiography
● Arrhythmia
● Cardiac arrest
●↑Serum cardiac biomarkers
● Heart rate variability
● Takotsubo cardiomyopathy

Respiratory system
● Pneumonia
● Increased bacterial load
● Dysphagia/aspiration
● Venous thromboembolism

Endocrine system
● Pancreas:

○↓Insulin
○  Hyperglycemia
○  Impaired glucose tolerance

● Thyroid:
○↓Serum triiodothyronine

● Pineal:
○↓Melatonin
○  Circadian rhythm disruption



https://doi.org/10.5853/jos.2019.02978 http://j-stroke.org  161

Vol. 22 / No. 2 / May 2020

(Figure 2).12-14 These alterations are believed to be mediated by 
three overlapping mechanisms involving immune, autonomic, 
and motor pathways (Figure 3). 

Shortly after AIS, a severe state of immunodepression is seen 
resulting in the high incidence of post-stroke infections.9,11 This 
post-stroke immunodepression is mediated by the autonomic 
and hypothalamic pituitary adrenal axis (HPA) activation and 
the interaction of the stroke-affected brain with the immune 
system through complement activation and release of damage-
associated molecular patterns (DAMPs).15,16 Additionally, HPA 
activation is thought to be a critical channel through which 
multiple other systems are dysregulated, resulting in cardiac, 
renal, and gastrointestinal imbalances. Furthermore, motor 
pathway impairment secondary to AIS contributes to muscle 
wasting while the associated immobility increases the risk of 
deep vein thrombosis (DVT) and pulmonary embolism (PE) (Ta-
ble 1). These factors overlap resulting in the worsening morbid-
ity and mortality of AIS (Figure 3). In the following sections, 
these overlapping mechanisms and their subsequent clinical 
implications are discussed in further detail.

 

Stroke-induced immunodepression 

Within hours of AIS, autonomic activation and release of 
DAMPs affect the various immune cells in the body. Immune 
cells from lymphoid populations in the spleen, gut-associated 
lymphoid tissue (GALT), and bone marrow reach brain vascula-
ture and parenchyma.17,18 Together with resident microglia, the 
arriving neutrophils, monocyte/macrophages, and innate lym-
phocytes (e.g., natural killer [NK] cells) respond by producing 
proinflammatory mediators, after which T- and B-cell activa-
tion delivers its adaptive response.17-19 The roles of T-cell sub-
sets have been thoroughly investigated, where pro-inflamma-
tory T-helper (Th1), Th17, γδ T-cells, and cluster of differentia-
tion 8+ (CD8+) T-cells promote initial tissue damage, enhance 
blood brain barrier breakdown, and contribute to neuronal 
apoptosis.19 Following this acute activation phase, an abrupt 
anti-inflammatory shift supervenes. This process is thought to 
be mediated by autonomic and neuroendocrine dysfunction, 
monocyte deactivation, and NK cell impairment that suppress 
immune activity. In addition, peripheral mobilization and apop-
tosis decrease blood lymphocyte counts by half.20 The shift to-
ward anti-inflammatory Th2 cells and expansion of protective 
forkhead box protein P3+ (FoxP3+) regulatory T-cells (Tregs) 

Table 1. Systemic complications of ischemic stroke

Complication Characterized by Underlying pathophysiologies Reference

Infection Commonly stroke-associated pneumonia, urinary tract infection Immunodepression, gut  
dysbiosis, autonomic  
activation, immobility

P. 15,20,27,35-37

C. 8,24,34,43,44,47-49,52,56

Pulmonary embolism Heightened VTE risk, resulting in DVT development and transfer to 
pulmonary circulation

Autonomic dysfunction,  
immobility, coagulant  
activation post-infection

C. 100-102,111

Renal dysfunction Low eGFR, incontinence, development of AKI/CKD/ESRD Sympathetic output,   
inflammation

P. 112 
C. 76-79,113,114

Cardiac dysfunction Cardiac arrhythmias, systolic dysfunction, ECG abnormalities, silent 
myocardial ischemia, cardiac arrest, Takotsubo cardiomyopathy

Sympathetic signaling,  
vagal modulation

P. 7,62 
C. 10,57-61,63,64

Gastrointestinal concerns Intestinal muscosa damage, decreased gut motility, GI bleeds, 
bowel dysfunction

Autonomic dysfunction,  
gut dysbiosis

P. 66

C. 65,67

Hepatic dysfunction Hepatic inflammatory/apoptotic activation, hepatic ketogenesis, 
compromised hepatic insulin signaling, increased ER stress,  
altered bilirubin/liver enzyme levels

Catecholamine surge,  
noradrenergic-mediated  
innervation

P. 71-74

C. 68

Endocrine imbalance Decreased insulin release, hyperglycemia; decreased T3, thyroid  
imbalance, reduced T3-related neuroprotection; decreased  
melatonin, circadian shift and sleep disturbance, reduced  
melatonin-related neuroprotection

Sympathetic signaling;  
inflammatory mediators, 
glucocorticoids; autonomic 
disruption

P. 84,85

C. 80-83,86

Musculoskeletal decline Bone loss, remodeling disorder, increased fracture risk, low BMD/
BMC; repressed skeletal muscle repair, increased catabolic  
activity, atrophy, altered inflammatory signaling, myofiber  
phenotype shift, functional disability

Sympathetic activation,  
immobility

P. 13,104,105,107

C. 103,109,115

P., preclinical studies; C., clinical studies; VTE, venous thromboembolism; DVT, deep vein thrombosis; eGFR, estimated glomerular filtration rate; AKI, acute kid-
ney injury; CKD, chronic kidney disease; ESRD, end-stage renal disease; ECG, electrocardiography; GI, gastrointestinal; ER, endoplasmic reticulum; T3, triiodo-
thyronine; BMD, bone mineral density; BMC, bone mineral content. 
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Figure 2. Timeline of systemic complications following stroke. Systemic responses to ischemic stroke present clinically within hours and continue developing 
well beyond hospital discharge. Though some are transient in nature, many complications progress chronically into the months and years that follow. This 
timeline summarizes the onset and evolution windows of clinical manifestations (e.g., pneumonia) and associated pathologies (e.g., immunosuppression). 
Brain graphic created with BioRender. *Denotes predictors of poor outcome.  
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Figure 3. The pathophysiological sequelae of ischemic stroke. The impact of ischemic stroke reaches systemic proportions through evolution of three main 
pathophysiologies: stroke-induced immunodepression, autonomic and neuroendocrine dysfunction, and motor pathway disruption (flow chart). Each patho-
physiology then facilitates development of the detrimental clinical complications observed beyond the stroke-affected brain (Venn diagram). Though much 
overlap exists between influential pathophysiologies and the ensuing complications, this figure presents a simplified overview of how the pathophysiological se-
quelae of ischemic stroke culminates in a vast array of clinical complications. GI, gastrointestinal; DVT, deep vein thrombosis; PE, pulmonary embolism; DAMP, 
damage-associated molecular pattern; SNS, sympathetic nervous system; HPA, hypothalamic pituitary adrenal axis; PNS, parasympathetic nervous system; GALT, 
gut-associated lymphoid tissue.
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protect against further neuroinflammation.21 While limiting 
excessive immunological brain injury, the diminished immune 
capacity prevents sufficient inflammatory response to infec-
tion.15 Though exact mechanisms of prompt immune activation 
and opposing immunodepression are not fully understood, 
known participants in brain-immune communication after 
stroke are described below.

DAMPs and endotoxin tolerance
DAMPs are intracellular biomolecules that initiate an immune 
response upon release from necrotic cells. Upon detection by 
pattern recognition receptors on immune cells (e.g., receptor 
for advanced glycation end products [RAGE], toll-like receptors 
[TLRs]), DAMPs acutely amplify pro-inflammatory cytokine 
production.15 This disproportionately large immune reaction in-
cites immature monocyte migration from bone marrow, prolif-
eration of bone marrow-derived suppressor cells in the spleen, 
lymphopenia, and immune cell apoptosis.22,23 DAMP-induced 
exhaustion of monocyte function yields a state of endotoxin 
tolerance, a phenomenon that protects the stroke-affected 
brain from further damage but leaves immune cells unable to 
elicit adequate pro-inflammatory reaction to insult.8

Monocytes from AIS patients exhibit decreased surface ex-
pression of major histocompatibility complex (MHC) class II 
molecule human leukocyte antigen D related (HLA-DR) and 
consequently exist in a state of diminished antigen presenta-
tion.24 Neuronal chromatin-associated nuclear protein high-
mobility group box 1 protein (HMGB1), a pivotal DAMP in 
stroke pathology, is elevated in serum within hours.15 Both 
markers of immunodepression, low MHC II and HLA-DR at 
post-stroke day one predicted infection up to 2 weeks later,24 
while preclinical blocking of the HMGB1-RAGE pathway at-
tenuated immunodepression and lymphocyte inactivation.22 
Mitochondrial DAMPs are also markedly increased in plasma 
after stroke. Circulating mitochondrial DNA strongly correlated 
with the impaired response of refractory-state monocytes and 
infection.8 Furthermore, healthy monocytes cultured in stroke 
patient serum containing mitochondrial DNA exhibited the 
same refractory state.8

Invariant natural killer T (iNKT) cells are a unique group of 
innate immune cells that survey the blood for circulating im-
munogens. Recent data suggest iNKT cells in liver sinusoids de-
tect and respond to brain injury.25 Following middle cerebral 
artery occlusion (MCAO), iNKT cells demonstrated decreased 
crawling activity specific to cerebral ischemia, as hindlimb 
ischemia-reperfusion had no effect on iNKT mobility.25 Post-
stroke changes to iNKT behavior also contribute to immunode-
pression and increased infection risk. While iNKT numbers were 

not altered by stroke-induced lymphopenia, activation marker 
CD69 increased in peripheral blood and liver iNKT populations 
after MCAO prior to the anti-inflammatory cytokine shift. Neu-
trophil infiltration, edema, and bacterial load also increased in 
the lungs within 24 hours, consistent with clinical outcomes.25

Splenic volume and cell cycling
The spleen is a lymphoid organ functioning in blood filtration 
and immune response. Preclinical stroke studies describe im-
mediate decreases in splenic volume and T-cell antigen re-
sponse.20,23 Similarly, stroke survivors experience splenic atro-
phy with re-expansion beginning after 48 hours.12 Prompted by 
sympathetic hyperactivation, contributors to splenic contrac-
tion include immune cell release followed by apoptosis of lym-
phocyte subsets: B-, T-, and NK cells.16,20,26 Confirming the im-
pact of apoptosis in immunodepression, experimental treat-
ment with systemic caspase inhibitor quinolyl-valyl-O-methyl-
aspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPH) 
minimized stroke brain injury, improved splenocyte survival, 
and reduced bacteremia.27

To delineate the spleen’s role in stroke injury, independent 
preclinical studies showed splenectomy either 2 weeks before 
MCAO28 or in the immediate hours afterward29 decreased in-
farct volume and neurological deficits. Interestingly, splenecto-
my immediately before stroke induction did not improve infarct 
volume or neuroimmune response,17,30 though variance in 
stroke model, post-operative recovery, and immune compensa-
tion warrant further investigation.10,30

Gut dysbiosis
The microbial population in the intestinal tract interacts with 
specialized GALT to regulate T-cell homeostasis and establish 
the maturing immune system. Disruption of the intestinal mi-
crobiome, or gut dysbiosis, is observed following AIS.14 Because 
microbial metabolites influence immune polarization, gut dys-
biosis affects intestinal lymphocyte populations.31 Due to its role 
in immune response and systemic inflammation, gut dysbiosis is 
addressed in the context of neuroimmune dysregulation.

In response to inflammatory stress and altered vagal com-
munication with the intestinal tract, gut dysbiosis after stroke 
is characterized by a reduction in species diversity, imbalance 
in phyla predominance, and altered metabolite production.14,32 
Preclinically, dysbiosis directly primed inflammatory γδ T-cells 
in the gut, which then trafficked to the brain and exacerbated 
stroke evolution.31 Recolonizing germ-free mice with dysbiotic 
bacteria from stroke-affected mice yielded larger lesions and 
deficits after MCAO, while healthy fecal transplantation nor-
malized microbiota, reduced infarct size, and attenuated pro-
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inflammatory T-cell polarization.14 Following the post-stroke 
immunosuppressive shift, mesenteric lymph node dendritic 
cells prompt migration of protective Tregs to the gut to de-
crease γδ T-cell movement to the brain.19 Compared to mice 
with less severe dysbiosis, mice with excessive dysbiosis had 
significantly more γδ T-cells, fewer Tregs, larger infarcts, and 
greater neurological deficits.33

Clinically, AIS patients presented with altered fecal bacterial 
counts and organic acid levels, as well as disrupted biomarkers 
of metabolism and inflammation.32 Gut microflora are further 
disturbed by antibiotic administration for infection control.34 
Intestinal edema and inflammation after experimental stroke 
compromised mucosal barrier function and may enable bacte-
rial translocation to various organs.35 Indeed, bacteremia oc-
curred acutely following rodent stroke34 and was observed in 
AIS patients at admission.14 Microbes detected in the lungs 
originated in the host’s small intestine, with translocation to 
the spleen, liver, and mesenteric lymph nodes as early as 24 
hours.34,35 These findings indicate gut dysbiosis is both a conse-
quence of and subsequent contributor to stroke pathophysiol-
ogy, though a clinical link between dysbiosis and stroke out-
comes remains to be established.

The systemic consequences of stroke-induced 
immunodepression
The critical suppression of the immune system manifests clini-
cally as infection, including stroke-associated pneumonia (SAP) 
and urinary tract infection (UTI), the most frequently encoun-
tered complications in stroke patients.36

Stroke-associated pneumonia
Murine studies report increased bacterial load in lungs and pe-
ripheral blood by 24 hours post-MCAO.20 Obstructing sympa-
thetic activity with a β-blocker, however, prevented bacterial 
infection and reduced mortality highlighting the role of sym-
pathetic system activation.20,37 Immunodepression was further 
demonstrated using Streptococcus pneumoniae exposure: 
while 200,000 colony-forming units (CFUs) were required to 
cause pneumonia in sham animals, only 200 CFUs were neces-
sary in stroke mice, again preventable with sympathetic block-
ade.37 Marked lymphopenia was prevented through glucocorti-
coid receptor blockage, while both HPA and sympathetic inhi-
bition protected against lymphocyte apoptosis.18

Stroke-induced parasympathetic stimulation is widely ac-
cepted as another contributor to infection through initiation of 
anti-inflammatory pathways.14,38,39 Vagal signaling and cholin-
ergic activation target α7-nicotinic acetylcholine receptors 
(α7-nAChR) across cell types, including lung epithelial cells and 

resident immune alveolar macrophages.40 Mice after MCAO 
presented with significant parasympathetic response and 
pneumonia, while vagotomy or α7-nAChR-deficiency main-
tained pulmonary immune defense and prevented SAP.40

Clinically, SAP is a major complication of AIS affecting one-
third of patients.41 In contrast to preclinical data, human stud-
ies utilizing β-blockers to address infection report mixed out-
comes, from protective42 to unfavorable.43 Aspiration is another 
important mechanism of SAP,9 though prevention measures 
alone do not eliminate infection. Indeed, a multi-center study 
established dysphagia and immunodepression as independent 
predictors of SAP.24 Dysphagia correlated with SAP only in pa-
tients with low monocytic HLA-DR, suggesting screening for 
both dysphagia and immunosuppression could identify SAP 
risk.24 Though SAP is linked to functional decline and mortali-
ty,36 prophylactic administration of antibiotics failed to improve 
either outcome in clinical trials.44,45 This emphasizes the knowl-
edge gap regarding complex pathophysiological mechanisms of 
post-stroke immunodepression and the fragile lung-brain axis.

Urinary tract infection
AIS severity is an independent predictor of UTI41 which is in 
turn associated with worse outcomes, longer hospital stays, 
and poor discharge outcome.41 Despite lowering UTI frequency, 
prophylactic antibiotics did not benefit functional outcome or 
reduce mortality in clinical trials similar to SAP.46 Risk factors 
include catheter use, incontinence, and post-void residual urine 
volume,47 though high rates of UTI have been reported in pa-
tient cohorts both with (50%) and without (24%) indwelling 
catheters.48 Programs that prompted routine assessment, stop 
orders, or early removal reduced catheter duration and inci-
dence of UTI,49 as did measuring post-void urine volume with 
portable bladder ultrasound.47 Antimicrobial or antibiotic-im-
pregnated catheters have been shown to delay or prevent bac-
teriuria, but evidence of UTI reduction is scarce50 and highlights 
immune system complexity after stroke.

Autonomic and neuroendocrine 
dysregulation

Dysregulation of autonomic and HPA systems has widespread 
effects on all body organs (Figure 3). The mechanisms by which 
the autonomic system communicates with the peripheral im-
mune system have been most thoroughly investigated and will 
be discussed in depth first. 

Sympathetic hyperactivation
The pro-inflammatory cytokine surge after AIS activates the 
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sympathetic nervous system (SNS), triggering catecholamine 
production at the adrenal medulla and sympathetic nerve ter-
minals.20 This initiates immune cells mobilization, stimulates 
their apoptosis, and inhibits further cytokine production.20 Mu-
rine studies identified sympathetic activation as the direct 
cause of spontaneous bacterial infection after stroke,20 while 
pharmacological inhibition of splenic adrenergic receptors re-
duced infarct volume, preserved splenic weight, and protected 
against high bacterial load.51 Though splenectomy was protec-
tive, denervation alone did not alter splenic weight or infarct 
volume51 suggesting a regulatory role for circulating catechol-
amines over direct sympathetic innervation. Indeed, patients 
with post-stroke infection presented first with increased cate-
cholamine levels.52

On the other hand, noradrenergic-mediated innervation, 
rather than humoral input, is responsible for post-stroke iNKT 
behavior. Direct injection of norepinephrine into livers of sham-
operated mice mimicked the immunosuppressive iNKT response 
to stroke and increased infection risk, whereas β-adrenergic 
receptor inhibition or reduction of hepatic noradrenergic nerve 
terminals attenuated the MCAO-induced immunosuppressive 
shift in mice,25 similar to results in the spleen.51

HPA axis dysregulation
HPA axis overactivation releases glucocorticoids from the adre-
nal cortex, promoting the immunosuppressive shift to anti-in-
flammatory cytokine production.20 Glucocorticoids have been 
shown to impede pro-inflammatory cytokine production as 
well, and stunt immune cell proliferation to promote apopto-
sis.53 Clinically, AIS prompts an abrupt increase in cortisol, 
which is linked to post-stroke infection, mortality, and func-
tional dependence.54 Experimental blocking of glucocorticoid 
receptors prevented the immunosuppressive stroke-associated 
lymphopenia.18,20 Many studies report diurnal pattern disrup-
tion of cortisol after stroke, though full implications of the shift 
remain unknown.54

Parasympathetic vagal activation
The parasympathetic nervous system is involved with neuroim-
mune regulation following stroke through inflammatory stimu-
lation of the vagus nerve.40 The subsequent release of acetyl-
choline activates α7-nAChR, triggering the vagal cholinergic 
anti-inflammatory pathway55 which inhibits pro-inflammatory 
macrophage activity. Studies employing vagal stimulation38 
and α7-nAChR agonists39 confirm vagal/α7-nAChR involve-
ment in reducing cerebral inflammation. The other conse-
quence of the parasympathetic vagal activation is its effect on 
the brain and peripheral NK cell regional population in mice 

and patients.26 A decrease-then-recovery of NK counts oc-
curred in the periphery, but the opposite—initial increase, then 
subsequent contraction—was observed in the brain. In addition, 
cholinergic exposure suppressed NK function in the brain but 
not in the periphery.26 This suggests compartment-specific 
mechanisms may be ideal targets for preventing immunode-
pression in the periphery while leaving the protective shift in 
the brain undisturbed. 

The systemic consequences of autonomic/
neuroendocrine dysregulation
Overstimulation of sympathetic, HPA, and parasympathetic 
pathways mediates the systemic disease progression, prompt-
ing a clinical cascade of cardiac, gastrointestinal, hepatic, re-
nal, and endocrine complications.

Cardiovascular dysfunction
Stroke severity, disability, and mortality are higher in patients 
with lower cardiac function.56,57 Conversely, AIS induces cardiac 
dysfunction without prior risk factors or pre-existing heart dis-
ease.57,58 This manifests with electrocardiographic abnormali-
ties, elevated serum cardiac troponin T in the absence of myo-
cardial infarction, depressed cardiac function in the acute 
phase, or severe complications such as arrhythmias or cardiac 
arrest.56-58 Incidentally, 19% of AIS patients had a serious or 
fatal cardiac event in the first 3 months.10 

Takotsubo cardiomyopathy (TTC) is a stress-induced transient 
weakening and ballooning of the left ventricle that is seen in a 
subset of AIS patients. Commonly asymptomatic, TTC may 
mimic myocardial infarction in injury biomarkers and electro-
cardiography and is associated with insular infarcts and poor 
outcomes.59,60 Heart function typically returns to normal over 
several weeks, but severe cases increase risk for cardiac embo-
lism, respiratory failure, and death.59

Cardiac dysfunction following AIS has been attributed to 
sympathetic and parasympathetic imbalance. One study con-
firmed overstimulation of cardiac sympathetic innervation using 
the catecholamine synthesis rate-limiting enzyme tyrosine hy-
drolase.7 Sympathetic hyperstimulation also blunts vagal influ-
ence, as confirmed in stroke patients via heart rate variability 
testing.61 HPA activation and hypothalamic paraventricular nu-
cleus output also prompted cardiac arrhythmias and impaired 
cardiac output in rat models.62 Brain regions of cardiovascular 
interest are the brainstem (e.g., rostral ventrolateral medulla) 
and insular cortex. The laterality hypothesis maintains left and 
right insular cortices control cardiac parasympathetic and sym-
pathetic activity respectively, and while patient studies indicate 
heightened severity of cardiac dysfunction with insular strokes, 
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presentation and degree of laterality remain controversial.63,64

Gastrointestinal and metabolic impairments
Autonomic dysfunction impairs enteric communication and, 
consequently, gastrointestinal function. Additional contributors 
include inactivity, diet, and various medications.65 Preclinical 
and clinical studies alike report bowel dysfunction and gastro-
intestinal impairment after stroke.14 Reduced intestinal motility 
results in constipation and new-onset fecal incontinence in up 
to half of AIS patients.65 Rodent studies identified histological 
damage, gastric edema, hyperemia, altered cellular composi-
tion, and hemorrhagic erosion of the gastric mucosa after 
stroke,66 which present clinically as ulcers.67 Acid-suppressive 
therapy may reduce gastrointestinal bleeding,67 but the under-
lying intestinal inflammation, gut dysbiosis, and autonomic 
contributors remain.

Metabolic homeostasis in the liver is impaired after AIS and 
correlates with infarct volume.68 Stroke is associated with re-
duced unconjugated bilirubin and hemoglobin levels at admis-
sion68 while increasing glutamate-metabolizing enzymes asso-
ciated with liver injury (e.g., glutamate oxaloacetate transami-
nase [GOT]), a possible prompt for peripheral glutamate me-
tabolism in response to glutamate release from the ischemic 
brain.68 Plasma and neuronal sources of GOT support scaveng-
ing69 and excitotoxic glutamate metabolism70 after AIS respec-
tively, though post-stroke implications of hepatic GOT are yet 
to be revealed. Additionally, experimental stroke promoted in-
flammation, DNA fragmentation, and apoptotic signaling in 
the liver through kinase activation (i.e., c-JUN N-terminal ki-
nases [JNKs], extracellular signal-regulated kinases [ERKs]).71 
Compromised hepatic insulin signaling, increased expression of 
gluconeogenic genes, and increased endoplasmic reticulum 
stress have been reported in the liver and are attributed to the 
post-stroke catecholamine surge.72

Hepatic ketogenesis is another hepatic disturbance seen in 
animal models. Stroke-affected mice develop ketogenesis when 
fed fat-rich diet, even when the diet was not sufficient to trig-
ger ketosis pre-stroke.73 This phenomenon may have a potential 
role in angiogenesis and neuroprotection following AIS.74 

Kidney dysfunction
Stroke-induced autonomic hyperactivation brings an increase 
in sympathetic activity and systemic inflammation, disrupting 
renal homeostasis.75 Up to one-third of stroke patients experi-
ence renal impairment during hospital stay.76 AIS patients can 
develop acute kidney injury, defined as decreased urine output 
or increased absolute serum creatinine within 48 hours.77 In-
fluential factors beyond sympathetic activity include hydration 

status, contrast nephrotoxicity, and vascular intervention.77 
Stroke survivors can also suffer progression of chronic kidney 
disease that can evolve to end stage renal disease.78 Post-
stroke renal dysfunction upon hospitalization is a prognostic 
indicator of mortality at 10 years76 and thus supports the case 
for identification and management. 

Other disturbances include urinary incontinence, with or with-
out urgency, in half of AIS patients. Given the complex neuro-
logical control over micturition, lesion size may be of greater 
concern than specific localization to certain brain areas.79 

Endocrine imbalance
Stroke-induced sympathetic signaling to the pancreas blocks 
insulin release, making hyperglycemia common after stroke 
even in non-diabetic patients.80 Hyperglycemia commonly ex-
tends beyond the acute period to involve impaired glucose tol-
erance at discharge or progression to diabetes.80 While hyper-
glycemia is associated with larger infarcts and worse function-
al outcome, clinical trials found no therapeutic benefit to in-
tensive blood glucose control, noting induced hypoglycemia is 
of equal concern.81

Low levels of thyroid hormone triiodothyronine (T3) have 
been observed immediately following stroke in more than half 
of patients, independent of pre-existing thyroid conditions.82 
Low serum T3 and positive thyroid autoantibodies were associ-
ated with worse outcomes following AIS.82,83 Experimental T3 
administration after MCAO reduced cerebral edema by inhibit-
ing aquaporin-4 (AQP4) expression,84 but clinical T3 supple-
mentation has not been tested. Possible explanations of thyroid 
hormone disruption after AIS include pro-inflammatory media-
tors and glucocorticoid influence.82

Stroke disrupts the circadian rhythms and melatonin produc-
tion, even when lesions do not affect pineal gland control.85 A 
preclinical study observed a phase shift in melatonin release 
after stroke,85 and clinical AIS studies reported decreased mela-
tonin at day 1.86 Melatonin treatment was neuroprotective af-
ter rodent stroke, where proposed mechanisms are mitochon-
drial apoptosis pathway inhibition and promotion of neuronal 
survival pathways,87 suggesting the melatonin decrease follow-
ing stroke may be from swift metabolism to combat stroke-in-
duced damage. 

Motor pathway disruption

Focal weakness as a result of motor pathway disruption is 
commonly seen post-AIS.1,2,5 In addition to the motor system 
lesion, the pathophysiology of motor impairment stems also 
from the neuroplastic response, which alters upstream/down-
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stream non-lesioned networks.88 Neuroimaging advancements 
(e.g., functional magnetic resonance imaging) foster detailed 
study of motor mapping after stroke.89 Stroke patient testing 
found functional coupling between cortical activity and muscle 
output is markedly reduced in the acute phase and remains as 
such even when motor performance improves.90 Interestingly, 
patients without apparent improvement still exhibited complex 
changes over time due to motor network connectivity.91 Inves-
tigated mechanisms of motor functional recovery include axo-
nal sprouting,92,93 white matter repair,94 neurogenesis,95 and ip-
silesional/contralesional network reorganization.96 Just as con-
sequences of stroke disability maladaptively alter cortical map-
ping and hinder recovery,97 interventions targeting beneficial 
neuroplastic reorganization can strengthen tracts and improve 
recovery.98,99 

Systemic consequences of motor pathway 
disruption and immobility
Motor pathway disruption and secondary immobility result in 
increased risk of venous thromboembolism (VTE) formation and 
widespread impacts to the musculoskeletal system.

Deep vein thrombosis and pulmonary embolism 
Post-stroke VTE risk ranges from 8% to 30% and is inde-
pendently associated with AIS severity.1,100,101 Especially in the 
acute phase when hemodynamics, inflammation, and immobil-
ity compound, DVT may develop and travel to the lungs, yield-
ing life-threatening PE.100 Atherosclerotic predisposition was 
explored as a potential link between AIS and VTE, but causation 
was determined unlikely.101 Infection, however, is associated 
with both coagulation system activation and immobilization.101 
As such, stroke-associated infection, prothrombotic activity, in-
flammation, dehydration, and immobility all serve roles in VTE 
development after stroke.101 Prophylactic chemical DVT dosages 
and intermittent pneumatic compression reduce DVTs in AIS 
patients.4,102 

Bone loss and remodeling disorder
Chronic stroke patients experience bone loss as mineral density 
declines significantly within one year and fracture risk increas-
es up to 7-fold.103 The pathophysiology of bone loss extends 
beyond immobility and asymmetric weight-bearing to disrup-
tion of central brain centers controlling skeletal homeostasis.104 
Inner ear vestibular lesioning in rats decreased bone formation 
without affecting resorption or locomotor activity;104 these al-
terations in bone metabolism were attributed to SNS outflow 
and prevented with β2-adrenergic receptor blockade.104 Like-
wise, serum bone formation marker N-terminal propeptide of 
type 1 procollagen (PINP) decreased independent of activity 

level in MCAO rats, with no change in resorption marker C-ter-
minal telopeptide of type I collagen (CTX).105 Further investiga-
tion is needed to define exact pathways involved with brain 
control of bone metabolism and stroke-induced remodeling 
disorders.

Skeletal muscle decline
Stroke prompts severe alterations to skeletal muscle tissue. 
Myofiber analysis identified a shift in myosin heavy chain pre-
dominance toward fast-twitch isoforms with initial denerva-
tion that declined as motor recovery and spasticity pro-
gressed.106 Reduced gait speed is also associated with the post-
stroke atrophy response.106 Catabolic activity in mouse stroke-
affected muscle was measured as increased expression of 
apoptotic and proteasome proteolytic markers and significantly 
correlated with infarct size.107 Proposed contributors to skeletal 
muscle decline after stroke include reduced feeding and inac-
tivity, sympathetic activation, and infection. Weight loss and 
muscle wasting, however, were not altered by high-caloric diet, 
sympathetic blockade, or antibiotic treatment,107 suggesting 
mechanisms unique to stroke are responsible for the observed 
pathophysiology.

Exact molecular mechanisms of AIS-induced muscular de-
cline are unclear. Myostatin is upregulated in post-stroke pa-
retic muscle.13,108 Myostatin inhibits the anabolic Akt/mamma-
lian target of rapamycin (mTOR) pathway while increasing 
ubiquitin-proteasome activity and autophagy-lysosome prote-
olysis.108 Inhibiting myostatin with PINTA745 promoted recov-
ery of muscle mass and function in rodents.108 Providing similar 
results, progressive resistance training decreased patient myo-
statin mRNA and stimulated muscle hypertrophy.109 Separately, 
stroke upregulated pro-inflammatory interferon-γ-induced 
protein 10 (IP-10/CXCL10) in rat paretic muscle while prompt-
ing significant loss of brain-derived neurotrophic factor (BDNF), 
an important mediator for muscular repair.13

Data propose the systemic inflammatory response following 
AIS reaches skeletal muscle and influences its reparative ca-
pacity. Clinical data regarding muscle pathophysiology and as-
sociated mechanisms are limited and identifies a need for evi-
dence-based models of rehabilitation that address stroke-in-
duced skeletal muscle decline.

Conclusions and future directions

A growing body of evidence recognizes acute and chronic re-
percussions in peripheral tissues that worsen stroke evolution 
and alter prognosis (Figures 1 and 4). The aforementioned ram-
ifications of ischemic stroke on autonomic, neuroendocrine, 
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immune, and motor systems are a conduit for injury response 
to move beyond the CNS. As presented herein, the individual 
clinical manifestations of AIS cannot simply be attributed to a 
single pathophysiological mechanism. Rather, each complica-
tion stems from a myriad of influencers and, likewise, prompts 
new deficits while magnifying the existing disease state. 

The disappointing translational failure of AIS therapeutics 
and neuroprotective agents from bench to bedside is markedly 
pronounced in comparison to clinical trial successes across 
various other medical conditions.110 This is partly related to the 
widespread complex pathophysiology of AIS in the body. Cen-
tral to this issue is a call for integrative progression in stroke 
research, where experts consolidate therapeutic knowledge to 
address the complexity of stroke pathophysiology.

The concept of AIS as a systemic disease is clear when con-
sidering how pathophysiological mechanisms reach nearly ev-
ery organ system in the human body. Hence, reductionist ap-
proaches that fail to consider bidirectional crosstalk between 
the CNS and periphery limit our ability to conceptualize new 
paradigms of patient care. A comprehensive understanding of 
post-stroke systems biology offers new direction to mechanis-
tic discovery, defining multi-system targets to include the SNS, 
gut microbiome, neuroimmune interactions, and musculoskele-
tal metabolism. As such, collaborative research efforts across 
clinical specialties are necessary to inform methods and 
achieve the future of integrative stroke therapeutics.
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Supplementary Table 1. Literature summary: systemic pathophysiology of ischemic stroke

Study Summary

Immune system: immunosuppression

Pre-clinical

Offner et al. (2006a)1 Ischemic stroke activates the peripheral immune system with acute alterations in the spleen.

Offner et al. (2006b)2 Immunosuppression yields splenic atrophy, lower T-cell response, increased CD4+FoxP3+Treg cells.

Gu et al. (2012)3 Stroke affects T-cell populations and prompts an inflammatory shift from Th1 to Th2 response.

Gu et al. (2013)4 T-cell dysfunction after stroke is a main contributor to immune cell reduction in blood and spleen.

Braun et al. (2007)5 Q-VD-OPH prevented brain damage, splenic/thymic apoptosis, infection; improved survival.

Wong et al. (2011)6* Hepatic iNKT cell behavior is altered via noradrenergic signaling; contributes to immunosuppression.

Kim et al. (2018)7 HMBG1 release causes inflammation in the brain and periphery and is associated with infection. 

Walker et al. (2010)8 Other CNS injuries such as TBI reduce splenic volume and present some benefit to splenectomy.

Ajmo et al. (2008)9 Splenectomy 2 weeks pre-stroke decreased activated microglia/peripheral immune cells and infarct volume.

Dotson et al. (2015)10 Splenectomy 2 weeks pre-stroke decreased infarct size and inflammation in male mice but not females.

Kim et al. (2014)11 Pre-stroke splenectomy reduced monocyte/macrophage infiltration, not infarct growth/edema.

Zierath et al. (2017)12 Pre-stroke splenectomy had no effect on infarct volume, immune response to brain antigen, outcomes.

Belinga et al. (2016)13 Post-stroke splenectomy was neuroprotective via reduced TLR4/NF-κB expression, inflammation.

Kharrazian (2015)14 The gut microbiome is disrupted after other neurological injuries such as TBI.

Kigerl et al. (2018)15 Other CNS injuries such as SCI cause dysbiosis, intestinal permeability, bacterial translocation.

Singh et al. (2016)16* Dysbiosis is associated with immune dysfunction/poor outcomes.

Stanley et al. (2018)17 Stroke alters gut microbiome within 24 hours.

Winek et al. (2016)18 Microbiota-depletion with antibiotics until 3 days pre-stroke caused colitis/decreased survival.

Tascilar et al. (2010)19 pMCAO caused intestinal mucosal damage/bacterial translocation at PSD1-3.

Benakis et al. (2016)20 Gut dysbiosis directly affects intestinal T-cells and exacerbates stroke evolution.

Crapser et al. (2016)21 Gut permeability/bacterial translocation contribute to infection after stroke induction.

Oyama et al. (2018)22 Gut permeability/bacterial translocation were not seen 24 to 72 hours post-tMCAO.

Clinical

Chamorro et al. (2012)23*,† Brain-immune interaction aids immunosuppression; increases infection/morbidity/mortality.

Liu et al. (2017)24† Immunosuppression in the brain and periphery is controlled by separate and distinct mechanisms.

Johnston et al. (1998)25* Pneumonia, UTI, congestive heart failure, and others contribute to mortality/negative outcomes.

Chiu et al. (2016)26 Splenic atrophy correlates with increased blood lymphocytes/decreased blood neutrophils.

Vogelgesang et al. (2008)27* Slow CD4+ T cell count recovery may identify patients at risk of infection.

Mocco et al. (2006)28 Stroke activates the complement system, as demonstrated in peripheral blood levels of complement factor 
3a (acute increase), 5a (delayed increase), and sC5b-9 (acute decrease).

Planas et al. (2012)29 Lymph node CD68+MHCII+macrophages near activated T-cells react to neuronal antigens.

Yang et al. (2011)30† Brain-derived HMGB1 prompts inflammatory response, ischemia-reperfusion injury via TLR4.

Liesz et al. (2015)31*,† DAMPs/HMBG1-RAGE contribute to monocyte exhaustion, lymphopenia, immune suppression.

Harms et al. (2008)32 PSD1 monocytic HLA-DR level is an independent predictor of infection.

Hug et al. (2009)33* Infarct volume predicted SAP; associated with decreased HLA-DR, lymphocytopenia, monocyte dysfunction.

Hernandez-Jimenez et al. (2017)34 Impaired monocyte function/low HLA-DR correlate with circulating mtDNA; identifies infection risk.

Hoffmann et al. (2017)35* Immunodepression (reduced monocytic HLA-DR) and dysphagia are independent, screenable predictors of SAP.

van de Beek et al. (2009)36* Meta-analysis of post-stroke infection confirmed no benefit of prophylactic antibiotics over standard treatment.
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Badve et al. (2018)37* Evidence is insufficient to recommend routine administration of post-stroke antibiotics for infection control.

Yin et al. (2015)38 Stroke causes gut dysbiosis and low blood TMAO levels.

Stanley et al. (2016)39† Gut permeability promotes bacterial translocation and infection.

Yamashiro et al. (2017)40,41 Gut dysbiosis is associated with changes to host metabolism, inflammation.

Autonomic/neuroendocrine systems: sympathet-
ic, parasympathetic, and HPA axis dysfunction

Pre-clinical

Prass et al. (2003)42 Catecholamines mediate immunodepression, infection, splenic atrophy, lymphocyte apoptosis.

Ajmo et al. (2009)43 Splenic response is regulated by catecholamines, α- and β-adrenergic receptors.

Yan et al. (2014)44 Sympathetic overactivation after stroke suppresses the immune system and reduces splenic volume;  
reversible with sympathetic block.

Mracsko et al. (2014)45 Immune compromise is mediated by SNS and HPA axis dysfunction.

Ay et al. (2011)46 Vagal stimulation confirmed role of α7-nAChR in reducing cerebral ischemia after stroke.

Han et al. (2014)47 α7-nAChR activation decreases cerebral inflammation following experimental stroke.

Engel et al. (2015)48 The parasympathetic anti-inflammatory cholinergic pathway is activated after stroke and contributed to 
pneumonia development; prevented with vagotomy or α7-nAChR deficiency.

Clinical

Chamorro et al. (2007)49 Stroke-induced circulating catecholamines were associated with infection and 3 months mortality.

McCulloch et al. (2017)50† β2-Adrenergic receptors mediate marginal zone B-cell/plasma IgM loss, high bacterial load, infection.

Dziedzic et al. (2007)51 β-Blockers reduced mortality independent of other risk factors.

Sykora et al. (2015)52* On-stroke β-blockers decreased pneumonia/mortality; no effect on function.

De Raedt et al. (2011)53 Pre-stroke β-blocker use did not impact stroke severity/3 months outcome.

Maier et al. (2018)54 β-Blocker therapy had no reduction effect on post-stroke infections and was indicated as a possible  
contributor to UTI development.

Westendorp et al. (2016)55 Pre-stroke use of β-blockers was associated with higher infection incidence and SAP.

Starr et al. (2017)56 Non-selective β-blockers were associated with infection; no effect on disability/mortality.

Harms et al. (2011)57* Anterior MCA lesion/high urine NE associated with low monocyte HLA-DR, predicted infection.

Haeusler et al. (2008)58 Immunosuppression presents with decreased lymphocytes and monocyte/Th1 function. Plasma cortisol was 
elevated in patients who later developed infection.

Barugh et al. (2014)59 Stroke-increased cortisol is associated with dependency, mortality, lymphopenia, stroke severity.

Respiratory system: stroke-associated pneu-
monia

Pre-clinical

Prass et al. (2006)60 Immunodeficiency facilitates spontaneous bacteremia/pneumonia via sympathetic activity.

Suda et al. (2018)61 Infection during hospitalization predicts worse functional outcome/death at 3 months.

Clinical

Walter et al. (2007)62 Dysphagia, infection on admission, and NIHSS score predict SAP in NICU.

Lakshminarayan et al. (2010)63 Dysphagia screening predicts pneumonia, but broader selection criteria are warranted.

Kalra et al. (2015)64 Clinical trial found prophylactic antibiotics for SAP failed to improve outcomes/mortality.

Xi et al. (2017)65 Antibiotic use for SAP had no impact on functional outcomes or mortality.

Respiratory system: venous thromboembo-
lisms–DVT/PE

Clinical

Supplementary Table 1. Continued
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Kelly et al. (2004)66 Ischemic stroke patients are at risk for VTE; half of DVT and PE cases identified via magnetic resonance direct 
thrombus imaging had been overlooked by the attending team.

Pilato et al. (2013)67 Case report stressed clinical risks/concerns of post-stroke, post-thrombolysis PE.

Pongmoragot et al. (2013)68 PE is associated with in-hospital complications, disability, poor outcome, fatality within 1 year.

Bembenek et al. (2012)69 DVT incidence is 9% within 1 week, predicted by high CRP/pre-stroke disability.

Douds et al. (2014)70 VTE incidence was 3% despite VTE prophylaxis.

Rinde et al. (2016)71 VTE risk after stroke increases 3-fold within 3 months.

Sandercock et al. (2015)72 Routine anti-coagulants are not recommended for DVT/PE prevention due to hemorrhage risk.

CLOTS Trials Collaboration (2013)73 IPC devices are effective at reducing DVT risk.

Dennis et al. (2015)74 Anticoagulants decrease VTEs, increase bleed risk. IPCs reduced DVTs in immobile patients.

Morelli et al. (2019)75 Post-stroke infection may contribute to VTE development through coagulation system activation and  
resulting immobilization.

Urinary system: urinary tract infection

Clinical

Ersoz et al. (2007)76 Post-stroke UTI affects patients both with (50%) and without (24%) indwelling catheters.

Indredavik et al. (2008)77* UTI is a common complication at 1 week and 3 months.

Stott et al. (2009)78 UTIs are associated with catheter use, disability, death.

Ifejika-Jones et al. (2013)79 In-hospital UTI predicts discharge setting dependency.

Huang et al. (2004)80 Prompting removal of urinary catheters decreased incidence of UTI in ICU patients.

Topal et al. (2005)81 Assessment prompts and bladder scans reduced catheter use and incidence of post-stroke UTI.

Titsworth et al. (2012)82 Programs emphasizing sterility, less catheter use, and early removal decreased use and UTI rates.

Chen et al. (2018)83 Portable bladder ultrasound (residual post-void volume) reduced UTIs even with catheterization.

Muramatsu et al. (2018)84 Antimicrobial catheter use did not reduce catheter-associated UTIs.

Urinary system: renal dysfunction

Pre-clinical

Hachinski et al. (1992)85 Renal nerve sympathetic activity/plasma NE present differently in left vs. right MCAO.

Clinical

Dziedzic et al. (2004)86 Urine albumin and serum IL-6 are elevated after stroke.

Thomas et al. (2019)87 Urinary incontinence affects half of stroke patients with 15% still incontinent at 1 year; evidence to direct 
continence interventions is insufficient.

Pettersen et al. (2006)88 Urinary incontinence with impaired awareness after stroke predicted mortality and 3 months outcome.

Lee et al. (2016)89 Albuminuria after stroke is associated with additional adverse events and mortality.

Tsagalis et al. (2009)90 Low eGFR predicts cardiovascular complications/mortality within 10 years.

Shrestha et al. (2017)91 Stroke reduces eGFR, causes renal impairment.

Khatri et al. (2014)92 AKI is common and is associated with in-hospital mortality.

Nadkarni et al. (2015)93 AKI with dialysis is linked to higher discharge dependency/death.

Zorrilla-Vaca et al. (2018)94 AKI is associated with mortality; kidney function should be tested acutely.

Arnold et al. (2018)95 Inflammation and sympathetic output contribute to AKI within 48 hours of stroke.

Wu et al. (2016)96 Stroke increases risk of renal dysfunction, CKD, ESRD.

Cardiovascular system: cardiac dysfunction

Pre-clinical

Supplementary Table 1. Continued
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Jia et al. (2015)97 MCAO causes cardiac arrhythmias via glutamate-mediated PVN activation.

Bieber et al. (2017)98 Sympathetic signaling causes systolic dysfunction.

Clinical

Daniele et al. (2002)99 Stroke causes new-onset ECG abnormalities, commonly arrhythmias.

Di Pasquale et al. (1988)100 Exercise testing revealed silent myocardial ischemia in stroke patients without symptoms of ischemic heart 
disease.

Adams et al. (2003)101 Some stroke patients may have asymptomatic coronary artery disease.

Ay et al. (2006)102 Cardiac troponin T is elevated without apparent injury.

Touze et al. (2005)103 Risk of MI and vascular death is high after ischemic stroke; screening efforts need improved.

Joundi et al. (2016)104 Cardiac arrest correlates with severe comorbidities/disability/30-day mortality.

Prosser et al. (2007)105 Serious adverse events are common during week 2 and predictable.

Yoshimura et al. (2008)106 TTC is common in women with insular/vertebrobasilar infarcts.

Jung et al. (2016)107 Post-stroke TTC is associated with insular infarcts, poor outcomes, inflammation, and mortality.

Milionis et al. (2013)108 Low left ventricular EF is associated with disability/comorbidity/death within 1 year.

Colivicchi et al. (2004)109 Right insular lesions are associated with cardiac dysfunction/arrhythmias.

Laowattana et al. (2006)110 Left insular lesions predicted MI/cardiac death; right had no association.

Korpelainen et al. (1996)111 Medulla lesions cause abnormal HRV.

Francica et al. (2015)112 Submaximal exercise improved HRV and cardiac vagal modulation.

Tahsili-Fahadan et al. (2017)113 Stroke induces abnormal ECG, arrhythmias, elevated enzymes.

Digestive system: gastrointestinal complica-
tions

Pre-clinical

Xu et al. (2012)114 MCAO increased intestinal mucosal damage/ghrelin, decreased motility.

Feng et al. (2010)115 CGRP at reperfusion attenuates gastric mucosal damage.

Clinical

Hsu et al. (2009)116 GI hemorrhage increased proportionate to number of risk factors.

Chen et al. (2011)117 Risks for upper GI bleeds include impaired consciousness, longer stay, anticoagulant use.

Ogata et al. (2014)118 GI bleeds are rare and linked to mortality/poor outcome.

Li et al. (2017)119 Nearly half of patients suffer from bowel complications.

Harari et al. (2003)120 New-onset fecal incontinence affects 30% of patients, lasting up to 3 years.

Schaller et al. (2006)121 GI complications contribute to poor nutrition status linked with worse outcomes.

Yi et al. (2011)122 Constipation presented with impaired swallowing/colon motility.

Digestive system: hepatic dysfunction

Pre-clinical

Ottani et al. (2009)123 Stroke activates inflammatory/apoptotic pathways in the liver.

Puchowicz et al. (2008)124 Diet-induced ketosis proved neuroprotective in rat brain after MCAO.

Koch et al. (2017)125 Stroke induced hepatic ketogenesis and production of neuroprotective hepatic βOHB, mediated through  
noradrenergic innervation.

Wang et al. (2014)126 Catecholamine levels compromise hepatic insulin signaling, increase expression of gluconeogenic genes, and 
increase endoplasmic reticulum stress in the liver after stroke.

Clinical

Supplementary Table 1. Continued
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Pineda et al. (2008)127 Serum direct bilirubin is increased after stroke and associated with higher stroke severity.

Luo et al. (2013)128 Stroke elevated serum direct bilirubin and total bilirubin, correlating with stroke severity.

Muscari et al. (2014)129 Stroke alters unconjugated bilirubin/liver enzyme levels.

Endocrine system: insulin and hyperglycemia

Pre-clinical

Zhu et al. (2004)130 Optimal blood glucose must be maintained to avoid both hyper- and hypoglycemia.

Clinical

Szczudlik et al. (2001)131 Post-stroke transient hyperglycemia is common and increases 30-day mortality.

Baird et al. (2003)132 Persistent hyperglycemia was associated with poor function and infarct expansion.

Vancheri et al. (2005)133 Post-load hyperglycemia at discharge predicts new-onset diabetes after 3 months.

Ntaios et al. (2010)134 Both hyper- and hypoglycemia are dangerous and affect outcome.

Gray et al. (2004)135 GKI infusion corrected hyperglycemia with low risk of hypoglycemia.

Bruno et al. (2008)136 Aggressive hyperglycemia correction was well-tolerated and superior to routine care.

Bruno et al. (2014)137 More evidence is needed to argue continuous insulin infusion vs. standard subcutaneous insulin.

Johnston et al. (2019)138 The SHINE clinical trial found no therapeutic benefit of aggressive treatment of hyperglycemia.

Endocrine system: low T3 and positive thyroid 
autoantibodies

Pre-clinical

Sadana et al. (2015)139 Neuroprotective T3 decreases edema via AQP4 suppression.

Clinical

Zhang et al. (2010)140 Low T3 is associated with high severity scores and worse outcome.

Cho et al. (2014)141 Positive thyroid autoantibodies correlated with unfavorable outcomes.

Endocrine system: melatonin and circadian 
dysfunction

Pre-clinical

Meng et al. (2008)142 Stroke shifts timing of melatonin secretion.

Bhattacharya et al. (2014)143 Neuroprotective melatonin reduced infarct size, deficits, edema, and apoptosis.

Kilic et al. (2004)144 Melatonin protects against neuronal injury through inhibition of caspase-3.

Kilic et al. (2005)145 Acute neuroprotection from melatonin involves phosphatidyl inositol-3 kinase/Akt signaling.

Manev et al. (1996)146 Melatonin-deficient rats exhibit greater neurodegeneration.

Clinical

Ritzenthaler et al. (2009)147 Stroke decreases nocturnal urinary melatonin excretion.

Vinogradov et al. (2015)148 Melatonin assisted recovery from sleep initiation disturbance insomnia.

Musculoskeletal system: bone loss and remod-
eling disorder

Pre-clinical

Borschmann et al. (2017)149 Serum PINP was significantly reduced at PSD28.

Vignaux et al. (2015)150 Bone metabolism/skeletal homeostasis disruption is attributed to sympathetic hyperactivation.

Clinical

Kanis et al. (2001)151 Fracture risk increases 7-fold within first year of hospitalization.

Supplementary Table 1. Continued
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Study Summary

Pang et al. (2005)152 The paretic arm presents with lower BMD/BMC/lean mass and higher fat mass.

Pang et al. (2007)153 Upper extremity impairment measures are determinants of bone demineralization.

Kapral et al. (2017)154 Low-trauma fracture risk increases after stroke, supporting need for BMD screening.

Borschmann et al. (2018)155 Motor control, standing/walking recovery at 6 months inversely correlated with bone loss.

Musculoskeletal system: skeletal muscle 
pathophysiology

Pre-clinical

Desgeorges et al. (2015)156 Akt/mTOR repression and increased ubiquitin-proteasome activity contribute to atrophy.

Springer et al. (2014)157 Catabolic/proteasome activity were not prevented by autonomic/immune intervention.

Sen et al. (2017)158 Stroke disrupts inflammatory and regenerative signaling in muscle.

Desgeorges et al. (2017)159 Anti-myostatin treatment reduced muscle loss and improved function.

Clinical

Jorgensen et al. (2001)160 Loss of lean muscle mass and BMC are common during the first year.

Benecke et al. (1983)161 Upper limb denervation occurs at 2 to 3 weeks, after which denervation decreases.

De Deyne et al. (2004)162 Myofiber phenotype changes contribute to functional disability.

Ryan et al. (2011)163 Resistance training repressed myostatin and induced hypertrophy.

Scherbakov et al. (2013)164 Muscle pathologies present but are not addressed in rehabilitation guidelines.

Referenced guidelines and statistic reports

Benjamin et al. (2019)165* Heart disease and stroke statistics—2019 update: a report from the American Heart Association

Collaborators GBDN (2019)166* Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the 
global burden of disease study 2016

Collaborators GBDS (2019)167* Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the global burden of 
disease study 2016

Powers et al. (2018)168* 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare 
professionals from the American Heart Association/American Stroke Association

Pierot et al. (2018)169 Standards of practice in acute ischemic stroke intervention: international recommendations

Sacks et al. (2018)170 Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute  
ischemic stroke: from the American Association of Neurological Surgeons (AANS), American Society of  
Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian  
Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of  
Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke 
Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional 
Radiology (SIR), Society of Neurointerventional Surgery (SNIS), and World Stroke Organization (WSO)

Johnson et al. (2016)171 Stroke: a global response is needed. World Health Organization Bulletin

Winstein et al. (2016)172* Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the 
American Heart Association/American Stroke Association

Platz (2019)173* Evidence-based guidelines and clinical pathways in stroke rehabilitation-an international perspective

CD4, cluster of differentiation 4; FoxP3, forkhead box protein P3; Treg, regulatory T-cell; Th, T-helper; Q-VD-OPH, quinolyl-valyl-O-methylaspartyl-[-2,6-difluoro-
phenoxy]-methyl ketone; iNKT, invariant natural killer T (cell); HMBG1, high-mobility group box 1; CNS, central nervous system; TBI, traumatic brain injury; TLR, 
toll-like receptor; NF-κB, Nuclear factor κB; SCI, spinal cord injury; PSD, post-stroke day; pMCAO, permanent MCA occlusion; tMCAO, transient MCAO; UTI, uri-
nary tract infection; MHC, major histocompatibility complex; DAMP, danger-associated molecular pattern; RAGE, receptor for advanced glycation end product; 
HLA-DR, human leukocyte antigen D related; SAP, stroke-associated pneumonia; mtDNA, mitochondrial DNA; TMAO, trimethylamine N-oxide; HPA, hypothalam-
ic-pituitary adrenal; SNS, sympathetic nervous system; nAChR, nicotinic acetylcholine receptor; IgM, immunoglobulin M; MCA, middle cerebral artery; NE, norepi-
nephrine; NIHSS, National Institutes of Health Stroke Scale; NICU, neurological intensive care unit; DVT, deep vein thrombosis; PE, pulmonary embolism; VTE, ve-
nous thromboembolism; CRP, C-reactive protein; IPC, intermittent pneumatic compression; ICU, intensive care unit; IL-6, interleukin 6; eGFR, estimated glomerular 
filtration rate; AKI, acute kidney injury; CKD, chronic kidney disease; ESRD, end-stage renal disease; PVN, paraventricular nucleus; ECG, electrocardiography; MI, 
myocardial infarction; TTC, Takotsubo cardiomyopathy; EF, ejection fraction; HRV, heart rate variability; CGRP, calcitonin gene-related peptide; GI, gastrointestinal; 
βOHB, β-hydroxybutyrate; GKI, glucose/potassium/insulin; SHINE, Stroke Hyperglycemia Insulin Network Effort; T3, triiodothyronine; AQP4, aquaporin-4; PINP, 
N-terminal propeptide of type 1 procollagen; BMD, bone mineral density; BMC, bone mineral content; mTOR, mammalian target of rapamycin.
*Publication addresses multiple organ systems; †Publication also contains pre-clinical data.

Supplementary Table 1. Continued
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Supplementary Figure 1. A decade of ischemic stroke literature. Ischemic stroke drives development of systemic pathologies. Queries of stroke literature by 
year (National Center for Biotechnology Information and National Library of Medicine database; PubMed) show annual ischemic stroke publications have 
steadily increased in number since 2009. However, searches of ischemic stroke literature associated with various system-specific terminology (e.g., [(ischemic 
stroke) AND cardiac]) revealed little attention has been given to peripheral consequences of stroke over the past decade. Indeed, in 2018 when ischemic stroke 
publications numbered more than 6,000, seven of the eight peripheral systems examined had less than 200 publications, five of which had 100 or less. The 
eighth system reflected cardiac outcomes in ischemic stroke at around 1,400 publications—more in comparison given the clinical link in cardio- and cerebro-
vascular research—though still a mere fraction overall. Data are reported as publication count (y-axis; split twice to denote full spread across systems) by pub-
lication year (x-axis).
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